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1 PERSONAL DATA AND EDUCATION

1.1

1.2

PERSONAL DATA

Born in Moscow, USSR, on September 8, 1939 in the family of Yakov Solomonovich
Pan, 1906-1941, the author of a bestseller of 1940 about scientific discoveries, re-
published in the 21st century in England and France — see Wikipedia article: fkos
Cosomonosuu [Man (“Yakov Solomonovich Pan", in Russian), and Rievka Kalmanovna
Kogan, 1904-1965

Immigrated to the U.S. in 1977
U.S. Citizen since 1982

Married to Lidia Perelman (Pan), literary critic — see Wikipedia article: JIuns [lann
(“Lilya Pann", in Russian) by link from: Hosaa Kapra Pycckoit JTureparypsr (“No-
vaya Karta Russkoy Literatury", in Russian)

Hobbies: Reading and writing poetry, Mountaineering, Swimming, Skiing and Cross-
Country Skiing

Languages: English, Russian, French

HIGH SCHOOL EDUCATION
1946-1956: 59th High School in Moscow, USSR

Moscow High School Olympiads in Mathematics: prizes in 1954, 1955 and 1956



1.3 HIGHER EDUCATION:

1956-1964: Department of Mechanics and Mathematics
Moscow State University (MGU)

1961: M.S. in Mathematics

1964: Ph.D. in Mathematics (Thesis Advisor: A. G. Vitushkin)

2 EMPLOYMENT AND CONSULTING:

2.1

EMPLOYMENT

1988 — Visiting Professor, Professor, and (since 2000) Distinguished Professor at the
Department of Mathematics and Computer Science of Lehman College of the City
University of New York (CUNY) and in the Ph.D. Programs in Computer Science and

in Mathematics of the Graduate Center of CUNY

1979-80 and 1981-1991 — Professor at the Computer Science Department of the State

University of New York at Albany (SUNYA)

August 2002 — Visiting Scientist
Ontario Research Center in Computer Algebra (ORCCA)

Waterloo and London, Western Ontario, Canada

June 2002 — Visiting Scientist

Mathematics and Informatics Departments, University of Pisa, Italy

August-September 1998 — Senior Key Scientist
Mathematical Science Research Institute, Berkeley, California
July 1998 — Visiting Scientist

Fields Research Institute, Toronto, Canada

March-August 1996 and March—-June 1997 — Invited Scientist
Project SAFIR, INRIA-Sophia Antipolis, France

January 1991 and July-August 1992 — Visiting Scientist

International Computer Science Institute, Berkeley, California

1989-90 — Visiting Professor

Computer Science Department, Columbia University, New York

July 1984 — Visiting Professor
Department of Mathematics, University of Pisa and CNR, Italy

April-June 1981 - Visiting Professor

Computer Science Department, Stanford University, California



2.2

3.1

3.2

1980-81 — Visiting Member
the Institute for Advanced Study, Princeton, New Jersey

1977-79 and August 1980 — Visiting Scientist
IBM Research Center, Yorktown Heights, New York

1969-76 — Senior Researcher
Department of Models for National Economy

Institute of Economics, Academy of Science, Moscow, Russia

1965-69 — Senior Researcher
Department of Computations for Economics

Institute of Electronic Control Machines, Moscow, Russia,

1964-65 — Junior Researcher
Department of Computations for Economics

Institute of Electronic Control Machines, Moscow, Russia,

CONSULTING:
ATT Bell Laboratories, Murray Hill, New Jersey, 1991-1993

General Electric Research and Development Center, Schenectady, New York, 1980

PROFESSIONAL SOCIETIES; RESEARCH AREAS
MEMBERSHIP IN PROFESSIONAL SOCIETIES:

American Mathematical Society, since 1977

Designation of AMS Fellowship “For Contributions to the Mathe-
matical Theory of Computation”, 2013

Association for Computing Machinery, since 1977
Society for Industrial and Applied Mathematics, since 1977
European Association for Theoretical Computer Science

International Linear Algebra Society

AREAS OF RESEARCH SPECIALIZATION
Also see section 12: MY RESEARCH JOURNEY

Design and Analysis of Algorithms
Computational Complexity
Polynomial Computations

Computations with General, Data Sparse, and Random Matrices



4.1

Numerical Algorithms

Symbolic Algorithms
Symbolic-Numerical Algorithms
Parallel Algorithms

Graph Algorithms

GRANTS AND AWARDS:

Special Creativity Extension Award from the Numeric, Symbolic, and
Geometric Computation Program of the CCR Division in the Direc-
torate CISE of NSF (1993)

Best Paper Award 2000, Journal of Complexity: $3,000 (shared)
NSF Grants (individual): $§1,931,143 (1980-2016), including

NSF Grants (joint): $§1,056,241 (2016-2021)

26 PSC-CUNY Awards (individual): $135,077, 1989-2021

CUNY Institute for Software Design and Development Grants: $8,000, 20012002
Shuster Foundation Award: $4,000, 1994-2000

Lehman College CUNY, Faculty Award for Research and Scholarship: $1,000, 1994
Institute for Advanced Study, Grant: $13,000, 1980-81

SUNY University Award: $2,000, 1980

MOST RECENT:

NSF Grant (individual) CCF-1116736,
“Novel Methods for Fundamental Matrix and Polynomial Computations", $350,000
(from 8/1/2011 to 12/31/2016)

NSF Grant (joint: A. Ovchinnikov — PI; V. Pan — co-PI, and C. Yap — co-PI) CCF
- 1563942 AF: Medium: Collaborative Research: Numerical Algebraic Differential
Equations, $608,205 (from 7/1/2016 to 6/30/2021)

NSF Grant (joint: Bo Yuan — PI, V. Pan — co-PI, and Xue Lin — co-PI) AitF, CCF-
1733834, Medium: Collaborative Research: A Framework of Simultaneous Acceler-
ation and Storage Reduction on Deep Neural Networks Using Structured Matrices,
$448,086.00 (from 9/15/2017 to 12/31,/2021)

PSC CUNY AWARD 69813 00 48: New Progress in Matrix and Polynomial Compu-
tations, $11,998.92 (from July 1, 2017 to December 31, 2018)



4.2

PSC CUNY AWARD 62797-00 50: $11,999.74 (from June 30, 2019 to December 31,
2020)

PSC CUNY AWARD 63677-00 51:
$5,999.87 (from July 1, 2020 to June 30, 2021)

PSC CUNY AWARDS (LISTING SINCE 2003):

AWARD 65393-0034: "Algebraic and Numerical Algorithms",
$3,297, 6/30/2003 — 7/1/2004

AWARD 6643-7-0035: "Algebraic and Numerical Computing",
$3,495, 6/30/2004 — 7/1/2005

AWARD 67297-0036: "Matrix and Polynomial Computations",
$2,805, 6/30/2005 — 7/1/2006

AWARD 68291-0037: "Matrix and Polynomial Computations",
$3,176, 6/30/2006 — 7/1/2007

AWARD 69330-00-38: “Algebraic and Numerical Algorithms for Matrix and Polyno-
mial Computations", $3,990, 6/30/2007 — 7/1/2008

AWARD 61406-00-39: “Algebraic and Numerical Algorithms for Matrix and Polyno-
mial Computations", $3,800, 6/30/2008 — 7/1/2009

AWARD 62230-00-40: “Algebraic and Numerical Algorithms for Matrix and Polyno-
mial Computations", $4,300, 6/30/2009 — 7/1/2010

AWARD 63153-00-41 “Algebraic and Numerical Algorithms for Matrix and Polyno-
mial Computations", $2,860, 6/30/2010 — 7/1,/2011

AWARD 64512-0042: “Matrix and Polynomial Computations",

$6,000, 6/30/2011 — 7/1/2012

AWARD 65792-0043: “Matrix and Polynomial Algorithms",

$11,998.92, 6/30/2012 — 7/1/2013

AWARD 67699-00 45:“Advancing Matrix and Polynomial Computations",
$6,000, 6/30/2014 — 7/1/2015

AWARD 68862-00 46: “Advancing Matrix and Polynomial Computations",
$11,998, 7/1/2015-12/31/2016

AWARD 69813 00 48: “New Progress in Matrix and Polynomial Computations",
$11,998.92, 6/30/2017 — 7/1/2018

AWARD 62797-00 50: $11,999.74
7/1/2019 — 12/31/2020

AWARD 63677-00 51,

$5,999.87, July 1, 2020 — June 30, 2021



5 SERVICE TO PROFESSION

5.1 JOURNAL EDITING
Area Editor:

e Theoretical Computer Science (since 1985 to present)
e Computers and Mathematics (with Applications), (1980-2011)

e Calcolo (1999 —2020)
Special Issues (Corresponding and Managing Editor):

e [. 7. Emiris, B. Mourrain, V. Y. Pan, Guest Editors. Special Issue on Algebraic and
Numerical Algorithms, Theoretical Computer Science, 315, 2-3, 307-672, 2004

e Special Issue on Symbolic-Numerical Algorithms (D. A. Bini, V. Y. Pan, and J. Ver-
schelde editors), Theoretical Computer Science, 409, 2, 155-331, 2008

e Special Issue on Algebraic and Numerical Algorithms (I. S. Kotsireas, B. Mourrain,
and V. Y. Pan, editors), Theoretical Computer Science, 412, 16, 1443-1543, 2011

e Special Issue on Algebraic and Numerical Algorithms (I. S. Kotsireas, B. Mourrain,
V. Y. Pan, and Lihong Zhi, editors), Theoretical Computer Science, 479, 1-186, 2013

5.2 PROGRAM AND SCIENTIFIC COMMITTEES MEMBER

e ACM Annual International Symposium on Symbolic and Algebraic Computation (IS-
SAC 1999), Vancouver, British Columbia, Canada, July-August 1999

e ACM Annual International Symposium on Symbolic and Algebraic Computation (IS-
SAC 2007), Waterloo, Ontario, Canada, July-August 2007

e The 2nd International Workshop on Symbolic-Numeric Computation (SNC 2007),
London, Ontario, Canada, July 2007

e The Annual International Conference on Polynomial Computer Algebra, St. Peters-
burg, Russia, Aprils of 2008-2021 (Fourteen Committees)

e The 4th International Workshop on Symbolic-Numeric Computation (SNC 2011), San
Jose, California, June 2011

e International Symposium on Linear Algebra (ILAS 2013), Providence, RI, June 2013
e The 5th International Workshop on Symbolic-Numeric Computation (SNC 2014),
Shanghai, China, July 2014

5.3 LOCAL ARRANGEMENTS CHAIR

ACM Annual International Symposium on Symbolic and Algebraic Computation (ISSAC
2018), New York, NY, the Graduate Center of CUNY, July 2018



5.4

6

6.1

6.2
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OTHER PROFESSIONAL ACTIVITIES

Organization of Conferences and Conference Minisymosia (latest — two Minisymposia
at STAMLA 2021)

Refereeing and Reviewing for Professional Journals, Conferences and Surveys

Lectures and Invited Lectures at Conferences in Computer Science, Mathematics, and
Applied Mathematics in North and South Americas, Europe, Asia, and Australia (see
the Lists of Publications and Talks at the Conferences)

Colloquium Lectures at the Universities and Research Centers

SERVICE TO LEHMAN COLLEGE AND CUNY
SERVICE TO LEHMAN COLLEGE:

Personnel and Budget Committee Member, 2017-2021

Supervising Syllabi in Computer Science

Advising students in Mathematics and Computer Science

Observing Junior Instructors in Mathematics and Computer Science

SERVICE TO CUNY:

Teaching at the Graduate School and University Center (1989-2021, except for the
sabbatical year of 1996-97)

Advising Ph.D. Students: 26 Ph.D. Defenses (see the List of Ph.D. Defenses)

Serving As the Chair of 26 PhD Defense Committees in Mathematics and Computer
Science (since 1991)

Member of Distinguished Professor Selection Committee (2005-2007, 2013 and 2016)

Member of the Leadership Committee of PhD Program in Computer Science (member,
2012-2013)

Member of the PhD Defense Committees in Mathematics (18) and Computer Science
(23) since 1991

Ph.D. STUDENTS OF CUNY SUPERVISED AND MEN-
TORED BY VICTOR PAN (27 students by 2021)

STUDENT NAME, PhD THESIS DEFENSE, GRADUATION DATE, Ph.D. PROGRAM

Atinkpahoun, A., April 11, 1995; June 1995, Computer Science
Cebecioglu, H., May 23, 2001; October 2001, Mathematics

Chakraborty, H., April 16,2021; June 2021, Computer Science



Chen, Z.Q., November 9, 1999; February 2000, Mathematics

Dias, O., November 26, 1996; January 1997, Mathematics

Huang, X., July 1997; October 1997, Mathematics

Landowne, E., November 1995; February 1996, Computer Science
Lin, Y., March 1991; June 1991, Computer Science

Luan, Q., March 27, 2020; August 2020, Mathematics

Murphy, B., March 27, 2007; May 2007, Computer Science
Providence, S., December 14, 1999; February 2000, Computer Science
Rami, Y., February 22, 2000; June 2000, Mathematics

Retamoso Urbano, [.O., December 17, 2014; February 2015, Mathematics
Rosholt, R.E., April 4, 2003; May 2003, Computer Science

Sadikou, A., January 12, 1996; October 1996, Computer Science
Serme, A., February 2008; May 2008, Mathematics

Sobze, 1., April 12, 1994; June 1994, Computer Science

Stuart, C., April 1998; June 1998, Computer Science

Svadlenka, J., April 3, 2020; June 2020, Computer Science

Abu Tabanjeh, M.A., November 9, 1999; February 2000, Mathematics
Taj-Eddin, I., March 27, 2007; September 2007, Computer Science
Wang, X., April 4, 2003; May 2003, Mathematics

Wolf, J., January 7, 2015; May 2015, Mathematics

Yan, X., January 29, 2015; February 2015, Computer Science

Yu, Y., April 1998; June 1998, Computer Science

Zhao, L., April 6, 2017, June 2017, Mathematics

Zheng, A., October 16, 1997; January 1998, Mathematics

A. Atinkpahoun, O. Dias, S. Providence, A. Sadikou, A. Serme, and 1. Sobze are African—
Americans. H. Celecioglu, O. Dias, Y. Lin, and H. Chakraborty are females. At all the listed
defenses, Victor Pan has served as the Mentor, the Adviser and the Chair of the Examination
Committees, except that for H. Chakraborty he was a co-Adviser and a co-Chair.



8 RESEARCH

I will begin with my research Manifesto, then will briefly cover my education and my research
in ten major subject areas of Computer Science and Computational Mathematics (omitting
my work of 1965-75 in Economics in the USSR and a number of my more sporadic research
excursions into other areas). I will end with a summary and concluding remarks. I will use
the acronyms listed in Section 8.16 and followed by the list of the references cited in this
section, and I will also refer to my works cited in PUBLICATIONS (COMPLETE LIST).

8.1 MANIFESTO

I have been working in Mathematics, Computational Mathematics, and Computer Science
for more than five decades, facing research challenges and seeking new insights and novel
methods. T was thrilled whenever I discovered new keys that opened challenging scientific
locks, particularly when a single key opened a number of locks, as this was the case with my
techniques of active operation/linear substitution, trilinear aggregation, and transformation
of matrix structures.

My work has contributed to the creation of the fields of the Complexity of Algebraic
Computations and Algebraic Multigrid and to significantly advancing some other research
areas such as Computations with Structured Matrices, Symbolic-Numerical Computations,
and Fast and Processor-Efficient Parallel Algorithms. My techniques, insights, concepts and
definitions are commonly used, sometimes as folklore.

I was lucky to reveal a number of important but hidden links among apparently distant
subjects. I helped bring together research in various areas of computing such as symbolic
computations, numerical computations, theoretical computer science, and applied linear
algebra — in many cases I achieved synergy.

I am grateful for recognition and support of my research by leading experts, founda-
tions, journals, professional societies, research centers, and universities. The National Sci-
ence Foundation (NSF) has awarded me with Grants for over $2,500,000 for 1980-2020,
including Special Creativity Extension Award from the Numeric, Symbolic, and Geometric
Computation Program of the CCR Division in the Directorate CISE of NSF in 1993 and
over $1,000,000 in grants for 2016-2021. My Awards from Professional Staff Congress of the
City University of New York (PSC CUNY) for 1989-2018 exceed $130,000.

I was encouraged by enthusiastic reviews and citations of my work in books, journals,
and magazines and by designation of a Fellow of American Mathematical Society of 2013
“For Contributions to the Mathematical Theory of Computation’.

According to Google Scholar, I published four books (1623+LXXIV pages overall), over
20 surveys in journals and book chapters, over 180 research articles in journals and over
100 in refereed conference proceedings and was cited over 12,000 times. Almost all my
publications are in Computer Science and Computational and Applied Mathematics.

I have also disseminated my research findings in my lectures at the universities, research
centers, and professional conferences worldwide as well as through my research reports, the
Internet, and personal communication.

I guided 26 students to their PhD Defenses in Math and Compute Science (two in 2020)
and published dozens of papers jointly with my current and former students; with some of
them more than a decade after their defense.



8.2 Education and research areas

My scientific destiny was decided in the 59th high school in Moscow, Russia, celebrated for
having excellent teachers in mathematics. 1 was among many of its graduates who went to
the famous MechMat Department of Moscow State University (MGU), headed by Andrey
Nikolaevich Kolmogorov. He was one of the greatest mathematician of his time, and so was
his student Vladimir Igorevich Arnold, also a graduate from the 59th school in Moscow.

My adviser Anatoli Georgievich Vitushkin, a renowned expert in the theory of functions
of real and complex variables and a member of the Russian Academy of Sciences, was among
Kolmogorov’s distinguished disciples. He also worked with a versatile scientist Alexander
Semenovich Kronrod and like Kolmogorov and Kronrod had broad scientific interests.

From 1956 to 1961 I enjoyed learning mathematics in the MechMat Department of MGU.
My first journal paper appeared in 1958 and was on the real function theory, but at that
time Vitushkin guided me into research in Computational Mathematics, and from 1959 to
1964 almost all my publications as well as my PhD Thesis were in that field. I defended
the thesis in 1964, and then up to the Fall of 1976 had been making living by working in
Economics rather than Mathematics because job market in the USSR was quite restricted
for people of Jewish ethnicity, like myself. In 1976 I emigrated to the USA and since 1977
have been working entirely in Computer Science and Computational Mathematics.

8.3 My first scientific breakthrough: polynomial evaluation

In 1962, by introducing a novel technique of active operation/linear substitution, I proved
optimality of the classical algorithm for polynomial evaluation, commonly called Horner’s.
This gave positive answer to a question asked by Alexander Markowich Ostrowsky in 1955.
Volker Strassen and Shmuel Winograd adopted my technique for proving the optimality
of the classical algorithms for some fundamental matrix computations (see [BM75, Section
2.3]).

My work has been surveyed in my paper [P66| and in the most fundamental Computer
Science book [K81/97] by Donald E. Knuth, which cites my work and that of Richard
P. Brent most extensively among all its cited authors. The paper [P66] has been highly
recognized in the West, has led to the emergence of the field of Complezity of Algebraic
Computations, and made me known as "polynomial Pan".

8.4 My second scientific breakthrough: fast matrix multiplication by
means of trilinear decomposition and aggregation

Matrix multiplication (hereafter referred to as MM) is one of the central subjects of the
theory and practice of computing, and the scientific world was tremendously impressed
in 1969, when Strassen decreased the classical exponent 3 of MM to log, 7 ~ 2.808, that
is, performed MM by using less than cubic time. In my book and my review article in
SIAM Review in 1984, both much cited at that time, I praised his discovery as well as his
subsequent extensive work on algebraic computations, while he himself has been attracted
to this field by my paper [P66] and has paid tribute to my work in his chapters, both called
"Pan’s method", in [S72] and [ST4].

Further progress toward performing MM in quadratic time was expected to come shortly,
but all attempts to decrease the exponent 2.808 defied worldwide effort for almost a decade,
until I decreased it in 1978. This work of 1978 was recognized worldwide as a long-awaited
breakthrough.
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I quote the following excerpt from a letter by Donald E. Knuth with his permission:

“I am conwvinced that his research on matriz multiplication was the most outstanding event
in all of theoretical computer science during 1978. The problem he solved, to multiply n X n
matrices with less than O(n'°827) operations, was not only a famous unsolved problem for
many years, it also was worked on by all of the leading researchers in the field, worldwide.
Pan’s breakthrough was based on combination of brilliant ideas, and there is no telling what
new avenues this will open."”

Indeed my techniques prompted fast new progress, with my participation. I have become
widely known as "matriz Pan" and to the experts as "matriz and polynomial Pan'".

I devised my fast MM algorithms by means of

(1) reducing the bilinear problem of matrix multiplication to the equivalent problem of
trilinear (tensor) decomposition and

(i) nontrivially exploiting cyclic symmetry in the tensor of matrix multiplication.

In [P78] I called my combination of the two techniques trilinear aggregation in [P78], but
I introduced it already in the paper |[P72| (in Russian), translated into English only in 2014,
in arXiv:1411.1972, and little known in the West until 1978.

Actually my trilinear aggregation technique of 1972 was a historic landmark on a wider
scale. It produced the first nontrivial decomposition of a tensor and the associated trilinear
form that defined a new efficient algorithm for matriz computations. Subsequently tensor
decomposition has become a popular tool for devising highly efficient matrix algorithms in
many areas of scientific computing. Says Eugene E. Tyrtyshnikov, a renowned expert in
tensor decomposition:

“We should be especially grateful to Victor Pan for the link between the bilinear algorithms
and trilinear tensor decompositions. Although it looks simple and even might be regarded
as a folklore by now, this observation still has its creator, and by all means and for all I
know it is due to the work of Victor Pan."

Lately experts pointed me out that Richard Brent had report of 1970 where he also
expressed matrix multiplication as a similar tensor decomposition. Not to diminish the
value of that work, it has not gone beyond stating the link of MM to tensors but showed
no application to devising new faster algorithms. Also in my extensive discussions of fast
MM with all leading experts from the 1970s and throughout the 1990s Brent’s report was
never cited and apparently was not known; certainly it was not known in the Soviet Union
in 1972, when I published my paper [P72].

Since 1978 my trilinear aggregation has been routinely employed by myself and my
successors for devising new fast MM algorithms. After the stalemate from 1969 to 1978
the MM exponent was decreased a number of times in 1979-1981 and then again twice
in 1986, reaching the record value 2.376 in [CW86/90|. It was decreased again in 2010
2014, but only nominally. Every decrease relied on amazing novel techniques built on the
top of the previous ones, always employing the reduction of the MM problem to trilinear
aggregation, frequently by default, as this has been pointed out on page 255 of the celebrated
paper [CW86/90] about its immediate predecessor [S86]: “Strassen uses the following basic
trilinear identity, related to Victor Pan’s “trilinear aggregation" (1978)."

As Arnold Schénhage has written at the end of the introduction of his seminal paper
[S81], however, all these exponents of MM have been just "of theoretical interest”". They hold
only for inputs "beyond any practical size”, and "Pan’s estimates of 1978 for moderate”
input sizes were "still unbeaten”. Actually in [P79], [P80], [P81], and [P82], I successively
decreased my record exponent for all feasible MM (that is, for MM of moderate sizes n x n,
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say, up to n < 1,000, 000,000). My exponent of [P82], below 2.7734, still remains the record
in 2021. All smaller exponents rely on ignoring the curse of recursion — they have been
obtained only at the end of a long recursive processes, whose each recursive step squared
the input size. The resulting algorithms beat the classical MM only for inputs of immense
sizes.

My algorithms promise to be highly efficient in practice: the implementations by Igor
Kaporin of an algorithm from [P84a] in [K99] and of that of [LPS92] in [K04]| use substantially
smaller computer memory and are more stable numerically than Strassen’s algorithm.

I surveyed the progress up to the date in [P84b] and [P84a]. In both cases I focused on
the decrease of the exponent of MM because this was the focus of the research community
in 1984; presently I pay more attention to the acceleration of feasible MM.

In [HP98], jointly with my student Xiaohan Huang, I accelerated rectangular MM, which
implied new record asymptotic complexity estimates for the computations of the composition
and factorization of univariate polynomials over finite fields.

8.5 Hierarchical aggregation as a springboard for the Algebraic Multigrid
(1980). Compact Multigrid (1990-1993)

In [MP80], jointly with Willard L. Miranker, I introduced hierarchical aggregation /disaggre-
gation processes, substantially responsible for the emergence of the popular field of Algebraic
Multigrid.

Jointly with John H. Reif, in SPAA 1990, STAM J. of Scientific and Statistical Computing
1992 and CAMWA 1990 and 1993, I proposed a simple but novel acceleration technique of
Compact Multigrid.

8.6 Parallel algebraic and graph algorithms (1985—-2001)

Throughout the years of 19852001, prompted by high recognition of my joint paper with
Reif at STOC 1985, I proposed, both by myself and jointly with coauthors, a variety of
new efficient parallel algorithms and in particular a number of fast and processor-efficient
parallel algorithms for computations with matrices, polynomials, and graphs. They relied
on a number of our novel nontrivial techniques; I regularly presented my work at the most
competitive conferences in this field such as ACM STOC, IEEE FOCS, ICALP, and ACM-
SIAM SODA and published them in leading journals such as SICOMP, JCSS, Algorithmica,
and Information and Computation. The study of processor efficiency is critical for the
practice of parallel computation but was a novelty in 1985 for the researchers in the Theory
of Computing.

a) Fast and processor efficient algorithms for matriz and polynomial computations. In
STOC 1985, jointly with Reif, I introduced fast and processor efficient parallel algorithms for
the solution of dense and sparse linear systems of equations. The algorithm for sparse linear
systems of equations has been implemented on the supercomputers of NASA and Thinking
Machines Corp. By myself and jointly with coauthors I continued working on parallel ma-
trix and polynomial computations for more than a decade. We proposed nontrivial novel
techniques, extended the list of the known fast and processor efficient parallel algorithms,
and improved the known complexity bounds for the following fundamental computational
problems: (i) the solution of general and structured linear systems of equations with inte-
ger input (see my papers in TCS 1987, IPL 1989, and SICOMP 2000) and over abstract
fields (see my paper in CAMWA 1992 and my joint papers with Dario A. Bini and Luca
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Gemignani in ICALP 1991 and with Erich Kaltofen in SPAA 1991 and FOCS 1992), (ii)
the computation of polynomial greatest common divisors (GCDs), least common multiples,
and Padé approximations (see my papers in CAMWA 1992 and TCS 1996), (iii) polynomial
division (see my joint papers with Bini in J. of Complexity 1986, FOCS 1992, and SICOMP
1993), and (iv) the computation of the determinant, the characteristic polynomial, and the
inverse of a matrix (see my joint papers with Zvi Galil in IPL 1989 and Xiohan Huang in J.
of Complexity 1998). In 1985-86 part of my work on parallel algorithms was covered in the
magazines Science, Science News, and Byte.

b) Graph algorithms. By myself and jointly with coauthors, I published a number of
fast and processor efficient parallel algorithms for the computation of matching and paths
in graphs. They relied on combining some novel techniques and nontrivial known reductions
to matrix computations. I published these results in FOCS 1985 and Combinatorica 1988
jointly with Galil, in JCSS 1989, IPL 1991, and SICOMP 1993 jointly with Reif, in SICOMP
1995 jointly with Franco Preparata, in Algorithmica of 1997 jointly with Yijie Han and Reif,
and in my own chapter in the Handbook on Computer Science of 1993.

¢) In my joint works with David Shallcross and my student Yu Lin-Kriz, published
in SODA 1992, FOCS 1993, and SICOMP 1998, I proved NC-equivalence of the integer
GCD and planar integer linear programming problems, which was a well-known theoretical
challenge.

8.7 Univariate polynomial root-finding (1985-2017). Nearly optimal so-
lution of a four millennia old problem

Univariate polynomial root-finding has been central in mathematics and computational
mathematics for four millennia. It was studied already on Sumerian clay tablets and Egyp-
tian papyrus scrolls but also has modern applications to signal processing, financial mathe-
matics, control theory, computational algebraic geometry, computer algebra and geometric
modeling.

Hundreds of efficient algorithms have been proposed for its solution. Two-part book
published with Elsevier, by John M. McNamee in 2007 (354 pages) and jointly by J.M.
McNamee and myself in 2013 (728 pages), covers nearly all of them up to the date, in a
unique comprehensive coverage of this popular subject area.

Since 1985 I have been doing research in that area and in the related areas of computation
of approximate polynomial GCDs, matrix eigenvalues and eigenvectors, and the solution of a
system of multivariate polynomial equations. Next I briefly outline some of my results. See
further information in my papers cited below — in parts (a)—(g) — and the papers (individual
and joint with my students) in FOCS 1985 and 1987, CAMWA 1985, 1987, 1995, 1996, 2011
(two papers), and 2012 (two papers, one of them joint with McNamee), SICOMP 1994, J. of
Complexity 1996 and 2000 (four papers), JSC 1996, ISSAC 2010 and 2011, and SNC 2011
and 2014 (two papers).

a) In STOC 1995 (and also in CAMWA 1996, ISSAC 2001, and JSC 2002) I combined
the advanced techniques by Schénhage and by Andy C. Neff and Reif with my novelties in
exploiting the geometry of the complex plane, precision control by using Padé approximation,
and recursive lifting and descending. As a result I have substantially accelerated the known
algorithms. My divide-and-conquer algorithm of STOC 1995 approximates all roots of a
univariate polynomial nearly as fast as one can access the input coefficients — in record and
(up to a polylogarithmic factor) optimal Boolean time. 1 have surveyed my work up to the
date in STAM Review 1997 [P97| and more informally in American Scientist 1998 [P98]. I
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cover it in some detail in JSC 2002 [P02] and Chapter 15 of my book of 2013, joint with
McNamee and already cited.

b) Hermann Weyl’s Quad-tree construction of 1924 enables the solution of a univariate
polynomial equation in roughly quartic arithmetic time. James Renegar decreased the time
bound to cubic in 1987, and I reached quadratic arithmetic time bound in J. of Complexity
2000. Most of the computations of my algorithm require low precision, which suggested that
the extension of this work can yield nearly optimal Boolean time. This involved substantial
technical challenges, eventually simplified in the process of studying the so called subdivision
root-finders for real and complex root-finding; in the complex case they were precisely the
Quad-tree construction. In [BSSXY16] and [BSSY18] Ruben Becker, Michael Sagraloff,
Vikram Sharma, and Chee Yap obtained nearly optimal complex subdivision root-finder.
Their work boosted interest to that direction because the approach promises to be highly
efficient in practice. Our paper [IPY18] has presented the first implementation of this
algorithm. In my papers in CASC 2019 (two papers), CASC 2020 (two papers), ISSAC
2020 (joint with Imbach), and in arXiv preprint 1805.12042, I presented a novel version of
subdivision root-finder, which is significantly faster than [BSSXY16] and [BSSY18|. This
acceleration becomes dramatic in the case where an input polynomial is given by a black box
for its evaluation, which includes highly important classes of sparse polynomials, polynomials
in Bernstein basis, and ones given by recurrence (such as Mandelbrot’s polynomials) or in
compressed form, such as ¢i(z — a)? + ca(z — b)%

c) Approzimation of the real roots of a polynomial is an important goal because in many
applications, for example, to algebraic optimization, only r real roots are of interest and
because frequently they are much less numerous than all n complex roots. In my joint
papers with my students in SNC 2007, CAMWA 2011, CASC 2012 and 2014, and TCS 2017
I accelerated the known algorithms for this problem by a factor of n/r.

d) My algorithm in ISSAC 2013 and JCS 2016 (joint with Elias P. Tsigaridas) is nearly
optimal for a more narrow goal of real polynomial root-refining rather than root-finding.
Likewise my algorithm (also joint with him) in SNC 2014 and TCS 2017 refines all complex
roots at a nearly optimal Boolean complexity bound.

e) Together with Bini in J. of Complexity 1996, with Bini and Gemignani in CAMWA
2004, ETNA 2004, and Numerische Mathematik 2005, with McNamee in CAMWA 2012, by
myself in CAMWA 2005, and jointly with my present and former students in ISSAC 2010,
CAMWA 2011, LAA 2011, CASC 2012, SNC 2014, TCS 2017, and a chapter in the SNC
volume of 2007, published by Birkh&user, I proposed novel matriz methods for polynomial
root-finding. Unlike many previous companion matrix methods, we preserve and exploit
the structure of the associated companion and generalized companion matrices and yield
numerically stable solution, while keeping the arithmetic cost at a low level.

I further extended these algorithms to the solution of the eigenproblem for a general
matrix in SODA 2005 and CAMWA 2006 and 2008.

f) Jointly with Bini, I proposed and elaborated upon an algorithm that approzimates
all eigenvalues of a real symmetric tridiagonal matriz by using nearly optimal Boolean time.
This is a popular and important problem of matrix computations. We proposed the first
algorithm of this kind, presented in some detail in SODA 1991 and then in Computing 1992
and SICOMP 1998.

g) Computation of approzimate polynomial GCDs has important applications to control
and signal processing. My papers in SODA 1998 and Information and Computation of 2001
yielded a new insight into this computational problem by exploiting its links to polynomial
root-finding, matching in a graph, and Padé approximation.

14



h) Both divide and conquer and Quad-tree (subdivision) root-finders involve isolation
of some sets of polynomial roots from each other. In particular the isolation of roots lying
in a fixed disc on the complex plane from the other roots implies quadratic (rather than
linear) convergence of Newton’s iterations right from the start. The computational cost
of achieveing isolation can be considerable, however, and the paper [PT13| proposed to
decrease it by means of testing isolation by action, that is, by means of applying Newton’s
iterations and then verifying isolation by monitoring the behavior of the iterations. This
recipe was later adopted in [BSSY18]. In divide and conquer algorithm of [P95] one has to
increase the isolation of the roots in the unit disc D(0,1) = {x : |z| < 1} or in the annuli
{z: 1/q < x| <q} for a fixed ¢ > 1 and achieves this by means of repeated squaring of the
roots. This process is not costly but recursively increases the approximation errors. [P95]
counters such a deficiency by combining the recursive lifting process of repeated squaring
with recursive descending.

8.8 A system of multivariate polynomial equations (1996-2005). Best
Paper Award

My joint papers with Bernard Mourrain in Calcolo 1996, STOC 1998 and J. of Complexity
(Best Paper Award for 2000), with Didier Bondifalat and Mourrain in ISSAC 1998 and LAA
2000, with Mourrain and Olivier Ruatta in SICOMP 2003, and with loannis Z. Emiris in
ISSAC 1997, JSC 2002, CASC 2003, and J. of Complexity 2005 introduced and analyzed a
number of novel and now popular techniques and algorithms for the approximation of the
roots of dense and sparse systems of multivariate polynomials. The algorithms exploits the
structure of the associated matrices.

8.9 Matrix structures: unification and benefits (1987-2017)

This area is highly important for both theory and practice of computing. It was studied
already in the 19th century and with increased intensity in the recent decades because of
important applications to a variety of areas of modern computing, including the hot subject
of handling Big Data.

My contributions can be traced back to 1987 and include the results in the following
directions, besides the applications to polynomial root-finding, already cited.

a) Unification of structured matriz computations by using their displacement representa-
tion and the transformation of matriz structures. The four most popular matrix structures
of Toeplitz, Hankel, Vandermonde, and Cauchy types have different features, which allow
different computational benefits. In particular, the Cauchy matrix structure, unlike the
three other ones, is invariant in both row and column interchange and allows approximation
by rank structured matrices, which can be very efficiently handled by means of the Fast
Multipole Method — one of the Top 10 Algorithms of the 20th century [C00].

The matrices of all four classes share, however, an important feature: they can be repre-
sented in compressed form through their displacements of low rank. Every matrix M can be
expressed via its displacements AM — M B and M — AM B under mild restriction on operator
matrices A and B, and for each of the four classes of structured matrices and a proper pair
of operator matrices of shift and/or diagonal scaling, the displacement has small rank and
therefore can be represented with fewer parameters, typically with O(n) parameters for an
n x n structured matrix, having n? entries. By properly exploiting this representation and
using advanced techniques, one can dramatically decrease the amount of computer memory
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and time required in computations with such matrices.

The approach was proposed in [KKM79] by Thomas Kailath, Sun-Yuan Kung, and
Martin Morf, who demonstrated its power by multiplying by a vector an n x n Toeplitz-like
matrix (having structure of Toeplitz type) by using O(n) memory cells and Q(nlogn) flops
(floating point arithmetic operations). The MBA divide-and-conquer algorithm of 1980 by
Morf and by Robert R. Bitmead and Brian D. O. Anderson has extended this KKM 1979
progress to the inversion of Toeplitz-like matrices and the solution of Toeplitz-like linear
system of equations, and the natural challenge was the extension of these algorithms of 1979
and 1980 to the computations with important classes of matrices having structures of the
three other types.

I contributed to further progress with my two books — of 1994 (with Bini) and 2001 -
and dozens of papers by myself and joint with coauthors.

In ISSAC 1989 and MC 1990, I unified fast computations with the four listed matrix
clagses in a rather unexpected way. Namely, I observed that one can transform matrix
structure at will by transforming the associated operator matrices, and moreover can do
this just by multiplying a given structured matrix by Hankel and Vandermonde matrices
and their transposes. By applying such transformations of matrix structures one can extend
any successful algorithm for the inversion of the structured matrices of any of the four classes
to the inversion of the matrices of the three other classes, and similarly for solving linear
systems of equations.

Moreover one can always use the simple reversion matrix as a Hankel multiplier and
frequently can use the matrix of the discrete Fourier transform or its Hermitian transpose as a
Vandermonde multiplier. In some cases such transformations enable dramatic improvement
of the known algorithms.

For example, in 1989 cubic time was required for the inversion of Cauchy-like matrices
and for the Nevanlinna—Pick fundamental problem of rational approximation, closely linked
to this task. My transformations immediately decreased the known cubic upper bounds on
the time-complexity of these highly important computational problems to nearly linear.

Unlike the multiplication algorithm of [KKM79|, the MBA inversion algorithm is numer-
ically unstable, however, and this limits applications of the latter recipe. Later, however,
my approach has become basic for a stream of highly efficient practical numerical algorithms
for Toeplitz linear systems of equations: the algorithms begin computations with the con-
verse reduction to the Cauchy-like case and then exploit either the invariance of Cauchy
structure in row and column interchange (cf. [GKO95]) or the link of this structure to the
rank structure of matrices and consequently to the Fast Multipole Method (cf. [CGS07],
[MRT05], [XXG12|). In view of such a link one is challenged to extend my approach to the
unification of computations with matrices having displacement and rank structures, which
could be highly important for both theory and practice of matrix computations. Recent
progress towards meeting this unification challenge was reported in [BT17].

In 2013-2017 I extended my method to Vandermonde and Cauchy matrix-by-vector
multiplication, the solution of Vandermonde and Cauchy linear systems of equations, and
polynomial and rational interpolation and multipoint evaluation. For all these classical
problems, the known numerical algorithms, running with bounded precision (for example,
the IEEE standard double precision), required quadratic arithmetic time, and I decreased
it to nearly linear (see my papers in CASC 2013, LAA 2015 and MC 2017).

For another application of my techniques, in [P16] I formally supported empirical obser-
vation of many researchers (which remained with no proof for decades) that a Vandermonde
matrix is ill-conditioned (that is, close to singular) unless it is close (up to scaling) to the
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matrix of discrete Fourier transform, whose knots are nearly equally spaced on or near the
unit circle centered in the origin.

b) For alternative and more direct unification of computations with structured matrices
of the four classes, one can express them in terms of operations with the displacements.
The MBA algorithm of 1980 does this for Toeplitz-like matrices. I extend it to Cauchy-like
matrices first jointly with my student Ai-Long Zheng in LAA 2000 (submitted in 1996) and
then jointly with Vadim Olshevsky in FOCS 1998. In SODA 2000 and in chapter 5 of my
book of 2001 T extended the MBA algorithm in a unified way for computations with various
structured matrices.

c) Efficient algorithms for structured matrices and links to polynomial and rational com-
putations. In SIAM Review 1992 [P92], CAMWA 1992, 1993 (jointly with my students), TCS
1996, and Annals of Numerical Mathematics 1997 (by myself), and ICALP 1999, jointly with
Olshevsky, I presented new efficient algorithms for various fundamental computations with
structured matrices such as computing their ranks, characteristic and minimum polynomials,
bases for their null spaces, and the solutions of structured linear systems of equations. Fur-
thermore I have also extended successful methods for computations with structured matrices
to some fundamental computations with polynomials and rational functions. Conversely, in
SNC 2014 and TCS 2017, jointly with Tsigaridas, I deduced nearly optimal estimates for
the Boolean complexity of some fundamental computations with Vandermonde and Cauchy
matrices by reducing these computations to the ones for polynomials and modifying the
known fast algorithms for the latter problems.

8.10 Newton’s iterations for general and structured matrix inversion

Newton’s iterations reduce matrix inversion to matrix multiplications, which is attractive
for parallel computations and for computations with structured matrices. My paper with
Robert Schreiber in SISSC 1991 presents nontrivial initialization policies for these iterations
and their variations that enhance performance. In Chapter 6 of my book of 2001 and in my
paper with my students in MC 2006 I improved performance of the iterations by applying
homotopy continuation techniques.

In the case of structured matrices the main challenge is the slow-down of the computa-
tions due to the recursive increase of the displacement rank of the approximations to the
inverse computed in the iterative process. I recalled, however, that displacement rank of the
inverse is shared with the input matrix, and so in J. of Complexity 1992, IEEE Transac-
tion on Parellel and Distributed Systems 1993, and SIMAX 1993 I proposed and elaborated
upon a remedy by means of recursive re-compression, that is, by recursively compressing
displacements of the computed approximations (by means of truncation of their SVDs).
My resulting superfast solution algorithms run in nearly linear arithmetic time and allow
processor efficient parallel implementation and unification over various classes of structured
matrices. I presented these results in Chapter 6 of my book of 2001, my paper of 2010 in
Matrix Methods: Theory, Algorithms and Applications, and with coauthors in LAA 2002,
TCS 2004, Numerical Algorithms 2004, and MC 2006.

8.11 Computation of the determinant of a matrix

This classical problem has important applications in modern computing, for example, to the
computation of conver hulls and resultants, with further link to the solution of multivariate
polynomial systems of equations.
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a) In TCS 1987 (Appendix) and IPL 1988 I reduced the computation of the determinant
of a matrix to the solution of linear systems of equations and then applied p-adic lifting to
yield the solution efficiently. By extending this approach John Abbott, Manuel Bronstein
and Thom Manders in ISSAC 1999, Wayne Eberly, Mark Giesbrecht and Gilles Villard in
FOCS 2000, and myself jointly with Emiris in JSC 2003 obtained some of the most efficient
known symbolic algorithms for the computation of the determinant of a matrix and the
resultant of a polynomial system.

b) T published novel algorithms for computing determinants in TCS 1999, jointly with
three coauthors from INRIA, France, and in Algorithmica of 2001, jointly with my student
Yangiang Yu. The algorithms perform computations with single or double IEEE standard
precision, based on algebraic techniques (in the TCS paper) and on numerical techniques (in
the Algorithmica paper), use small arithmetic time, and certify the output. The TCS paper
has accelerated the computations by means of output sensitive and randomization methods,
novel in this context.

8.12 Synergy of symbolic and numerical computations

Numerical and symbolic algorithms are the backbone of modern computations for Sciences,
Engineering, and Signal and Image Processing, but historically these two subject areas have
been developed quite independently of one another, while combination of symbolic and
numerical techniques can be highly beneficial.

Since the early 1990s I have been promoting such benefits as an organizer of conferences,
as a member of their Program Committees, and as the Managing Editor of four Special
Issues of TCS on this subject in 2004, 2008, 2011 and 2013. Perhaps even stronger impact
into this direction was from my books of 1994 (joint with Dario Bini), 2001 (by myself), and
2013 (joint with John M. McNamee) and from my surveys in STAM Review 1992 and 1997,
in NATO ASI Series published by Springer 1991, Academic Press 1992, and Kluwer 1998,
in the electronic proceeding of IMACS/ACA 1998, and in my chapters (with co-authors)
in four Handbooks of 1999, 2004, 2009, and 2014, as well as from dozens of my research
papers. For example, the Special Issue of TCS on Symbolic-Numerical Algorithms in 2017
published my three joint papers — two with Tsigaridas and one with my student Liang Zhao
— out of 13 papers of that Issue.

8.13 Randomized preprocessing (2007-2017). Addition of chaos stabi-
lizes fundamental numerical matrix computations

Since 2007 I have been working on randomized pre-processing of matrix computations. I
have contributed a new direction, new insight, and novel techniques to the popular area of
randomized matrix computations. See my papers (some joint with my students) in SNC
2007 (two papers) and 2009, CSR 2008, 2010, and 2016, TCS 2008, CAMWA 2009, LAA
of 2009, 2010 (two papers), 2011, 2012, 2013, 2015, and 2017 (two papers), ISSAC 2011,
CASC 2015, and reports in arXiv: 1611.01391 and 1710.07946.

I have advanced the known numerical algorithms for both nonsingular and homogeneous
singular linear systems of equations. In particular I proved that, with a probability near
one, randomized multiplicative preprocessing numerically stabilizes Gaussian elimination
with no pivoting (GENP) and block Gaussian elimination, and I obtained similar results
for any nonsingular and well-conditioned (possibly sparse and structured) multiplicative
pre-processor and for Gaussian random input. This should embolden the search for new
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efficient sparse and structured multipliers, and jointly with my students I proposed some
new classes of them. Our extensive tests with real world inputs were in good accordance
with our formal analysis. My work on this subject with my students appeared in TCS 2008,
LAA 2012, LAA 2013, LAA 2015 and LAA 2017. GENP with randomized pre-processing
should be practically valuable because pivoting (row/column interchange) is communication
intensive and because Gaussian elimination is most used algorithm in matrix computations.
Some implementation of GENP applied to an input pre-processed with ad hoc random
multipliers appeared in a series of papers by Mark Baboulin et al. beginning in 2012. My
study should help refine such implementations and provide formal support for this approach.

8.14 Superfast and accurate low rank approximation

By extending our techniques 1 obtained substantial progress for low rank approximation
(hereafter referred to as LRA) of a matrix. This is a central problems of modern computing
because of its highly important applications to numerical linear algebra, machine learning,
neural networks, and Big Data mining and analysis. In CSR 2016 (jointly with my student
Liang Zhao) T proposed a new insight into this subject, provided formal support for the
empirical power of various known sparse and structured multipliers and defined some new
clagses of efficient multipliers.

In arXiv:1611.01391 and 1710.07946, jointly with my students, 1 studied computation
of LRA at sublinear cost, that is, by using much fewer flops and memory cells than the
input matrix has entries. I call such algorithms superfast. They are indispensable in modern
computations that access and handle matrices with billions entries, representing Big Data —
too Big to access and handle otherwise.

It is easy to prove that any superfast algorithm fails to compute accurate LRA of the
worst case input. We also proved, however, that with a high probability the well-known
Cross-Approximation (C-A) iterations compute accurate LRAs superfast in the case of (i)
a small-norm perturbation of a random matrix of low rank and (ii) any input matrix allow-
ing LRA (that is, having low numerical rank) and pre-processed with a Gaussian random
multiplier.

I began our LRA study by trying to prove the efficiency of C-A iterations, which has
been consistently observed empirically, and indeed I have provided some missing formal
support for this empirical phenomenon as well as for the efficiency of some known randomized
algorithms for LRA, but I have simplified and accelerated these algorithms.

I have also introduced new insight into this subject and novel techniques for LRA. 1
published some results of this work jointly with my present and former students in two
papers in MACIS 2019 and in a number of arXiv reports.

8.15 Concluding remarks

Throughout my career my work has advanced the state of the art of various fundamental
subjects of Computational Mathematics and Computer Science such as computations with
general and structured matrices, polynomials, integers and graphs, for example, polynomial
evaluation, interpolation, division, factorization, and root-finding, solution of general and
structured linear systems of equations, computation of linear recurrences, matching and
paths in graphs, and the sign and the value of the determinant of a matrix.

While devising new efficient algorithms, I proposed novel techniques and new insights
and revealed hidden links among various subject areas and computational problems, for
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example, (i) between the techniques of Symbolic and Numerical Computation, (ii) between
the methods for low rank approximation (LRA) proposed and developed by researchers in
Computer Science and Numerical Linear Algebra, (iii) between matrix multiplication and
tensor decomposition, (iv) among matrices with various structures, and (v) between LRA
and Fast Multiplole method (FMM). This list can be readily extended.

Most of my novelties have been immediately recognized, e.g., my results on polynomial
evaluation in [P66], on fast and processor efficient parallel algorithms in [PR85] (joint with
John H. Reif), and on nearly optimal polynomial root-finding in [P95], but each of my
trilinear aggregation of 1972 and my transformation of matrix structures of 1989 waited
for six years before they became widely known and appreciated. Likewise the value of my
contribution of 2000 to the quadtree root-finding is only now becoming recognized, but even
in such cases it was rewarding to witness the progress in the field resulted from my effort.

My long survey [P66] attracted attention of Volker Strassen, Shmuel Winograd, and
other renowned researchers, who extended my work into a new field of Algebraic Complexity
of Computations.! Their work in turn attracted me to this field again. For another striking
example of cross-fertilization, my renewed interest to this field was prompted by the concise
but far-fetching exposition in the book |[BM75| by Allan Borodin and Ian Munro, which was
the first book in Math in English that I have read after moving to the USA in 1977. In 1979
I learned from Borodin that his interest to the field was largely inspired by my paper [P66].

My paper with Willard L. Miranker [MP80| was pioneering for the field of the Algebraic
Multigrid, now popular.

My survey in SIAM Review in 1992, my book with Dario Bini, published by Birkhduser
in 1994, and dozens of my subsequent research papers (individual and joint with Dario Bini
and with my students) have demonstrated synergy in combining the techniques of Symbolic
and Numerical Computalions.

My book with Dario Bini (1994) is called "Polynomial and Matriz Computations” and
includes a number of new research results by the authors. It covers its title subjects both
thoroughly and comprehensively according to its reviews (see some excerpts below) and was
frequently cited, as well as my three other books (also devoted to polynomial and matrix
computations) and my surveys in STAM Review on matrix multiplication (1984), polynomial
and matrix computations (1992), and polynomial root-finding (1997). Google Scholar lists
over 12,000 citations of my work overall.

Excerpts from SIGACT News, ACM Press, 26, 2, pages 26-27, June 1995, by Steve Tate:
“We are now greeted with the release of a book covering the basic, foundational material
of the algebraic algorithm field, written by the authors who are leading researchers in the
field and are responsible for many of the current best algorithms. . .... For researchers in the
field of algebraic algorithms, this is a “must-have" book, both as a reference and the review
of basic material...... In conclusion, for researchers in the field of algebraic computing, 1
highly recommend this book as an essential addition to your bookshelf."

Excerpts from SIGSAM Bulletin, ACM Press, 30, 3, pages 21-23, September 1996, by
Ioannis Emiris and Andre Galligo: “The book covers an impressive range of algorithmic
issues in Theoretical Computer Science, Symbolic Computer Algebra and Numerical Com-

'The next and seminal paper [W67] in this subject area begins with: “Introduction.-In reference [1], V.
Ya. Pan summarized the results about the minimum number of multiplications and additions required to
compute a polynomial. In particular, Pan proved that the minimum number of multiplications/divisions
required to compute P,(z)z = ao + @iz + - -+ + anz™ is n. The theorem of this note includes this result of
Pan’s as a special case, and also shows that the minimum number of multiplications/divisions required to
compute the product of an n X n matrix by a vector is m - n."

20



putation, and the presence of several latest methods and results makes it exciting to read.
It would be useful to a specialist in any of the above areas who wishes to undergo a rigorous
study of polynomial or matrix operations for large problems using exact or approximate
arithmetic. . .. .. The book is outstanding. . .... We would strongly recommend this book as
a reference for graduate course in symbolic computation or computer algebra. It can also
supplement the reading in a course on scientific computing, computer science theory or ap-
plied mathematics. In conclusion, the book by Bini and Pan is an excellent companion for
researchers and advanced students. Given, moreover, that it is a handy reference book, it
should be present in every good library."

8.16 Acronyms

"CACS" stands for "Proceedings of Conference on Applications of Computer Algebra"

"CAMWA?" stands for "Computers and Mathematics (with Applications)"

"CSR" stands for "Proceedings of Computer Science in Russia"

"FOCS" stands for "Proceedings of IEEE Symposium on Foundations of Computer Sci-
ence"

"TCALP" stands for "Proceedings of International Colloquium on Automata Languages
and Programming"

"TPL" stands for "Information Processing Letters"

"ISSAC" stands for "Proceedings of ACM International Symposium on Symbolic and
Algebraic Computation"

"JCSS" stands for "Journal of Computer and System Sciences"

"JSC" stands for "Journal of Symbolic Computation"

"LAA" stands for "Linear Algebra and Its Applications"

"LNCS" stands for "Lecture Notes in Computer Science"

"MC" stands for "Mathematics of Computation”

"SICOMP" stands for "SIAM Journal on Computing”

"SIMAX" stands for "SIAM Journal on Matrix Analysis and Applications"

"SNC" stands for "Symbolic-Numerical Computations" or "Proceedings of Workshop on
Symbolic-Numerical Computations"

"SODA" stands for "Proceedings of ACM-SIAM Symposium on Discrete Algorithms"

"SPAA" stands for "Proceedings of ACM Symposium on Parallel Algorithms and Ar-
chitecture"

"STOC" stands for "Proceedings of ACM Symposium on Theory of Computing"

"TCS" stands for "Theoretical Computer Science"
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