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Abstract

Phylogenic trees play a major role in representing the
interrelationships among biological entities. While trees
are effective for many biological processes, processes such
as hybridization and horizontal gene transfer result in net-
works of relationships rather than trees of relationships.
Few methods have been developed for inferring phyloge-
netic networks, or for the simpler problem of determining
that the hybridization has occurred. In this poster, we de-
scribe new techniques for detecting hybridization, based
upon visualization and clustering of sets of phylogenies.
These techniques show promise for inferring the underlying
network model when hybridization has occurred.

1. Introduction

Understanding the evolutionary history of species, or of
biomolecular sequences, is an important part of much bio-
logical research. Current phylogenetic reconstruction meth-
ods focus on the reconstruction of trees, rather than more
complex models of speciation. A large proportion of the
speciation is not treelike [5, 7], and accurate representa-
tions of their evolutionary histories will require networks
rather than trees. In addition, emerging biological evidence
indicates that different chromosomes and different parts of
chromosomes in a single species may have different evolu-
tionary histories [10] One example of this is the presence
of bacterial and viral sequences in the human genome [16].
In such an evolutionary scenario, two species must be able
to combine their genomes to produce new species (hybrid
speciation), and species must be able to contribute genetic
material to other species (via horizontal gene transfer and
introgression).

In hybridization, two lineages recombine to create a new
species. The true evolutionary history is best represented

by gene trees in a phylogenetic network, ordirected acyclic
graph, rather than by a tree.

2. Prior Work

There are roughly two approaches for detecting network
evolutionary mechanisms, such as hybridization, and re-
constructing appropriate evolutionary histories when these
mechanisms occur. The first class of approaches usesCom-
bined Analysisand allows the input dataset to have its evo-
lutionary history be truly a network. A method for detect-
ing horizontal gene transfer is given in [8], while SPLIT-
STREE [2], M EDIAN NETWORKS [3] and TCS [15] are
generic methods for inferring graphs, rather than trees, from
either sequence data or distance data. With the exception
of [8], these methods do not explicitly refer to any under-
lying model of network evolution. The second class uses
theSeparate Analysisapproach. The separate analysis ap-
proach separates the sites within the biomolecular sequence
dataset into subsets, so that within each subset the sites
all evolve down a single tree within the true phylogenetic
network. Because short sequences can cause data analysis
problems, biologists often have looked for indications that it
is safe to “combine” (i.e. concatenate) sequence datasets to
get longer sequences, and a number of statistical tests exist
for determining whether such a combination is “safe” (e.g.
[6, 11, 14]). Roughly speaking, these tests seek to deter-
mine whether the two datasets come from the same under-
lying evolutionary tree. A popular test is the INCONGRU-
ENCE LENGTH DIFFERENCETEST (ILD)) [6] which mea-
sures the likelihood that the combined sequences evolved
from the same underlying evolutionary tree.

3. Visualizing Hybrid Events

We studied the effectiveness of clustering and visualiza-
tion to detect hybrid events that have occurred. From our
visualization, it was surprisingly easy to distinguish when



a events occurred. The populark-agglomerative clustering
was also effective tool. We used PAUP* [13] for our Max-
imum Parsimony analyses, as well as for the ILD. The re-
sulting set of trees for the set of sequences A, for the set
of sequences B, and the set of concatenated sequences of A
and B, are calledTA, TB , andTAB below.

For visualizing large sets of trees, we used our Tree Set
Visualization module [1] which runs under Mesquite [9].
Mesquite is a java-based framework for phylogenetic analy-
sis written by Wayne and David Maddison. The results were
generated with version 0.992 of Mesquite [9] and version
2.0 of the visualization module (both freely available). To
display large sets of tree on the screen in a meaningful way,
a standard technique, Multidimensional Scaling (MDS) [4]
was used. MDS seeks to minimize the “stress” between the
true distances between trees and the distances displayed on
the screen by repeated incrementing the displayed distances
by small “steps” (see [1] for details of our implementation).
MDS, like other heuristic searches, can get stuck on on local
optima, and our implementation allows the user to “scram-
ble” the initial displayed distances and search again. It has
worked extremely well in practice, grouping trees into clus-
ters that have highly resolved consensus trees.

To automate the clustering process, we also implemented
ak-agglomerative clustering with single and complete link-
age. The implementation allows the optimization criteria to
be customized for the data and desired goals (i.e. clusters
that minimize diameter, maximize resolution of the strict
consensus tree, etc) (see [12] for cluster quality statistics for
evolutionary trees). For this initial study, we used the crite-
rion of maximizing the minimum distance between clusters;
this worked well in approximating the clustering defined
by the input set of trees, and of the MDS defined cluster-
ing. We observed that these trees clearly clustered into two
separate clusters in our MDS visualization (and these two
clusters were centered around the true trees underlying the
network). This showed that the two separate analyses of the
data (one for each part) would yield a reasonable estimate
of the underlying tree from which it evolved. On the other
hand, if we concatenated the datasets andthenperformed a
phylogenetic analysis, the resultant set of trees (i.e.TAB)
wouldnot form two clear clusters.
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Figure 1. Two sets of treesTA ∪ TB for sequence length
2000. The lighter and darker shades of gray correspond to
trees from the different sets. Left: Network contained zero
hybrid events (i.e. a tree), and the underlying sequences that
generated the trees have an ILD P-value of 1.0, indicating
very high compatibility. The ILD value correctly predicts
the tree-like structure. Note many trees occur in both sets
and appear medium gray in the picture. Right: Network
contained one hybrid event. The underlying sequences have
an ILD P-value of 0.28, incorrectly indicating compatibility.
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