Stratified Negation

- Negation wrapped inside a recursion makes no sense.

- Even when negation and recursion are separated, there can be ambiguity about what the rules mean, and some one meaning must be selected.

- *Stratified negation* is an additional restraint on recursive rules (like safety) that solves both problems:

1. It rules out negation wrapped in recursion.

2. When negation is separate from recursion, it yields the intuitively correct meaning of rules (the *stratified model*).
Problem with Recursive Negation

Consider:

\[P(x) \leftarrow Q(x) \text{ AND NOT } P(x) \]

- \(Q = \text{EDB} = \{1, 2\}. \)
- Compute IDB \(P \) iteratively?
 - Initially, \(P = \emptyset. \)
 - Round 1: \(P = \{1, 2\}. \)
 - Round 2: \(P = \emptyset, \text{ etc., etc.}. \)
Strata

Intuitively: stratum of an IDB predicate = maximum number of negations you can pass through on the way to an EDB predicate.

- Must not be ∞ in “stratified” rules.
- Define stratum graph:
 - Nodes = IDB predicates.
 - Arc $P \rightarrow Q$ if Q appears in the body of a rule with head P.
 - Label that arc $-$ if Q is in a negated subgoal.

Example

Which target nodes cannot be reached from any source node?

$$P(x) \leftarrow Q(x) \text{ AND NOT } P(x)$$

\[- \quad \bigcirc \quad P \]
Example

\[
\begin{align*}
\text{Reach}(x) &\leftarrow \text{Source}(x) \\
\text{Reach}(x) &\leftarrow \text{Reach}(y) \text{ AND } \text{Arc}(y, x) \\
\text{NoReach}(x) &\leftarrow \text{Target}(x) \\
&\quad \text{AND NOT Reach}(x)
\end{align*}
\]
Computing Strata

Stratum of an IDB predicate $A = \text{maximum number of arcs on any path from } A \text{ in the stratum graph.}$

Examples

- For first example, stratum of P is ∞.
- For second example, stratum of Reach is 0; stratum of NoReach is 1.

Stratified Negation

A Datalog program with recursion and negation is *stratified* if every IDB predicate has a finite stratum.

Stratified Model

If a Datalog program is stratified, we can compute the relations for the IDB predicates lowest-stratum-first.
Example

\[
\begin{align*}
\text{Reach}(x) & \leftarrow \text{Source}(x) \\
\text{Reach}(x) & \leftarrow \text{Reach}(y) \text{ AND } \text{Arc}(y,x) \\
\text{NoReach}(x) & \leftarrow \text{Target}(x) \\
& \text{ AND NOT } \text{Reach}(x)
\end{align*}
\]

- **EDB:**
 - Source = \{1\}.
 - Arc = \{(1, 2), (3, 4), (4, 3)\}.
 - Target = \{2, 3\}.

![Diagram](image)

- First compute \textbf{Reach} = \{1, 2\} (stratum 0).
- Next compute \textbf{NoReach} = \{3\}.
Is the Stratified Solution “Obvious”?

Not really.

- There is another model that makes the rules true no matter what values we substitute for the variables.
 - \(\text{Reach} = \{1, 2, 3, 4\} \).
 - \(\text{NoReach} = \emptyset \).

- Remember: the only way to make a Datalog rule false is to find values for the variables that make the body true and the head false.

 - For this model, the heads of the rules for \text{Reach} are true for all values, and in the rule for \text{NoReach} the subgoal \text{NOT Reach}(x) assures that the body cannot be true.
SQL3 Recursion

WITH
 stuff that looks like Datalog rules
an SQL query about EDB, IDB

• Rule =

 [RECURSIVE] \(R(<\text{arguments}>) \) AS
 SQL query
Example

Find Sally’s cousins, using EDB Par(child, parent).

WITH
 Sib(x,y) AS
 SELECT p1.child, p2.child
 FROM Par p1, Par p2
 WHERE p1.parent = p2.parent
 AND p1.child <> p2.child,
 RECURSIVE Cousin(x,y) AS
 Sib
 UNION
 (SELECT p1.child, p2.child
 FROM Par p1, Par p2, Cousin
 WHERE p1.parent = Cousin.x
 AND p2.parent = Cousin.y
)

SELECT y
FROM Cousin
WHERE x = 'Sally';
Plan for Describing Legal SQL3 recursion

1. Define “monotonicity,” a property that generalizes “stratification.”

2. Generalize stratum graph to apply to SQL queries instead of Datalog rules.
 - (Non)monotonicity replaces NOT in subgoals.

3. Define semantically correct SQL3 recursions in terms of stratum graph.

Monotonicity

If relation \(P \) is a function of relation \(Q \) (and perhaps other things), we say \(P \) is monotone in \(Q \) if adding tuples to \(Q \) cannot cause any tuple of \(P \) to be deleted.
Monotonicity Example

In addition to certain negations, an aggregation can cause nonmonotonicity.

\[
\text{Sells}(\text{bar, beer, price})
\]

\[
\begin{align*}
\text{SELECT} & \text{ AVG(price)} \\
\text{FROM} & \text{ Sells} \\
\text{WHERE} & \text{ bar = 'Joe's Bar'};
\end{align*}
\]

- Adding to \text{Sells} a tuple that gives a new beer Joe sells will usually change the average price of beer at Joe’s.

- Thus, the former result, which might be a single tuple like (2.78) becomes another single tuple like (2.81), and the old tuple is lost.
Generalizing Stratum Graph to SQL

- Node for each relation defined by a “rule.”
- Node for each subquery in the “body” of a rule.
- Arc $P \rightarrow Q$ if

 a) P is “head” of a rule, and Q is a relation appearing in the FROM list of the rule (not in the FROM list of a subquery), as argument of a UNION, etc.

 b) P is head of a rule, and Q is a subquery directly used in that rule (not nested within some larger subquery).

 c) P is a subquery, and Q is a relation or subquery used directly within P [analogous to (a) and (b) for rule heads].

- Label the arc – if P is not monotone in Q.
- Requirement for legal SQL3 recursion: finite strata only.
Example

For the Sib/Cousin example, there are three nodes: Sib, Cousin, and SQ (the second term of the union in the rule for Cousin).

- No nonmonotonicity, hence legal.
A Nonmonotonic Example

Change the UNION to EXCEPT in the rule for Cousin.

\[
\text{RECURSIVE Cousin}(x,y) \text{ AS}
\]
\[
\text{Sib}
\]
\[
\text{EXCEPT}
\]
\[
(\text{SELECT } p1.\text{child, } p2.\text{child}
\text{ FROM Par p1, Par p2, Cousin}
\text{ WHERE } p1.\text{parent} = \text{Cousin}.x
\text{ AND } p2.\text{parent} = \text{Cousin}.y
\]

- Now, adding to the result of the subquery can delete Cousin facts; i.e., Cousin is nonmonotone in SQ.

\[
\begin{align*}
\text{Sib} & \quad \text{Cousin} \\
\text{SQ} & \\
\end{align*}
\]

- Infinite number of −’s in cycle, so illegal in SQL3.
Another Example: NOT Doesn’t Mean Nonmonotone

Leave Cousin as it was, but negate one of the conditions in the where-clause.

```sql
RECURSIVE Cousin(x,y) AS
  Sib
  UNION
  (SELECT p1.child, p2.child
   FROM Par p1, Par p2, Cousin
   WHERE p1.parent = Cousin.x
     AND NOT (p2.parent = Cousin.y)
  )
```

- You might think that SQ depends negatively on Cousin, but it doesn’t.
 - If I add a new tuple to Cousin, all the old tuples still exist and yield whatever tuples in SQ they used to yield.
 - In addition, the new Cousin tuple might combine with old $p1$ and $p2$ tuples to yield something new.