1. Let $\Sigma = \{0, 1\}$ be a finite alphabet.
 (a) Define regular language.
 (b) Show the following language is regular over Σ: $\{w \mid w \text{ ends in a } 0\}$
 (c) Show the following language is not regular over Σ: $\{w \mid w = 0^n1^n, n \geq 0\}$

2. For each of the following statements, state whether it is true or false. Justify your answer by providing a proof sketch or counterexample.
 (a) Every regular language is context-free.
 (b) Every regular language is Turing-recognizable.
 (c) Every decidable language is regular.

3. (a) State the Halting Problem.
 (b) Prove the Halting Problem is Turing-Recognizable.
 (c) Prove the Halting Problem is not decidable.

4. (a) State the Post Correspondence Problem (PCP).
 (b) Is the PCP undecidable for all alphabets? Why or why not? If yes, sketch a proof of the undecidability. If no, give an example of an alphabet over which PCP is decidable. Justify your answer.

5. (a) State the Recursion Theorem.
 (b) Given a Turing Machine M, the length of the description of $<M>$ is the number of symbols in the string describing M. M is minimal if there is no Turing Machine equivalent to M with a shorter description. Show $\text{MIN}_{TM} = \{<M> \mid M \text{ is a minimal TM}\}$ is not Turing-recognizable.

6. For the following sets, state whether the set is decidable or Turing-recognizable (or both). Justify your answer.
 (a) $E_{TM} = \{<M> \mid M \text{ is a TM and } L(M) = \emptyset\}$
 (b) $Th(\mathbb{N}, +)$
 (c) $Th(\mathbb{N}, +, \times)$