Inverting Functions with Exponentials and Logs

Professor Sormani

A supplement for MAT172 using Larson and Hostetler Ed 6

Before doing this assignment, review Section 1.8, particularly Examples 6 and 7 on inverses. Here we extend those techniques using our new knowledge from 3.1-4.

Example: Let $f(x)=e^{3 x-1}$. What are the domain and range of f ? What is the inverse of f ? Be sure to state the domain and range of the inverse as well as giving us the formula.

Solution: Well the domain of f is $(-\infty, \infty)$ because there is an output for every possible input. The range is $(0, \infty)$ because all the outputs are positive.

To get a formula for $f^{-1}(x)$, we write $y=e^{3 x-1}$ and solve for x.

$$
\begin{gathered}
y=e^{3 x-1} \\
\operatorname{Ln}(y)=\operatorname{Ln}\left(e^{3 x-1}\right) \\
\operatorname{Ln}(y)=3 x-1 \\
\operatorname{Ln}(y)+1=3 x \\
(\operatorname{Ln}(y)+1) / 3=x
\end{gathered}
$$

We have solved for x, which is the outpu of f^{-1} when the input is y. So replace x by $f^{-1}(x)$ and replace y by x :

$$
f^{-1}(x)=(\operatorname{Ln}(x)+1) / 3
$$

Note this is NOT the same as $\operatorname{Ln}(x+1) / 3$ or $\operatorname{Ln}((x+1) / 3)$.
The domain of f^{-1} is the range of f, which is $(0, \infty)$ and that makes sense because we can take $\operatorname{Ln}(x)$ for any positive number x.

The range of f^{-1} is the domain of f, is $(-\infty, \infty)$.
Check:

$$
\begin{align*}
f\left(f^{-1}(x)\right) & =f((\operatorname{Ln}(x)+1) / 3) \text { plugging in the formula for } f^{-1}(x) \tag{1}\\
& =e^{3((\operatorname{Ln}(x)+1) / 3)-1} \text { substituting into the formula for } \mathrm{f} \tag{2}\\
& =e^{(\operatorname{Ln(x)+1)-1} \text { cancelling the threes }} \tag{3}\\
& =e^{L n(x)} \text { cancelling the ones } \tag{4}\\
& =x \text { because Ln is the inverse of } e^{x} . \tag{5}
\end{align*}
$$

Also check:

$$
\begin{align*}
f^{-1}(f(x)) & =f^{-1}\left(e^{3 x-1}\right) \text { plugging in the formula for } f(x) \tag{6}\\
& =\left(\operatorname{Ln}\left(e^{3 x-1}\right)+1\right) / 3 \text { substituting into the formula for } f^{-1} \tag{7}\\
& =((3 x-1)+1) / 3 \text { because Ln and e cancel since they are inverses } \tag{8}\\
& =(3 x) / 3=x \tag{9}
\end{align*}
$$

Since $f^{-1}(f(x))=x$ and $f\left(f^{-1}(x)\right)=x$ we have verified that we have the correct formula for the inverse.
Problems: (answers at the end for problems 1-5)

1. Find the domain, range and inverse for $f(x)=e^{2 x+7}$.
2. Find the domain, range and inverse of $f(x)=\operatorname{Ln}(x-5)$. Warning, the Ln is only defined on positive numbers so one needs $x-5>0$.
3. Find the domain, range and inverse of $f(x)=5^{x+2}$.
4. Find the domain, range and inverse of $f(x)=\log _{2}(8 x)$.
5. Find the domain, range and inverse of $f(x)=e^{x}+3$. Be careful with the range. Think about how graphs shift.
6. Find the domain, range and inverse for $f(x)=2^{4 x-5}$.
7. Find the domain, range and inverse of $f(x)=\operatorname{Ln}(x+13)$.
8. Find the domain, range and inverse of $f(x)=2^{x+5}$.
9. Find the domain, range and inverse of $f(x)=\log _{5}(25 x)$.
10. Find the domain, range and inverse of $f(x)=e^{2 x}-10$.

Answers:

1. The domain of f is $(-\infty, \infty)$ and the range is $(0, \infty)$. The inverse is $f^{-1}(x)=$ $(\operatorname{Ln}(x)-7) / 2$ and its domain is $(0, \infty)$ and its range is $(-\infty, \infty)$.
2. The domain of f is $(5, \infty)$ and the range is $(-\infty, \infty)$. The inverse is $f^{-1}(x)=e^{x}+5$ and its domain is $(-\infty, \infty)$ and its range is $(5, \infty)$.
3. The domain of f is $(-\infty, \infty)$ and the range is $(0, \infty)$. The inverse is $f^{-1}(x)=$ $\log _{5}(x)-2$. The domain of f^{-1} is $(0, \infty)$ and the range is $(-\infty, \infty)$.
4. The domain of f is $(0, \infty)$, the range is $(-\infty, \infty)$, the inverse is $f^{-1}(x)=2^{x} / 8$ or $=2^{x-3}$ which is the same thing. The domain of f^{-1} is $(-\infty, \infty)$ and the range is $(0, \infty)$.
5. The domain is $(-\infty, \infty)$, the range is $(3, \infty)$, the inverse is $f^{-1}(x)=\operatorname{Ln}(x-3)$. The inverse's domain is $(3, \infty)$ which makes sense because the input for $L n$ must be positive, and the inverse's range is $(-\infty, \infty)$.
