Metric Spaces: Continuity

C. Sormani, CUNY

Summer 2011

BACKGROUND: Metric spaces, balls, open sets,

DEFN: Given two metric spaces, \(X \) and \(Y \), a function \(f : A \subset X \rightarrow Y \) is continuous at a point \(a \in A \) if for all \(\epsilon > 0 \) there exists \(\delta_\epsilon > 0 \) such that \(d(x, a) < \delta_\epsilon \) implies \(d(f(x), f(a)) < \epsilon \). We say \(f \) is continuous on \(A \) if it is continuous at \(a \) for all \(a \in A \).

PROBLEM 1: For \(X \) and \(Y \) both the same space \(\mathbb{R} \) with the metric \(d(x, y) = |x - y| \), prove that

(a) \(f(x) = 5x + 8 \) is continuous at any \(a \in \mathbb{R} \).
(b) \(f(x) = |x| \) is continuous at any \(a \in \mathbb{R} \).
(c) \(f(x) = \tan(x) \) is continuous at any \(a \in (-\pi/2, \pi/2) \).

PROBLEM 2: Prove that if \(X, Y \), and \(Z \) are metric spaces and \(f : X \rightarrow Y \) is continuous at \(a \) and \(h : Y \rightarrow Z \) is continuous at \(f(a) \) then \(h \circ f : X \rightarrow Z \) is continuous at \(a \).

PROBLEM 3: Prove that if \(f : A \subset X \rightarrow Y \) is continuous on \(A \) and \(a_j \in A \) is a sequence converging to \(a \in A \), then \(f(a_j) \) converges to \(f(a) \).

PROBLEM 4: Prove that if \(X \) is the discrete metric space and \(Y \) is any metric space and \(f : X \rightarrow Y \) is any function, then \(f \) is continuous on \(X \).

DEFN: Given a function \(f : A \subset X \rightarrow Y \), the image of a set \(K \subset X \) is

\[
 f(K) = \{ y \in Y : \exists x \in K \text{ such that } y = f(x) \}.
\]

The preimage of a set \(U \subset Y \) is \(f^{-1}(U) = \{ x \in X : f(x) \in U \} \). Note that the preimage is defined even if \(f \) has not inverse.

PROBLEM 5: Prove that \(f \) is continuous at \(a \) iff for all \(\epsilon > 0 \) there exists \(\delta_\epsilon > 0 \) such that \(f(B_a(\delta_\epsilon)) \subset B_{f(a)}(\epsilon) \).

PROBLEM 6: Prove that \(f \) is continuous at \(a \) iff for all \(\epsilon > 0 \) there exists \(\delta_\epsilon > 0 \) such that \(f(B_a(\delta_\epsilon)) \subset B_{f(a)}(\epsilon) \).

PROBLEM 7: Prove that if \(f : A \subset X \rightarrow Y \) is continuous on \(A \) and \(U \subset Y \) is open then \(f^{-1}(U) \) is open.

PROBLEM 8: Find an example of \(f : \mathbb{R} \rightarrow \mathbb{R} \) such that a set \(V \subset \mathbb{R} \) is open but \(f(V) \) is not open.

PROBLEM 9: Find an example of \(f : \mathbb{R} \rightarrow \mathbb{R} \) such that a set \(A \subset \mathbb{R} \) is closed but \(f(A) \) is not closed.

PROBLEM 10: Find an example of \(f : \mathbb{R} \rightarrow \mathbb{R} \) such that a set \(A \subset \mathbb{R} \) is bounded but \(f(A) \) is not bounded.