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Abstract:

We define a new distance between oriented Riemannian manifolds
that we call the intrinsic flat distance based upon
Ambrosio-Kirchheim’s extension of Federer-Fleming’s theory of
integral currents on metric spaces. Limits of sequences of
manifolds, Mk

j , with vol(Mj) ≤ V0, vol(∂Mj) ≤ V1 and

diam(Mj) ≤ D are countably Hk rectifiable metric spaces with an
orientation and multiplicity that we call integral current spaces.

In general the Gromov-Hausdorff and intrinsic flat limits do not
agree. However, we show that they do agree when the sequence of
manifolds has nonnegative Ricci curvature and a uniform lower
bound on volume and also when the sequence of manifolds has a
uniform linear local geometric contractibility function. These
results can be proven using work of Greene-Petersen, Gromov,
Cheeger-Colding and Perelman.

This is joint work with S. Wenger. See
http://comet.lehman.cuny.edu/sormani/intrinsicflat.html



Convergence of Riemannian Manifolds

A brief history...

C 1,α Convergence :
Limits are C 1,α manifolds diffeomorphic to the sequence
Cheeger Compactness: |R| ≤ Λ, vol ≥ V0, diam ≤ D
Anderson Compactness: |Ric | ≤ Λ, inj ≥ i0, diam ≤ D
Gromov-Hausdorff Convergence :
Limits are compact geodesic metric spaces
Topology and dimension can change in the limit.
Gromov Compactness: Ric ≥ −Λ, diam ≤ D.
Introducing the Intrinsic Flat Convergence:
Limits are weighted oriented countably Hm rectifiable spaces
Wenger Compactness: diam ≤ D, vol ≤ V
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Background
Defn: The Hausdorff distance between subsets A,B ⊂ Z is

dZ
H (A,B) = inf{r : A ⊂ Tr (B) and B ⊂ Tr (A) }.

Defn: The Gromov-Hausdorff distance between metric spaces,
X ,Y is

dGH(X ,Y ) = inf dZ
H (ϕ(X ), ψ(Y ))

where the infimum is taken over all metric spaces Z and isometries
ϕ : X → Z and ψ : Y → Z .
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Gromov’s Compactness Theorem

Gromov’s Compactness Theorem: If metric spaces Xj have
diam(Xj) ≤ D and a uniform upper bound, N(r), on the number of

disjoint balls of radius r , then a subsequence converges: Xji
GH−→ Y .

The converse also holds: if Y is compact and Xj
GH−→ Y , then there

is a uniform upper bound on diameter diam(Xj) and on N(r).

The following sequence has no Gromov-Hausdorff limit:

Ilmanen: can one define a weak convergence where this sequence of
M3

j with positive scalar curvature converges to the three sphere?
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Background

Recall that by the Bishop-Gromov Volume Comparison Theorem, a
sequence Mn

j with Ricci(Mj) ≥ 0 and diam(Mj) ≤ D has a
uniform upper bound on N(r) and so a subsequence converges in
the Gromov-Hausdorff sense.

Cheeger-Colding Noncollapsing Theorem:
If Mm

j have Ricci ≥ 0 and vol(Mm
j ) ≥ V0 > 0 then

the limit spaces are countably Hm rectifiable spaces.

This is intriguing, because ordinarily a Gromov-Hausdorff limit
could have higher or lower dimension than the sequence and no
rectifiability.



Background

Recall that by the Bishop-Gromov Volume Comparison Theorem, a
sequence Mn

j with Ricci(Mj) ≥ 0 and diam(Mj) ≤ D has a
uniform upper bound on N(r) and so a subsequence converges in
the Gromov-Hausdorff sense.

Cheeger-Colding Noncollapsing Theorem:
If Mm

j have Ricci ≥ 0 and vol(Mm
j ) ≥ V0 > 0 then

the limit spaces are countably Hm rectifiable spaces.

This is intriguing, because ordinarily a Gromov-Hausdorff limit
could have higher or lower dimension than the sequence and no
rectifiability.



Background

Recall that by the Bishop-Gromov Volume Comparison Theorem, a
sequence Mn

j with Ricci(Mj) ≥ 0 and diam(Mj) ≤ D has a
uniform upper bound on N(r) and so a subsequence converges in
the Gromov-Hausdorff sense.

Cheeger-Colding Noncollapsing Theorem:
If Mm

j have Ricci ≥ 0 and vol(Mm
j ) ≥ V0 > 0 then

the limit spaces are countably Hm rectifiable spaces.

This is intriguing, because ordinarily a Gromov-Hausdorff limit
could have higher or lower dimension than the sequence and no
rectifiability.



Background

Recall that by the Bishop-Gromov Volume Comparison Theorem, a
sequence Mn

j with Ricci(Mj) ≥ 0 and diam(Mj) ≤ D has a
uniform upper bound on N(r) and so a subsequence converges in
the Gromov-Hausdorff sense.

Cheeger-Colding Noncollapsing Theorem:
If Mm

j have Ricci ≥ 0 and vol(Mm
j ) ≥ V0 > 0 then

the limit spaces are countably Hm rectifiable spaces.

This is intriguing, because ordinarily a Gromov-Hausdorff limit
could have higher or lower dimension than the sequence and no
rectifiability.



A new convergence?

Can one find a new kind of convergence with a nice compactness
theorem usable in the setting of manifolds with positive scalar
curvature?

What kind of notion has sequences like this converge?

What about having countably Hm rectifiable limits just like
sequences of manifolds with nonnegative Ricci curvature?

Maybe some sort of intrinsic flat convergence?
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Reviewing Flat Convergence of Integral Currents

Recall Federer-Fleming’s notion of an integral current.
By viewing a k dim submanifold of Euclidean space as an integral
current and studying its behavior as a means of integrating k
forms, Federer-Fleming defined a new notion of convergence of
submanifolds: weak convergence as integral currents.

This theory was used to study Plateau’s problems and other
problems in which one is concerned with infimum of area:

The limits are also integral currents: integrals over k dimensional
countably rectifiable subsets of Euclidean space.
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Federer-Fleming defined the flat distance. When the integral
currents have uniformly bounded total mass, they converge with
respect to the flat norm iff they converge in the weak sense.
The key concept needed to understand the flat distance is the
mass of the current and the boundary. For a submanifold, mass is
just the volume and the boundary is as in a manifold. In general,
boundaries are defined via Stoke’s Theorem.
Ambrosio-Kirchheim extended the notion of an integral current
to an arbitrary complete metric space. Wenger extended the
notion of the flat distance to this setting.
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The flat distance between integral currents

The flat distance between two integral currents, T ,S ∈ Ik(Z ) is

dZ
F (T ,S) = inf {M( A ) + M( B ) : A + ∂ B = S − T},

where the infimum is taken over all A ∈ Ik(Z ), B ∈ Ik+1(Z ).

Wenger has proven that this infimum is achieved by a pair of
integral currents, A ∈ Ik(Z ), B ∈ Ik+1(Z ) [W-GAFA].
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F (Tj ,S) = inf {M(Aj) + M(Bj) : Aj + ∂Bj = S − Tj},

where the infimum is taken over all Aj ∈ Ik(Z ),Bj ∈ Ik+1(Z ).

Here, the limit is the sphere S , and if one thinks of the bumpy
spheres as Tj lying directly on top of S then we can take Aj = 0
and Bj to be the region between the sphere and the bumpy sphere.

To make an intrinsic notion, we cannot allow any dependence on
the embedding of the manifolds. So we imitate Gromov’s intrinsic
Hausdorff distance and take an infimum over all possible isometric
embeddings into all possible complete metric spaces Z ...
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The Definition of the Intrinsic Flat Distance

Given oriented Riemannian manifolds with boundary, M,N
the intrinsic flat distance is the infimum of the flat distances:

dF (M,N) := inf dZ
F (ϕ#[M], ψ#[N]),

where the infimum is taken over all complete metric spaces, Z , and
over all isometric embeddings,

ϕ : M → Z and ψ : N → Z

and φ# denotes the push forward of the manifolds viewed as
integral currents into the metric space Z .

As in Gromov-Hausdorff distance, an isometric embedding,
φ : X → Y satisfies dY (φ(x1)φ(x2)) = dX (x1, x2) ∀x1, x2 ∈ X .

Theorem [S-W]: If M,N are compact and dF (M,N) = 0 then
there is an orientation preserving isometry between M and N.
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Defn: The intrinsic flat distance between oriented Riemannian
manifolds, Mk ,Nk

dF (M,N) := inf dZ
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F (T ,S) = inf{M(A) + M(B) : A + ∂B = T − S}.
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dGH(M,N) := inf dZ
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where dZ
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Example of a Cauchy sequence:

This example is Cauchy with respect to the intrinsic flat distance:

The Gromov-Hausdorff limit in this setting is the pair of spheres
joined by a line segment. Intuitively it seems the intrinsic flat limit
should be the disjoint pair of spheres without the line segment.



Another Cauchy sequence:

In this example we join spheres by tubes, so that we get an intrinsic
flat Cauchy sequence with a uniform upper bound on volume.
The Gromov-Hausdorff limit is the metric space on the right
connected by line segments while the intrinsic flat limit should just
be the space on the right.

In fact one could construct a sequence of manifolds of bounded
volume, whose Gromov-Hausdorff limit has dimension k + 1.
We next define intrinsic flat limits: integral current spaces.
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Integral Current Spaces

A countably Hk rectifiable metric space is a metric space, X with
countably many Lipschitz maps φi from Borel measurable sets
Ai ⊂ Ek to X such that the Hausdorff measure

Hk(X \
⋃
φi (Ai )) = 0.

φi can be chosen to be biLipschitz with φi (Ai ) ∩ φj(Aj) = ∅.
We can define orientation by choosing a preferred atlas of charts.
We can define multiplicity (weight) by choosing positive integer
valued Borel measurable function, θ, on X .
Defn: a k dimensional integral current space, (X , d ,T ), is a
countably Hk rectifiable metric space (X , d) with a current
structure, T ∈ Ik(X̄ ), such that set(T ) = X .

The integral current T is the same dimension as X and is
determined by the multiplicity/weight and orientation on the
metric space X .
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Integral Current Spaces: (X , d , T ) such that X = set(T ):
The set of positive lower density, set(T ), is the set of y ∈ X̄ with

lim inf
r→0

M(T B(y , r))

rk
> 0.

When the integral current space is a manifold with singularities,

M(T B(y , r)) = vol(B(y , r)).

So conical
singularities
have positive
lower density:

While cusp
singularities do
not:
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Integral Current Spaces

Defn: a k dimensional integral current space M = (X , d ,T ) is a
countably Hk rectifiable metric spaces (X , d) with a current
structure, T ∈ Ik(X̄ ), such that set(T ) = X . M may be (0, 0, 0).

Defn: The intrinsic flat distance between integral current spaces
M1 = (X1, d1,T1) and M2 = (X2, d2,T2) is defined by taking the
infimum of the flat distance

dF (M1,M2) := inf dZ
F (ϕ1#T1, ϕ2#T2).

over all isometric embeddings ϕ1 : X1 → Z and ϕ2 : X2 → Z .

Theorem [S-W]: If dF (M1,M2) = 0 then there is a current
preserving isometry f : X1 → X2 such that f#T1 = T2. So when
M1 and M2 are oriented Riemannian manifolds with boundary, they
have an orientation preserving isometry between them.

It is crucial in the proof of this theorem that X = set(T ) is the
points of positive lower density and not the support...
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Examples:
Here we see the intrinsic flat limit is a countably H2 rectifiable
space without boundary, while the Gromov-Hausdorff limit has
lower dimensional line segments joining the spheres:

It is possible to construct sequences of Riemannian manifolds with
a uniform upper bound on volume which converge to an integral
current space whose completion has higher dimension.
By requiring X = set(T ), the set of positive lower density, we are
guaranteed that X is countably Hk rectifiable whenever T is a k
dim integral current by Ambrosio-Kircheim. We do not take the
closure which could be a set of higher dimension.
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Gromov-Hausdorff to Intrinsic Flat Convergence

Theorem [S-W]: If Mk
j are oriented Riemannian manifolds with

vol(Mj) ≤ V1 and vol(∂Mj) ≤ V2

such that Mk
j

GH−→ Y , where Y is compact, then a subsequence of

the Mk
j converge in the intrinsic flat sense to an integral current

space Mk = (X , dX ,T ) such that X ⊂ Y and dX = dY .

Proof: by Ambrosio-Kirchheim and Gromov Compactness Thms

Cor [S-W]: When Mk
j

GH−→ Y and the dimension of Y is < k , then
the intrinsic flat limit must be the zero integral current space, 0.
This is called collapsing.
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Cancellation
Integral currents in Euclidean space may also disappear due to
cancellation:

Note in this E3 example the embedding is not isometric.

Cancellation of integral current spaces can be seen in examples
with many small tunnels between two sheets:

Notice the increasing topology in these examples...
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Avoiding Cancellation

Gromov, Greene-Petersen: When Mk
j have a uniform linear

geometric contractibility function and Vol(Mk
j ) ≤ V1 then a

subsequence converges in the Gromov-Hausdorff sense to Y .

Theorem [S-W]: In this setting the Gromov-Hausdorff and

Intrinsic Flat limits agree: Mk
j

GH−→ Y and Mk
j

F−→ (X , d ,T )
implies Y = X . In particular the Gromov-Hausdorff limit is
countably Hk rectifiable.

Gromov, Cheeger-Colding: When a sequence of manifolds, Mk
j ,

have Ricci(Mk
j ) ≥ 0, vol(Mk

j ) ≥ V0 > 0 and diam(Mk
j ) ≤ D

then a subsequence converges in the Gromov-Hausdorff sense to a
countably Hk rectifiable metric space, Y .

Theorem [S-W]: In this setting the Gromov-Hausdorff and

Intrinsic Flat limits agree: Mk
j

GH−→ Y and Mk
j

F−→ (X , d ,T )
implies Y = X . This is a new perspective on Cheeger-Colding.
Menguy: no uniform geometric contractibility in this setting.
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Examples with positive scalar curvature

Example: We construct M3
j with positive scalar curvature and

vol(M3
j ) ≥ V > 0 such that M3

j
GH−→ S3 but M3

j
F−→ 0.

Each M3
j is a pair of standard spheres with Gromov-Lawson

tunnels running between them. As j increases we have more and
more tinier tunnels evenly placed about the spheres.

Example: We construct M3
j with positive scalar curvature and

vol(M3
j ) ≥ V > 0 such that M3

j
GH−→ S3 and M3 F−→ (S3, d , 2T )

with multiplicity 2.
This construction is as above except that we glue the tunnels with
a twist so that the two copies of S3 have the same orientation as
they come together.
Conjecture: We believe this cancellation cannot occur if we take
sequences of manifolds with positive scalar curvature and no
interior minimal surfaces. Regions may disappear as in the hairy
sphere due to collapse but not cancellation.
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Key observation:

When Tj are flat converging sequences in Euclidean space,
the spheres of cancelling balls are the boundaries of currents of
small mass:

When Mj are intrinsic flat converging sequences of manifolds,
the spheres of cancelling balls have small filling volumes:

This is made rigorous using Ambrosio-Kirchheim’s Slicing
Theorem.
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Avoiding Cancellation with Linear Contractibility

Greene-Petersen: If Mk
j have vol(Mk

j ) ≤ V and a
uniform geometric contractibility function, ρ, such that

any ball Bp(r) ⊂ Mk
j is contractible in Bp(ρ(r)) ⊂ Mk

j ,

then vol(Bp(r)) ≥ V (r) > 0. So a subsequence Mk
j

GH−→ Y :

Theorem [S-W]: If ρ is linear, then a subsequence

Mk
ji

F−→ Mk = (X , d ,T ) where X = Y . In particular the

Gromov-Hausdorff limit is countably Hk rectifiable.

Example [Schul-Wenger]: Without the assumption of linearity of
the contractibility function, the limit space need not be countably
Hk rectifiable.
Before proving this contractibility theorem, a few remarks...
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the contractibility function, the limit space need not be countably
Hk rectifiable.

Before proving this contractibility theorem, a few remarks...
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Sequences with Ricci ≥ 0 are Not Uniformly Contractible
Perelman constructed noncollapsing sequences M4

j with
nonnegative Ricci curvature with increasing topology:

Theorem [S-W]: When Mk
j have Ricci(Mk

j ) ≥ 0, vol(Mk
j ) ≥ V0

and diam(Mk
j ) ≤ D then the Gromov-Hausdorff and Intrinsic Flat

limits agree: Mk
j

GH−→ Y and Mk
j

F−→ (X , d ,T ) implies Y = X .



Sequences with Ricci ≥ 0 are Not Uniformly Contractible
Perelman constructed noncollapsing sequences M4

j with
nonnegative Ricci curvature with increasing topology:

Theorem [S-W]: When Mk
j have Ricci(Mk

j ) ≥ 0, vol(Mk
j ) ≥ V0

and diam(Mk
j ) ≤ D then the Gromov-Hausdorff and Intrinsic Flat

limits agree: Mk
j

GH−→ Y and Mk
j

F−→ (X , d ,T ) implies Y = X .



Sequences with Ricci ≥ 0 are Not Uniformly Contractible
Perelman constructed noncollapsing sequences M4

j with
nonnegative Ricci curvature with increasing topology:

Theorem [S-W]: When Mk
j have Ricci(Mk

j ) ≥ 0, vol(Mk
j ) ≥ V0

and diam(Mk
j ) ≤ D then the Gromov-Hausdorff and Intrinsic Flat

limits agree: Mk
j

GH−→ Y and Mk
j

F−→ (X , d ,T ) implies Y = X .



Towards Proofs of the Contractibility and Ricci Theorems

In both settings:

1) we have a sequence Mk
j

GH−→ Y and vol(Mj) ≤ V

and we want to show Mk
ji

F−→ M = (X , d ,T ) where X = Y .
2) By Gromov, there is a compact metric space, Z , and
isometric embeddings: φj : Mk

j → Z and φ : Y → Z

where φj(Mk
j ) Hausdorff converge to Y in Z .

3) By Ambrosio-Kirchheim there is a flat converging subsequence:
Tji = φji#[Mji ] converging to T ∈ Ik(Z )
with X = set(T ) ⊂ φ(Y ) ⊂ Z and dZ

F (Tji ,T )→ 0.
4) We know ∃yji ∈ φji (Mji ) converging to y .
5) Note that the restrictions, Tji B(yji , r) weakly converge to
T B(y , r).
We need only show ∀y ∈ Y , lim infr→0 M(T B(y , r))/rk > 0.
However, even if M(T B(yji , r)) ≥ Crk ,
we can drop in the limit to M(T B(y , r)) = 0.
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Examining balls in flat converging sequences:

When Tj are flat converging sequences in Euclidean space,
the spheres of cancelling balls are the boundaries of currents of
small mass:

When Mj are intrinsic flat converging sequences of manifolds,
the spheres of cancelling balls have small filling volumes:
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Contractibility and Filling Volumes

5) The restrictions, Tji B(yji , r) weakly converge to T B(y , r).
6) By the Ambrosio-Kirchheim Slicing Theorem, for a.e. r ,
the spheres ∂(Tji B(yji , r)) weakly converge to ∂(T B(y , r)).
7) By [Wenger-06], after isometrically embedding Z into a Banach
space,

Fillvol∞(∂T B(y , r)) = lim
i→∞

Fillvol∞(∂Tji B(yji , r))

8) By the definition, M(T B(y , r)) ≥ Fillvol∞(∂T B(y , r)).

So we need only bound the filling volumes of spheres:
Fillvol∞(∂Tji B(yji , r)) ≥ Crk .

9) Greene-Petersen proved that if B(yji , r) has a linear geometric
contractibility function, then Fillvol∞(∂Tji B(yji , r)) ≥ Crk

by applying Gromov’s systole construction and filling inequality.
We extend their result using work of Lang-Schlichenmaier.

Thus we have proven:
The Gromov-Hausdorff and Intrinsic Flat limits agree when
Mj have uniform linear geometric contractibility functions.
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Completing the Ricci curvature Theorem
We know that if y = limi→∞ yji such that
B(yji , r) ⊂ Mji have a linear geometric contractibility function,
then y is in the intrinsic flat limit X = set(T ).

Now we have Mj with Ricci ≥ 0 and vol(Mj) ≥ V0

Not all balls have linear geometric contractibility functions!
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Proving the Ricci Theorem

Cheeger-Colding: The set of regular points R ⊂ Y ,
R = {y that have a Euclidean tangent cone Ek }, has full measure.
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Proving the Ricci Theorem

We will prove that R ⊂ X = set(T ) by finding yji → y such that
B(yji , r) ⊂ Mji have a linear geometric contractibility function.
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Proving the Ricci Theorem

We will prove that R ⊂ X = set(T ) by finding yji → y such that
B(yji , r) ⊂ Mji have a linear geometric contractibility function.

Given y ∈ R. For all α < ωk

and r sufficiently small r < ry ,α
vol(B(y , r)) ≥ αrk .
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Proving the Ricci Theorem
We will prove that R ⊂ X = set(T ) by finding yji → y such that
B(yji , r) ⊂ Mji have a linear geometric contractibility function.

Given y ∈ R. For all α < ωk

and r sufficiently small r < ry ,α
vol(B(y , r)) ≥ αrk .
Colding Volume Convergence:
∃yji ∈ Mk

ji
such that

vol(B(yji , r)) ≥ αrk ∀i ≥ Ny .
Perelman’s Contractibility:
If α > αk and Ricci ≥ 0
then B(yji , r) is linearly
contractible.
So choosing α > αk , we obtain
a uniform contractibility
function on [0, ry ,α]. Thus
y ∈ set(T ) = X , the flat limit.



Completing the Ricci curvature Theorem

Now suppose y ∈ Y \ R is not a regular point.

By Cheeger-Colding we still have Bishop-Gromov comparison
on the limit space Y , so that

Hk(B(y , r)) ≥ rk

Dk
Hk(Y ) =

rk

Dk
V0.

Since we already know set(T ) = X has full measure in Y :

||T ||(B(y , r)) ≥ rk

Dk
Hk(Y ) =

rk

Dk
V0.

Thus y ∈ set(T ) = X as well.



Completing the Ricci curvature Theorem

Now suppose y ∈ Y \ R is not a regular point.
By Cheeger-Colding we still have Bishop-Gromov comparison
on the limit space Y , so that

Hk(B(y , r)) ≥ rk

Dk
Hk(Y ) =

rk

Dk
V0.

Since we already know set(T ) = X has full measure in Y :

||T ||(B(y , r)) ≥ rk

Dk
Hk(Y ) =

rk

Dk
V0.

Thus y ∈ set(T ) = X as well.



Completing the Ricci curvature Theorem

Now suppose y ∈ Y \ R is not a regular point.
By Cheeger-Colding we still have Bishop-Gromov comparison
on the limit space Y , so that

Hk(B(y , r)) ≥ rk

Dk
Hk(Y ) =

rk

Dk
V0.

Since we already know set(T ) = X has full measure in Y :

||T ||(B(y , r)) ≥ rk

Dk
Hk(Y ) =

rk

Dk
V0.

Thus y ∈ set(T ) = X as well.



Completing the Ricci curvature Theorem

Now suppose y ∈ Y \ R is not a regular point.
By Cheeger-Colding we still have Bishop-Gromov comparison
on the limit space Y , so that

Hk(B(y , r)) ≥ rk

Dk
Hk(Y ) =

rk

Dk
V0.

Since we already know set(T ) = X has full measure in Y :

||T ||(B(y , r)) ≥ rk

Dk
Hk(Y ) =

rk

Dk
V0.

Thus y ∈ set(T ) = X as well.



Closing Remarks

Papers related to this project are linked to from
http://comet.lehman.cuny.edu/sormani/intrinsicflat.html
or just google ”Sormani Wenger Intrinsic Flat”

Open problems in progress:
Applications to manifolds with Positive Scalar Curvature (Tom
Ilmanen and Stefan Wenger)
Applications to Isospectral Manifolds
Applications to Ricci Flow
Pointed Intrinsic Flat Convergence ( Urs Lang and Stefan Wenger)

Other open problems will be posted on the webpage

Thank you for the opportunity to speak.
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