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My research is a combination of Classical Riemannian Geometry, Metric Geometry, Geometric
Analysis, Topology and Mathematical Physics. One underlying theme is the convergence of Rie-
mannian Manifolds. In this description, I begin with my early work and then organize the rest by
topic.

1 Thesis and Postdoc Years:

I completed my dissertation with Jeff Cheeger at Courant in 1996 and then had a one year postdoc
with Shing-Tung Yau at Harvard. At this time I focused on complete noncompact Riemannian
manifolds with nonnegative Ricci curvature. Yau proved that such manifolds have at least linear
volume growth [Yau1]:

lim inf
R→∞

V ol(Bp(R))
R

= V0 > 0. (1)

Bishop proved they have at most Euclidean volume growth [Bi1]. Cheeger and Colding had just be-
gun working together on their notion of almost rigidity, in which they proved, among other things,
that annular regions in Riemannian manifolds with nonnegative Ricci curvature and almost Eu-
clidean volume growth were close in the Gromov-Hausdorff sense to cones over spheres [ChCo1].
Their technique involved studying the Laplacian of functions of the distance function and construct-
ing explicit maps to the cones.

In my thesis, I applied their technique to Busemann functions which are defined using rays, γ,
as follows:

bγ(x) = lim
R→∞

R− d(x, γ(R)). (2)

I proved that if a Riemannian manifold with nonnegative Ricci curvature has linear volume growth:

lim sup
R→∞

V ol(Bp(R)))
R

= V1 < ∞, (3)

then regions, b−1
γ (R,R + L), for R sufficiently large, are Gromov-Hausdorff close to isometric prod-

ucts: b−1
γ (R) × (R,R + L). Suprisingly, I was able to prove that these level sets were compact,

partially solving a conjecture posed by Yau in [Yau2]. A more general version of Yau’s conjecture
remains open to this day although another partial solutions had been found by Zhongmin Shen in
the case of maximal volume growth. As this result was proven using geometric techniques unrelated
to the work of Cheeger-Colding, it was published seperately in JDG [So1]. The rest of my thesis as
well as a proof that the level sets of the Busemann function grow sublinearly was published in CAG
[So2].

During the postdoc, I also proved a theorem concerning harmonic functions of polynomial growth
in these manifolds which was published in Pacific Journal of Mathematics [So3]. This result has since
been superceded by Colding-Minicozzi’s work concerning such functions on all Riemannian manifolds
with nonnegative Ricci curvature [CoMin].
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2 The Topology of Riemannian Manifolds with Ricci ≥ 0

When I completed my first postdoc, I took a postdoc at Johns Hopkins and began to work on a
famous conjecture of Milnor: Complete noncompact Riemannian manifolds with nonnegative Ricci
curvature have a finitely generated fundamental group [Mil1]. Intuitively, Milnor’s conjecture states
that there are finitely many one dimensional holes in such a manifold. Colding’s student, Menguy,
had constructed examples of such manifolds with infinite dimensional second homology by cutting
an infinite sequence of holes in a manifold with positive Ricci curvature and pasting infinitely many
Perelman necks, preserving the positive Ricci curvature [Men1]. Menguy’s example even had maxi-
mal volume growth ≥ Crn.

On the other hand Mike Anderson and Peter Li had seperately proven Milnor’s conjecture for
manifolds satisfying maximal volume growth using universal covers [And][Li]. Anderson measured
balls in the universal cover and applied the Bishop-Gromov Comparison Theorem while Li used
the heat kernal on the universal cover. I felt I could imitate one of their techniques to prove the
corresponding results for manifolds with at most linear volume growth. The common idea in their
work and in Milnor’s was that the universal cover could be used to control the fundametal group
even though it has no control on the rest of the topology. Since Ricci curvature bounds are local,
the bound lifts to the universal cover and can be used to control the fundamental group.

Ultimately I did not apply their specific techniques but rather came up with a notion of a uniform
cut point. Intuitively, I showed that whenever there is a one dimensional hole in the Riemannian
manifold, there is not only a cut point, but all geodesics passing through a ball about that cut point
are cut as well. The ball scales with the length of the geodesic. As a consequence I proved: Any
Riemannian manifold with nonnegative Ricci curvature and at most small linear diameter growth,

lim sup
R→∞

diam(∂Bp(R))
R

≤ n

n− 1
1
3n

(
n− 2
n− 1

)n−1

(4)

has a finitely generated fundamental group [So4]. This result applies to all manifolds with linear
volume growth as well as those with sublinear diameter growth. It was published in JDG. The
key step in the proof of the uniform cut lemma and the above theorem was the construction of a
thin triangle in the universal cover whose height could be estimated using Abresch-Gromoll’s Excess
Theorem [AbGl].

After publishing this, I submitted an NSF grant proposal and a reviewer suggested that Milnor’s
conjecture was false. So I spent some time trying to construct an example by cutting out holes in
Riemannian manifolds and attempting to paste in some pieces that included noncontactible loops.
Instead I discovered this was impossible: all noncontractible loops in complete noncompact spaces
with positive Ricci curvature are homotopic to a sequence of loops extending out to infinity [So5].
Investigating further, I discovered that, if Mn has Ricci ≥ 0 then either all noncontractible loops
are homotopic to a sequence of loops to infinity or Mn has a double cover which is an isometric
product. An example where the latter occurs is the infinite flat moebius strip, whose double cover is
a standard cylinder. [So5]

After I posted the preprint [So5], Zhongmin Shen contacted me. He believed we could use the
result to prove an old conjecture of Yau that he had been working on: the n-1 homology of a complete
noncompact Riemannian manifold with positive Ricci curvature is trivial [Yau3]. Yau had proven
this result for real homology using harmonic functions. However real homology does not detect holes
of finite order. Shen had proven the conjecture for integer homology when the manifold is assumed
to have compact Busemann level sets using Morse Theory [Sh1]. Kobayashi and Itokawa had applied
currents to control the integer homology for most manifolds with nonnegative Ricci curvature and
had explicitly conjectured the precise groups, Hn−1(M,Z), for all complete noncompact Riemannian
manifolds with Ricci ≥ 0 [ItKo]. Shen and I were able to completely classify Hn−1(M,Z) for all Mn

with Ricci ≥ 0 exactly as predicted by Itokawa-Kobayashi by applying the techniques of the loops
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to infinity paper and long exact sequences [SoSh1].
The original Milnor Conjecture remains open. Recently Zhongmin Shen and I wrote a survey

paper describing the partial solutions of this conjecture [SoSh2]. Here we proposed a possible counter
example to this conjecture. We described the dyadic solenoid complement, a topological manifold
discovered by Whitehead soon after he realized that he had published an incorrect proof of the
Poincare conjecture [W]. It is not known whether such a manifold can be endowed with a metric
of nonnegative Ricci curvature, however, we do note that it satisfies all the topological properties
such a manifold must satisfy, including properties from Milnor’s paper [Mil] as well as the loops to
infinity property [Sor5].

Last May, my student Michael Munn completed a thesis last on Riemannian manifolds with
nonnegative Ricci curvature and maximal volume growth. For each k, he found an inductively
defined constant Ck,n depending on k and the dimension n, such that if the volume growth is more
than Ck,nrn then the kth homology of the manifold is trivial. His proof is based on work of Perelman,
who showed that for C sufficiently large, the manifold is contractible. Michael has been awarded an
NSF International Postdoc to work with Topping at Warwick for the next two years.

3 The Topology of Limit Spaces

By Gromov’s compactness theorem, a sequence of compact Riemannian manifolds, Mn
j , with non-

negative Ricci curvature has a subsequence which converges in the Gromov-Hausdorff sense to a
geodesic metric space, Y [Gr]. By work of Cheeger-Colding, a further subsequence converges in
the metric measure sense, endowing the limit space with a measure that satisfies Bishop-Gromov.
In their famous three part paper they proved a number of beautiful results concerning these limit
spaces, Y , yet they did not control the global topology of the spaces ChCoI-III]. In fact, Cold-
ing’s student, Menguy had constructed a limit space, Y , with infinite topological type [Men2]. His
example is a four dimensional limit space with locally infinite second homology.

Spaces with infinite topological type may not have universal covers. In fact, the Hawaii ring, a
collection of infinitely many circles of radii decreasing to 0 joined at a common point, has locally
infinite topological type and no universal cover. Nevertheless, Guofang Wei and I felt that limit
spaces of manifolds with nonnegative Ricci curvature could not have so many tiny noncontractible
loops. We proved that a limit space, Y , must have a universal cover [SoWei1] [SoWei2].

It should be noted that universal covers M̃j of the manifolds Mj always have a subsequence
which converges in a Gromov-Hausdorff sense to some metric space Z. The difficulty is that Z need
not cover Y . For example, Mj could be 1

j × 1 flat tori converging to a circle, Y . The all the M̃j

and Z are the Euclidean plane. However, the universal cover of the circle, Y , is a line not a plane.
Nevertheless, Wei and I discovered that if Mj and Y are compact then the universal cover of the
limit space is the limit of other covering spaces of the M j . In this example the line is a limit of
increasingly thin cylinders which are covering spaces of the tori.

In our first paper, Wei and I focused on such compact metric spaces, defining a notion of delta
cover we denoted M̃ δ. These covers do not detect topology of M on a scale smaller than the given δ.
We proved that a subsequence of δ covers for a fixed δ, M̃ δ

j , converge to a covering space, Y δ, of the
limit space, Y . We then took delta smaller and smaller and proved that the covers Y δ eventually
stabilized using properties proven by Cheeger-Colding and my notion of uniform cut points. So
for delta small enough, Y δ was the universal cover of Y . Since it was the limit of M̃ δ

j which have
nonnegative Ricci curvature, Ỹ had all the properties of a limit space [SoWei1].

In our second paper we considered complete noncompact Mj converging to complete noncompact
metric spaces Y in the pointed Gromov-Hausdorff sense. Here we needed to restrict ourselves to
compact subsets and used a concept we called reletive delta covers. We once again were able to prove
the existence of a universal cover for Y . This time, however, the universal cover was found using
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proof by contradiction and was not constructed as a global limit. Nevertheless, we were able to lift
all the properties of the limit space to the universal cover. We also extended the work of Milnor and
Anderson to limit spaces, as well as my partial solution to the Milnor conjecture [SoWei2].

4 The Covering Spectrum and the Length Spectrum

As mentioned earlier, Cheeger-Colding had developed the notion of metric measure convergence
defining a measure on the limit, Y , of a sequence of Riemannian manifolds, Mm

j with nonnegative
Ricci curvature, This measure allowed Cheeger-Colding to define a Laplacian on the limit spaces.
Furthermore, they were able to prove that the spectrum of the Laplacian on the manifolds converges
to the spectrum of the Laplacian of the limit space [ChCoIII]. Further work in this direction has
been completed by Yu Ding [Dng].

In contrast, the length spectrum, which is the collection of lengths of smoothly closed geodesics,
does not behave well even under C∞ convergence: new lengths can suddenly appear in the limit.
Under Gromov-Hausdorff convergence, lengths can suddenly disappear in the limit. This is in-
triguing because the length and the Laplace spectra are related both by the heat equation and the
wave equation [CdV]DG]. Another important spectrum studied by spectral geometers is the marked
length spectrum, a subset of the length spectrum which consists of the lengths of minimal geodesics
associated with elements of the fundamental group of the manifold.

Guofang Wei and I defined the notion of covering spectrum on a compact geodesic metric space
or Riemannian manifold. It is continuous under Gromov-Hausdorff convergence. That is:

if λ ∈ CovSpec(Y ), then ∃λj ∈ CovSpec(Mj) such that λj → λ, and
if λj ∈ CovSpec(Mj) and λj → λ then λ ∈ CovSpec(Y ) ∪ {0}.

We proved the covering spectrum is completely determined by the marked length spectrum and is a
subset of the length spectrum. It can be applied to count the number of generators of the fundamental
group. It has a positive minimum iff the space has a universal cover. Our paper was published in JDG
[SoWei3]. The spectrum is further studied by spectral geometers Gornet and Sutton in upcoming
work.

When I presented this paper in Montreal, Steve Zelditch suggested I find a larger subset of the
length spectrum which had similarly good convergence properties. As Wei was busy on another
project at the time, I went ahead on this investigation alone. Since the length spectrum is the
collection of lengths of smoothly closed geodesics, I decided to focus on its metric properties rather
than focusing only on noncontractible loops.

I defined the notion of 1/k geodesics as geodesic loops which are minimizing on any subinterval
of length L/k where L is the length of the geodesic. This lead to a notion of the 1/k length spectra.
I proved these spectra behave well under Gromov-Hausdorff convergence allowing me to apply work
of Colding to prove a variety of gap theorems. The paper also includes a close study of the 1/2
length spectra: lengths of geodesics which are minimizing halfway around. This spectrum includes
the systole. The paper includes a survey of related prior work and a number of open questions, one
of which has already been solved and submitted for publication by a student of Burago [Sor-Length].

Guofang Wei and I then turned to the covering spectrum of complete noncompact Riemannian
manifolds and locally compact geodesic metric spaces. In this setting, few of our earlier results hold.
The covering spectrum is not a subset of the length spectrum because not all holes are surrounded by
geodesic loops. It is not continuous under pointed Gromov-Hausdorff convergence because handles
can slide off to infinity and simply connected manifolds can break apart in the limit. This can be seen
for example with a sequence of longer and longer ellipsoids that converge in the pointed Gromov-
Hausdorff sense to a cylinder. We were able to prove a number of nice properties for the covering
spectrum on Alexandrov spaces with nonnegative curvature including manifolds with nonnegative
sectional curvature, but we wanted to find a new spectrum which was continuous under pointed
Gromov-Hausdorff convergence.
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Our most recent joint paper, defines the notions of the cut-off covering spectrum and the R cut-
off covering spectrum. These spectra do not detect holes which extend to infinity like the holes in a
cylinder. We prove that the limits of simply connected spaces have empty cut-off covering spectra.
More generally we prove that whenever λ is in the cut-off covering spectrum of a limit space, it is the
limit of λj which are in the cut off covering spectra of the Mj . To prove the convergence properties of
these spectra under pointed Gromov-Hausdorff convergence, we develop a notion called a δ homotopy
and apply the Arzela-Ascoli theorem to portions of nets restricted to compact domains [SoWei4]. The
methods are completely different from the work in the compact setting. Not suprisingly, we proved
the cut-off covering spectrum of a complete noncompact Riemannian manifold with nonnegative
Ricci curvature is empty.

Lately we’ve begun working on a concept we call the rescaled covering spectrum which should
record topology at infinity, or the topology of the tangent cone at infinity. Naturally such a spectrum
cannot behave well under pointed Gromov-Hausdorff convergence but we believe it may have some
applications to Geometric Group Theory. We are also investigating the rescaled covering spectrum
on manifolds with nonnegative Ricci curvature.

5 Friedmann Cosmology

While the above work on the convergence of Riemannian manifolds was a development of a purely
abstract theory, I was also interested in applications of Gromov-Hausdorff convergence to the physical
world. The Friedmann Model of cosmology is a description of the universe as a space of constant
sectional curvature crossed with a time direction that satisfies Einstein’s equation. This model is
applied to date the big bang and study the expansion of the universe. Naturally space does not have
constant sectional curvature and so one must question the basic assumptions in this model. The
justification of the model is that space looks the same in all directions: that it is locally isotropic.
Riemannian manifolds which are locally isotropic around each point have sectional curvatures which
only depend on the point and not on the plane. Thus by Schur’s lemma, they in fact have constant
sectional curvature.

In reality space is not locally isotropic. There is weak gravitational lensing (caused by dust and
distant gravity sources) and there is strong gravitational lensing (caused by concentrated masses
like stars and black holes). In order to justify Friedmann’s model, one needs to show that a space
which is almost locally isotropic is also almost a space of constant sectional curvature. One needs
stability. However, Schur’s Lemma is not stable. Gribcov has provided examples demonstrating
that manifolds with almost constant sectional curvature at each point need not be C∞ close to
manifolds of globally constant sectional curvature [Grib]. Yet intriguingly physicists had run models
with computer simulations and the outputs had been close.

I investigated and proved that manifolds which are almost locally isotropic in a way which allows
for both weak and strong gravitational lensing are Gromov-Hausdorff close to spaces of constant
sectional curvature. Thus the physical assumption the cosmologists are making is stable if one
allows for Gromov-Hausdorff variation of the space like universe. This is perhaps my favorite paper
in recent years and it involved the development of a new concept called an exponential length space.
Interestingly this paper does not use methods of Cheeger-Colding but old theorems of Busemann
and Birkhoff [Bu][Br]. The smoothness of the limit spaces is proven not using regularity thoery but
by proving the universal cover of the limit space must be a standard sphere, Euclidean space or
Hyperbolic space. This paper was published in GAFA [Sor6]
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6 Conjugate Points in Geodesic Spaces

Krishnan Shankar saw the Friedmann Cosmology paper and felt that some of the theory developed
in it could be useful in other settings. One notion, for example, was the notion of a conjugate
point, which he noted constrasted nicely with a notion Alexander-Bishop applied in their work on
Alexandrov Spaces [AB1][AB2]. He felt the notion could be further generalized to any geodesic
space.

On manifolds, conjugate points are defined using the differentiability of an exponential map.
The notion had first been extended by Rinow to the nonsmooth setting to spaces that nevertheless
had exponential maps. In my prior work and in Alexander-Bishop there were also exponential
maps. However, on arbitrary geodesic spaces, there are only minimizing geodesics between pairs
of points. Geodesics may branch and reconvene. They need not be locally unique and they need
not extend for all time. Nevertheless we found a variety of valid extensions of the notion of a
conjugate point and proved a few classical theorems from Riemannian Geometry in this larger class
of spaces including Klingenberg’s long homotopy lemma. We also surveyed applications of our
notions to Alexandrov spaces, proving a relative Rauch comparison theorem. This paper will appear
in Advances in Mathematics [SnkSor].

7 A new convergence for Riemannian Manifolds

A few years ago Tom Ilmanen suggested I develop a new notion of convergence for Riemannian
manifolds which is weaker than Gromov-Hausdorff convergence: a notion of convergence which
would be weak enough to have a compactness theorem for manifolds with positive scalar curvature
and no interior minimal surfaces. He described the example of a sphere with increasingly many tiny
but deep gravity wells which intuitively should converge to a hairy sphere (a sphere with infinitely
many hairs).

Stefan Wenger and I have developed the notion of such a distance using the flat norm between
currents and the work of Ambrosio-Kirchheim. We have defined the intrinsic flat distance between
two compact oriented Riemannian manifolds with boundary. The spaces are a distance zero apart
iff there is an orientation preserving isometry between them. The sequence in Ilmanen’s example,
converges to a standard sphere. The limit spaces are weaker than Gromov-Hausdorff limits in the
sense that they may not be geodesic spaces, and they may have cancellation. We call the limit spaces,
current spaces, and prove a number of rectifiability properties for them using Ambrosio-Kirchheim.
This preprint in progress will be ready in January. We are adding examples [SorWen1].

Wenger has proven a compactness theorem for this distance: sequences of oriented Riemannian
manifolds with boundary that have a uniform upper bound on diameter, on volume and on the
volumes of their boundaries, have converging subsequences. The difficulty is that regions in the
manifolds may cancel and the limit space may be the 0 space [Wen].

In our second paper in progress we examine when cancellation can or cannot occur. We have
examples of sequences of manifolds with positive scalar curvature with increasingly many tinier and
tinier holes, which converge to the zero space. We prove that if we add a condition of uniform
local contractibility used by Greene-Petersen, then this cancellation does not occur. When there
is an assumption of nonnegative Ricci curvature on the spaces, then we can show using work of
Cheeger-Colding and Perelman that the Gromov-Hausdorff limits and the intrinsic flat limits agree
[SorWen2].

We conjecture that sequences of compact manifolds with positive scalar curvature and no interior
minimal surfaces, that satisfy the volume and diameter bounds of Wenger’s compactness theorem,
will not have cancellation except in regions where the volume collapses. We believe this new theory
of convergence will have many applications.
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