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I began my career in Riemannian Geometry, a field where theorems can be stated in an elegant

and easily understood manner depending only on basic notions of topology and geometry. From

the start I was intrigued by the Gromov-Hausdorff limits of Riemannian manifolds and I began

to study their properties. More recently I have begun to develop new notions of convergence of

Riemannian manifolds that can be applied in settings where no Gromov-Hausdorff limits exist.

I am particularly interested in applications to General Relativity. Here I state some of the key

theorems I’ve proven and notions I’ve defined divided into these four subject areas.

I have had some wonderful experiences collaborating, yet most of my research has been con-

ducted alone. As a doctoral student at Courant, Jeff Cheeger was my dissertation advisor. I

spent one year as a postdoc at Harvard under Shing-Ting Yau and two years as a postdoc at

Johns Hopkins with Joel Spruck and Bill Minicozzi before taking a tenure track job at CUNY.

I have coauthored multiple papers with Guofang Wei (UCSB) and Zhongmin Shen (IUPUI)

and I’ve engaged in many a lively debate with Dimitri Burago (PSU). More recently I have

coauthored with Krishnan Shankar (Oklahoma) and two junior mathematicians: Stefan Wenger

(who was a postdoc at NYU) and Dan Lee (who is tenure track at CUNY).

I enjoy working with doctoral students and postdocs: sometimes coauthoring with them on a

project I’ve begun earlier and other times suggesting problems and providing guidance. My first

doctoral student, Michael Munn, graduated from CUNY in 2008 and won an NSF International

Postdoc. He is now tenure track at U Missouri Columbia. Sajjad Lakzian just graduated from

CUNY under my supervision in 2013. He is now a postdoc at MSRI and will next work as

a postdoc at the Hausdorff Institute in Bonn. I have also co-advised two doctoral students

at Stony Brook: Pedro Solórzano (Phd 2011) and, currently, Raquel Perales. Fanghua Lin’s

student, Jacobus Portegies (NYU), has completed a paper related to a problem I suggested to

him. Alessandro Carlotto, Matthais Erbar, Davi Maximo, Anna Sakovich, Zahra Sinaei, Ling

Xiao, Shuanjian Zhang and Xin Zhou have all been active members of my reading seminar at

MSRi this Fall.

1. Riemannian Geometry Theorems

In this section, I describe my theorems concerning complete noncompact Riemannian man-

ifolds, Mm, with nonnegative Ricci curvature. These are traditional Riemannian Geometry

theorems in the sense that they use basic notions from comparison geometry. Key ingredients in

the proofs of these theorems are the Bishop-Gromov Volume Comparison Theorem, the Cheeger-

Gromoll Splitting Theorem and the Abresch-Gromoll Excess Theorem, along with techniques

involving harmonic functions, barriers and the maximum principle. My first theorem was:
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Theorem 1. [S–JDG-98] If Mm has at most linear volume growth, lim supr→∞
vol(Bp)(r)

r <∞,
then for any ray, γ : [0,∞)→Mm, the ray Busemann function, Bγ(x) := limR→∞R−d(x, γ(R))

has compact level sets. Furthermore the diameters of the level sets grow at most linearly.

This is a partial solution to a conjecture in Shing-Tung Yau’s 1982 problem list. Zhongmin

Shen had proven the conjecture assuming at least Euclidean volume growth in [Sh-Invent-96]

using different techniques. No one has been able to improve upon our results in the intervening

years, nor provide a counter example to Yau’s conjecture.

As a postdoc, I began to study Milnor’s 1968 conjecture that any complete noncompact

manifold, M, with nonnegative Ricci curvature has a finitely generated fundamental group. I

observed that all geodesics entering balls about cut points soon stop minimizing. Using this

Uniform Cut Lemma, I proved the following theorems:

Theorem 2. [S–JDG-00] There is an explicit constant, Sm, depending on dimension, such that

if Mm has diameter growth ≤ Smr then its fundamental group, π1(M
m), is finitely generated.

Theorem 3. [S–JDG-00] If Mm has linear volume growth then π1(M
m) is finitely generated.

The second theorem is a consequence of the first combined with the results in my thesis. Prior

to this theorem, Anderson and Li had proven finiteness of the fundamental group under maxi-

mal volume growth conditions using covering arguments and heat kernal estimates respectively

[A-Top-90][L-Annals-86]. Wilking has also done work in this direction [W-DGA-00]. Various

mathematicians have refined the constant, Sm, by fine tuning my estimates [XWY-CAMS-

03][XD-AMSC-06]. The full Milnor conjecture remains unresolved to this day.

While studying closed geodesics, I discovered the following theorem and proved it using the

Cheeger-Gromoll Splitting Theorem applied to double covers:

Theorem 4. [S–IJM-01] If Mm has nonnegative Ricci curvature then either it has the loops

to infinity property or it is isometric to a flat normal bundle over a compact totally geodesic

submanifold and its double cover is split isometrically.

The loops to infinity property states that any noncontractible loop is homotopic to a sequence

of loops diverging to infinity. Zhongmin Shen and I applied this theorem combined with some

techniques from algebraic topology to prove the next theorem (my first coauthored result):

Theorem 5. [ShS-AJM-01] (Joint with Shen) If Mn has nonnegative Ricci curvature then it

either has a trivial codimension one integer homology or it is isometric to a flat normal bundle

over a compact totally geodesic submanifold and its double cover is split isometrically.

Yau proved the codimension one real homology was trivial in 1976. Shen and Itokawa-

Kobayashi had worked towards classifying the codimension one integer homology using Morse
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theory and integral currents respectively [S-Invent-96][IK-AJM-99]. Our proof completes the

entire classification using only the loops to infinity property without applying this prior work.

I was invited to write a survey about the topology of these manifolds and wrote one together

with Zhongmin Shen, suggesting a possible way to construct a counter example to the Milnor

conecture [ShS-CMA-08]. Since then Gang Liu has published a proof of the Milnor conjecture

in dimension three by proving a property similar to the loops to infinity property combined

with a theorem of Stallings and the fact that any simply connected three manifold is a sphere

(which implies M3 is irreducible) [L-Invent-12]. There has been very little progress in arbitrary

dimensions aside from a recent result with Guofang Wei stated below as Theorem 10.

2. Gromov-Hausdorff Convergence

In 1981, Gromov first introduced the Gromov-Hausdorff distance between Riemannian man-

ifolds. He proved sequences of manifolds with uniform lower bounds on their Ricci curvature

have subsequences which converge in the Gromov-Hausdorff sense to geodesic metric spaces.

More generally, he proved metric spaces which are uniformly compact (uniform numbers of balls

of radius ε required to cover a ball of radius R), have converging subsequences.

My first theorem in this area appeared in my doctoral dissertation completed under the

supervision of Jeff Cheeger. It concerned manifolds with quadratically decaying lower bounds

on Ricci curvature. Here I write a simplified statement assuming only nonnegative Ricci:

Theorem 6. [S–CAG-98] If Mm is a complete Riemannian manifold with nonnegative Ricci

curvature and linear volume growth, then asymptotically as R → ∞, regions in the manifold,

B−1γ (R,R+ L), are Gromov-Hausdorff close to isometric products, XR × (R,R+ L).

Corollary 7. [S–CAG-98] Such manifolds have sublinear diameter growth.

This theorem was proven using the almost rigidity techniques developed by Cheeger-Colding

to prove the corresponding theorem with maximal volume growth [ChCo-Annals-96]. Cheeger-

Colding then proceeded to produce their trio of papers on the properties of limits of mani-

folds with uniform lower bounds on their Ricci curvature [ChCo-JDG-97-00]. Colding’s student

Menguy proved that the limit spaces could have infinite topological type locally [M-Duke-00].

Guofang Wei and I realized that my Uniform Cut Lemma could be applied to to control the

topology of the limit spaces as follows:

Theorem 8. [SW-TAMS-01, SW-TAMS-04] (Joint with Wei) Gromov-Hausdorff limits of com-

plete manifolds with uniform lower Ricci curvature bounds have universal covering spaces.

The first version of this theorem in [SW-TAMS-01] only applied to compact limit spaces. To

prove the theorem we developed a notion called a δ cover, M̃ δ, which is a covering space whose
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covering map is an isometry when restricted to balls of radius δ. These δ covers have been of

independent interest to metric geometers as a means to determine when certain metric spaces

have universal covers. They lead naturally to the following concept:

Definition 9. [SW-JDG-04] (Joint with Wei) The Covering Spectrum of a compact length space,

X, is CovSpec(X) = {δ > 0 : M̃ δ 6= M̃ δ′ ∀δ′ > δ}.

Wei and I proved a number of theorems about the covering spectrum in this joint paper. If the

infimum of the covering spectrum is positive then the metric space has a universal cover. The

covering spectrum is continuous with respect to Gromov-Hausdorff convergence, which leads to

gaps in the covering spectrum of manifolds with lower Ricci curvature bounds. It is a subset of

the length spectrum in the following sense:

(1) λ ∈ CovSpec(M) iff 2λ ∈ Length(M)

Although the length spectrum is not continuous with respect to Gromov-Hausdorff convergence,

the covering spectrum is continuous in the sense that

(2) Mj
GH−→M∞ implies CovSpec(Mj) ∪ {0}

H−→ CovSpec(M∞).

In [dSGS-JDG-2010] and [dSGS-GD-2012], deSmit-Gornet-Sutton prove theorems demonstrat-

ing when pairs of Riemannian manifolds have the same covering spectrum.

In [S–AiM-07] I studied the length spectra and Gromov-Hausdorff limits. One may recall that

Colin de Verdiere [V-Comp-73] had proven that the length spectrum is determined by the Laplace

spectrum on a generic compact Riemannian manifold. His proof involved the heat kernal on

the manifold. Duistermaat-Guillemin [DG-Invent-75] reproved his result using their wave trace

formula. Although Cheeger-Colding [ChCo-JDG-00] proved the laplace spectrum sometimes

behaves well under metric measure convergence, the length spectra is not well behaved at all.

In this paper I proved various subspectra of the length spectra converge when the underlying

spaces converge in the Gromov-Hausdorff sense [S-AiM-07]. It contains an open problem list for

doctoral students.

As in the work with Guofang Wei, many of the results can be stated on geodesic spaces without

any need for a Riemannian structure. I’ve completed further investigation into Riemannian-like

properties on arbitrary length spaces in a joint paper with Ravi Shankar [ShS-AiM-09]. In

particular we extend the notion of a conjugate point and prove Klingenberg’s Long Homotopy

Lemma [K-AMPA-62] in this nonsmooth setting. There are quite a number of theorems in both

of these papers as well as open problem lists.

In [SW-TAMS-10], Guofang Wei and I turned to complete noncompact metric spaces and

defined the cut-off covering spectrum: a notion which identifies localized holes in the space.
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We study the relationship between the covering spectra and Gromov-Huasodrff convergence:

proving exact theorem statements and providing counter examples to actual continuity as in

(2). We prove that manifolds with Ricci ≥ 0 split isometrically if they have a nontrivial cut-off

covering spectrum. We also prove a local almost soul theorem for manifolds with sect ≥ −1 and

suggest open problems in this area.

Most recently Guofang Wei and I have a preprint introducing a variety of additional covering

spectra and special subsets of the fundamental group for complete noncompact metric spaces

that capture the metric topological behavior of the spaces at infinity [SWei-V]. We introduce

two scale invariant notions: the rescaled covering spectrum, CovSpec∞rs(M), and the rescaled

slipping group. We prove that

Theorem 10. [SWei-V] (Joint with Wei) If Mn is a complete noncompact Riemannian manifold

with Ricci ≥ 0 whose rescaled slipping group is trivial and whose rescaled covering spectrum has

a positive infimum, then the manifold has a finite fundamental group.

3. New Notions of Convergence

Stefan Wenger and I introduced the Intrinsic Flat distance between compact oriented Rie-

mannian manifolds in a preprint in 2008 which I presented at the Geometry Festival in 2009. It

is built upon the work of Ambrosio-Kirchheim which develops the notion of currents on arbitrary

metric spaces. We prove that limits obtained under intrinsic flat convergence are integral cur-

rent spaces: oriented countably Hm rectifiable metric spaces with integer weight (possibly the 0

space). Just as the Gromov-Hausdorff distance is an intrinsic version of the Hausdorff distance

obtained by taking infima over all isometric embeddings into a common space and measuring

the Hausdorff distance between them, the intrinsic flat distance is an intrinsic version of the

Federer-Fleming flat distance between submanifolds in Euclidean space:

Definition 11. [SW-JDG-11] (Joint with Wenger) Given two compact oriented Riemannian

manifolds, Mm
1 ,M

m
2 , with boundary, we define the intrinsic flat distance:

(3) dF (M1,M2) := inf dZF
(
ϕ1#[M1], ϕ2#[M2]

)
,

where the infimum is taken over all complete metric spaces (Z, d) and isometric embeddings

ϕi : Mi → Z and the flat norm is defined as an infimum over integral currents Am, Bm+1 in Z:

(4) dZF (T1, T2) = inf
{

M(Am) + M(Bm+1) : T1 − T2 = A+ ∂B
}
.

Here Bm+1 is called the filling and Am is called the excess boundary.

In [SW-JDG-11] we proved this is a distance in the sense that it is 0 iff there is an orientation

preserving isometry between the two oriented manifolds. More generally, we defined integral
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current spaces which are countably Hm rectifiable metric spaces that have an integral current

structure which provides an orientation, a notion of integration and a notion of boundary. We

prove the intrinsic flat distance between two integral current spaces is 0 iff there is a current

preserving isometry between them. We proved the following theorem built upon Gromov’s

embedding theorem and Ambrosio-Kirchheim’s extension of the Federer-Fleming compactness

theorem:

Theorem 12. [SW-JDG-11] (Joint with Wenger) Given a sequence of oriented Riemannian

manifolds Mm
j such that Mm

j
GH−→ Y , then a subsequence converges in the intrinsic flat sense to

an integral current space, X, which is either a subset of Y with the restricted metric from Y or

the 0 integral current space.

In particular if a sequence of manifolds is collapsing (i.e. their volumes converge to 0), then

their intrinsic flat limit is the 0 integral current space. This also occurs when there is cancellation

or the filling volumes of the manifolds converge to 0. We provide an example of a sequence three

dimensional manifolds with positive scalar curvature with increasingly tiny and dense collections

of closed minimal spheres which disappears in the limit and conjecture this does not happen if

we forbid the existense of arbitrarily small minimal spheres [SW-JDG-11].

In [SW-CVPDE], we apply Gromov’s notion of filling volume [G-JDG-83] and a method of

Greene-Petersen [GP-Duke-92] to prove that the limits agree when the manifolds have uniform

linear contractibility functions. As a consequence the GH limits of such spaces are countably

Hm rectifiable. Although sequences of manifolds with nonnegative Ricci curvature are known

not to have uniform linear contractibility functions, we applied Cheeger-Colding theory [ChCo-

JDG-97] combined with early work of Perelman [P-JAMS-94] to obtain sufficient control on

filling volumes to prove the following theorem:

Theorem 13. [SW-CVPDE] (Joint with Wenger) If a sequence of oriented Riemannian man-

ifolds without boundary, Mm
j has Ricci ≥ 0, diam(Mm

j ) ≤ D0 and vol(Mm
j ) ≥ V0 then a

subsequence converges in both the intrinsic flat sense and the Gromov-Hausdorff sense to the

same limit space.

Naturally, it is of even more interest to use the intrinsic flat distance to study sequences

of manifolds which have no Gromov-Hausdorff limits. According to Wenger’s Compactness

Theorem, any sequence of oriented Riemannian manifolds that have a uniform upper bound

of diameter and volume (and area of the boundary) has a subsequence which converges in the

intrinsic flat sense [W-CVPDE-11]. Many examples of settings where one can apply intrinsic

flat convergence appear in the appendix of our joint paper [SW-JDG-11].
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In joint work with my doctoral student, Sajjad Lakzian, we have applied intrinsic flat conver-

gence to study sequences of manifolds which converge smoothly away from singular sets. That

is one has (M, gj) and a set S ⊂ M , such that gj converges smoothly to g∞ on M \ S. One

often needs to know whether the metric completion of (M \ S, g∞) agrees with the GH limit.

Theorem 14. [LS-CAG-12] (Joint with Lakzian) Let (M, gi) be a sequence of compact oriented

Riemannian manifolds such that there is a closed submanifold, S, of codimension two where gi

converge smoothly to g∞ on M \ S. If there exists a connected precompact exhaustion, Wj, of

M \ S satisfying

(5) diamgi(Wj) ≤ D0 ∀i ≥ j, volgi(∂Wj) ≤ A0,

(6) and volgi(M \Wj) ≤ Vj where lim
j→∞

Vj = 0.

Then limi→∞ dF (M ′i , N
′) = 0 where N ′ is the settled completion of (M \ S, g∞).

As an immediate consequence manifolds with nonnegative Ricci curvature (or uniform linear

contractibiliy functions) that satisfy the hypothesis of this theorem converge in the Gromov-

Hausdorff sense to the metric completion of (M \S, g∞). In fact we are able to obtain the same

result assuming only a uniform lower bound on Ricci curvature:

Theorem 15. [LS-CAG-12] (Joint with Lakzian) Let (M, gi) be a sequence of oriented compact

Riemannian manifolds with uniform lower Ricci curvature bounds, such that there is a closed

submanifold, S, of codimension two where gi converge smoothly to g∞ on M \S. If there exists a

connected precompact exhaustion, Wj, of M\S satisfying (5) and (6) then limi→∞ dGH(Mi, N) =

0, where N is the metric completion of (M \ S, g∞).

We have examples demonstrating the necessity of these hypotheses except for the codimension

condition on S. Indeed, in his doctoral thesis, Sajjad Lakzian has managed to replace the

codimension condition with the assumption that Hm−1(S) = 0.

Naturally one needs to know what quantities are conserved and continuous under intrinsic

flat convergence. The key properties Federer-Fleming desired when they first defined the flat

distance were properties needed to prove the Plateau problem: a strong notion of boundary that

persisted under convergence and a strong notion of area that was at least lower semicontinuous

[FF-Annals-60]. Ambrosio-Kirchheim proved that integral currents in metric spaces, share these

properties [AK-Acta-00]. Wenger and I proved that any sequence of manifolds converging in the

intrinsic flat sense can be isometrically embedded into a common space along with their limit

in [SW-JDG-11]. This led to:
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Theorem 16. [SW-JDG-11] (Joint with Wenger) If Mj are compact Riemannian manifolds and

limj→∞ dF (Mj ,M∞) = 0, then we have:

(7) lim
j→∞

dF (∂Mj , ∂M∞) = 0,

(8) lim inf
j→∞

vol(Mj) ≥ M(M∞),

(9) lim
j→∞

FillV ol(∂Mj) = FillV ol(∂M∞),

where M is the Ambrosio-Kirchheim mass of the integral current space. It is just the Hausdorff

measure when the tangent spaces are Euclidean and otherwise needs an area factor.

The convergence of the boundaries is simple and immediate. The difficult part of the proof of

the rest of this theorem was to construct a common separable metric space into which we could

isometrically embed the entire sequence and its limit. This space is one dimension higher than

the sequence and is in fact countably Hm+1 rectifiable. Unlike Gromov’s Embedding Theorem,

we cannot create a space simply by taking disjoint unions of the sequence itself and finding a

clever common metric. We need room for the fillings to estimate the flat distances within this

new space and obtain weak convergence there. Note that our common space is not compact.

The Ilmanen example of a sequence of spheres with increasingly many increasingly thin splines

does not isometrically embed into a compact metric space, although I have shown this sequence

converges to the standard sphere in the appendix to [SW-JDG-11].

In [S-Prop], I have a theorem which addresses the disappearance of regions in the limit

Theorem 17. [S–ArXiV] If a sequence of compact oriented Riemannian manifolds, Mm
i , has

Mm
i

F−→Mm
∞ where Mm

∞ is a nonzero precompact integral current space then there exists compact

submanifolds, Nm
i ⊂ Mm

i such that Nm
i

GH−→ Mm
∞ and lim infi→∞ vol(Nm

i ) ≥ M(Mm
∞). If, in

addition, vol(Mm
i )→ M(Mm

∞) then vol(Mm
i \Nm

i )→ 0.

The fact that points can disappear in the limit makes it impossible to prove a simple Arzela-

Ascoli Theorem where the target spaces converge in the flat sense. It also makes it difficult

to prove a Bolzano-Weierstrass Theorem for sequences of points in the space. Nevertheless I

have proven a variety of Arzela-Ascoli type theorems under additional conditions as well as a

Bolzano-Weierstrass type theorem for nondisappearing points and I am adding these theorems

to [S-Prop] as they are proven. I am continually building on this preprint [S-Prop] as I discover

new theorems that will be useful to those attempting to apply intrinsic flat convergence to study

questions arising in variety of directions.
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In particular Gromov has suggested in [G-CEJM-12] and [G-Plateauhedra-13] applying in-

trinsic flat convergence to measure the stability of the Burago-Ivanov Volume Rigidity Theorem

[BI-GAFA-94] [BI-GAFA-95] and the Schoen-Yau Scalar Torus Theorem [SY-Annals-79] respec-

tively. This coming spring he will be teaching a course at NYU based on these preprints of

his. I will run a coordinated reading seminar through which various doctoral students, postdocs

and I can devise new theorems regarding intrinsic flat convergence needed to help achieve this

goal. Already some of the participants in my reading seminar at MSRI are interested in working

towards questions concerning the almost rigidity of manifolds with nonnegative scalar curvature.

* Meanwhile I will continue to add to the preprint [S-Prop] as I prove theorems needed by

people working on these questions. I am also working to make the paper comprehensive so that

it includes details helpful to understanding the proof of Theorem 13. I particularly like the

following theorem proven in this paper and so it has been announced separately in Comptes

Rendus [S-Tetra]:

Theorem 18. [S–ArXiV] Given r0 > 0, β ∈ (0, 1), C > 0, V0 > 0, If a sequence of Riemannian

manifolds, M3
i , has vol(M3

j ) ≤ V0, diam(M3
i ) ≤ D0 and the C, β tetrahedral property for all

balls, Bp(r) ⊂M3
i , of radius r ≤ r0:

∃p1, p2 ∈ ∂Bp(r) such that ∀t1, t2 ∈ [(1− β)r, (1 + β)r] we have

inf{d(x, y) : x 6= y, x, y ∈ ∂Bp(r) ∩ ∂Bp1(t1) ∩ ∂Bp2(t2)} ∈ [Cr,∞)

then a subsequence of the Mi converges in the intrinsic flat and the Gromov-Hausdorff sense to

the same limit space. See Figure 1.

Figure 1. Three dimensional tetrahedral property [S–ArXiV]

Stony Brook doctoral student, Raquel Perales, is also working on a project relating intrinsic

flat and Gromov-Hausdorff limits. She hopes to extend Theorem 13 to the setting where ∂M 6= ∅.
She has begun by studying prior work on the Gromov-Hausdorff limits of Riemannian manifolds

with boundary by Kodani, Anderson-Katsuda-Kurylev-Lussas-Taylor, Wong and Knox. She

has completed a preprint applying Wenger’s compacntess theorem to prove that sequences of

Riemannian manifolds with uniformly positive boundary mean curvature, uniform bounds on the
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diameter of the boundary and nonnegative Ricci curvature have a subsequence which converges

in the intrinsic flat sense to an integral current space [P-IF]. She is currently working to prove

this limit is also a Gromov-Hausdorff limit in the noncollapsed setting.

Perales and I have completed a joint paper concerning the Gromov-Hausdorff limits of Rie-

mannian manifolds with boundaries of weak regularity where we assume no conditions on the

boundary and instead glue together a limit space out of the Gromov-Hausdorff limits of inner

regions [PS-Pacific]. We have a variety of compactness theorems and uniqueness theorems con-

cerning these glued limit spaces as well as extending some of the work of Cheeger-Colding to

provide properties for these glued limit spaces when the sequence has nonnegative Ricci curva-

ture. The key difficulty for Perales now is to provide enough conditions to relate this glued limit

to the intrinsic flat limit and to the Gromov-Hausdorff limit and tie them altogether. In general

all three limits are different.

I have also been working on developing other notions of convergence. Guofang Wei and I are

devising a notion of varifold spaces and a corresponding notion of intrinsic varifold convergence.

We are hoping such a notion can be employed to handle the difficulties arising in intrinsic flat

convergence due to orientation and cancellation. As suggested by Shing-Tung Yau, I have been

working with Lars Andersson, Ralph Howard and some doctoral students on exploring possible

ways of defining intrinsic flat convergence of Lorentzian manifolds which would converge to

integral Lorentzian spaces. Dimitri Burago, Sergei Ivanov and I have discussed a possible notion

of area convergence where the limits are not even metric spaces. Burago and Ivanov completed

the first step towards defining area spaces in [BI-GAFA-09].

4. Applications to General Relativity

In General Relativity, the spacelike universe is a Riemannian manifold. There are various

assumptions made on the spacelike universe by cosmologists to make predictions about the

timing the Big Bang and the expansion of universe. Naturally their models are only models,

and reality can only approximate their models up to a certain error. So one needs to understand

the error or distance between the real spacelike universe and manifold determined by the model.

In [S–GAFA-04] I studied the Friedmann model of cosmology. In that model the spacelike

universe is observed to be isotropic (the same when viewed in all directions at any point in

the universe). The conclusion by Schur’s Lemma is that the universe has constant sectional

curvature. Naturally mass is not distributed uniformly and geodesics can undergo both strong

gravitational lensing or weak gravitational lensing, and so the curvatures vary as one looks in

different directions. Gribcov and Currier proved Schur’s lemma is not stable under smooth

perturbations of the metric [G-MS-83][C-PAMS-90]. It is easy to construct natural models of
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the universe (e.g. the Dyer-Roeder Swiss cheese models [DR-Astro-73]) in which the spacelike

universe is not smoothly close to a space of constant sectional curvature.

I proved that: under conditions which allow for both weak and isolated strong gravitational

lensing, one has a Riemannian manifold which is Gromov-Hausdorff close to a collection of

spaces of constant sectional curvature glued together at points. It is easy to construct examples

which are close to pairs of spheres of different radii, for example, just by placing a Gromov-

Lawson black hole tunnel between them. If I do not allow localized strong gravitational lensing,

only allowing weak gravitational lensing, then the space is Gromov-Hausdorff close to a single

space of constant sectional curvature. The proof of this theorem involves an application of

Gromov’s Compactness Theorem and the corresponding Arzela-Ascoli Theorem. The limit space

is then proven to have so much symmetry its universal cover must be Euclidean space, Hyperbolic

space or the Sphere. [S–GAFA-04]

There are many settings arising naturally in General Relativity where the spacelike universe

does not have the properties needed to apply Gromov’s Compactness Theorem. The positive

energy condition allows us to say that a time symmetric spacelike sheet has nonnegative scalar

curvature, but one does not have nonnegative Riemannian Ricci curvature even in a vacuum.

One of the reasons I first looked into a possible Intrinsic Flat distance was to address these

questions.

Recall that the Schoen-Yau Positive Mass Theorem states that an asymptotically flat Rie-

mannian manifold, M3, with nonnegative scalar curvature has nonnegative ADM mass. If the

ADM mass is 0, then M3 is Euclidean space [SY-CMP-79]. The Penrose Inequality states that

if M3 has an outward minimizing boundary, then mADM (M3) ≥ mH(∂M3). This was proven

by Huisken-Ilmanen and Bray [HI-JDG-01] [B-JDG-01]. One may naturally ask: what happens

when a sequence of such M3
j has limj→∞mADM (Mj) = 0? Examples demonstrate that such

sequences need not converge in the smooth or Gromov-Hausdorff sense to Euclidean space (see

the last two columns in Figure 2).

Figure 2. Sequences with ADM mass converging to 0 [LS-Crelle].
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Dan Lee and I have conjectured that, choosing an appropriate selection of basepoints (as in

Figure 2), these spaces converge in the pointed intrinsic flat sense to Euclidean space. We’ve

proven this in the rotationally symmetric setting in our first preprint together [LS-Crelle]. We

also have a preprint concerning almost equality in the Penrose Inequality [LS-Poincare]. Dan

Lee and Lan-Hsuan Huang are working on a preprint [LH] in which they hope to prove this

conjecture in the setting where the manifolds can be embedded as graphs in Euclidean space.

Philippe LeFloch and I are currently working on a preprint [SLeFl-S] on stability estimates for

rotationally symmetric manifolds with low regularity. LeFloch has already completed significant

work studying H1 metrics on smooth manifolds as these naturally arise in General Relativity

and have well defined weak notions of curvature. We have proven that even with less regularity,

in the rotationally symmetric case, such manifolds can be viewed as integral current spaces. We

study the regions with nonnegative scalar curvature whose boundaries have bounded Hawking

mass. In this setting we have provided precise bounds on the intrinsic flat distances obtained

in the wrk with Dan Lee depending upon the Hawking mass bound (without needing t take the

Hawking mass to 0). We also provide bounds on the H1 norms. We obtain intrinsic flat and

weak H1 compactness theorems for sequences of these spaces with a uniform upper bound on

Hawking mass and nonnegative scalar curvature and are currently working to prove the limits

obtained under the two notions of convergence are isometric. We hope that by relating the weak

H1 limit to the intrinsic flat limit that we will be able to analyze the continuity of the Hawking

masses under conversation and the preservation under convergence of the notion of nonnegative

scalar curvature when there are no interior closed minimal surfaces. We believe this will not

only be useful to questions arising in General Relativity but also to study the almost rigidity

questions proposed by Gromov in [G-CEJM-12] and [G-Plateauhedra-13].

I very much look forward to working in a department where there are many doctoral students

interested in Geometric Analysis. Most of the CUNY doctoral students and postdocs are inter-

ested in Number Theory, Logic and Group Theory. I have enjoyed working at CUNY because

our convenient location which has allowed me to recruit students from nearby universities to

participate in my weekly reading seminars. However, It has been amazing working at MSRI

where everyone is actively onsite every day and we can speak together whenever we wish.

5. Family

I am indebted to my collaborators Guofang Wei, Zhongmin Shen and Dimitri Burago, who

all had children young, as I did, before tenure. They showed me how to maintain a research

career despite the high teaching loads and service responsibilities associated with working at a

public university. I am deeply thankful to my husband, my parents and my in-laws for all their

help, and to my three children for their independence, responsibility and loving support.
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