Database Systems

Take-home test 2, spring, 2019 Due by May 7, 2019 (*submit answers as hard copy*) Department of Mathematics and Computer Science

- Answer to the questions that you omitted in the midterm examination
- Correct your answers to the questions that you could not complete in the midterm examination

Database Systems

Midterm Examination, spring, 2019

[Q.1] Answer the following questions

You are invited as a database architect to develop database schema for maintaining Lehman Bistro menu. We assume we completed conceptual schema of Lehman Bistro menu, and mapped to the logical schema drew in MySQL EER as shown below.

You do not need to worry about indexes data objects. **Note** customer_order_id, and product_id together is the primary key of the ordered_product table schema (table relation).

The following tables show the current state of each table (relation)

category table

```
customer table
```

	id	name	_					
•	1	american		id	name	email	phone	address
	2	chinese	•	1	Bob Schneider	bs@lehman.edu	718-960-1112	123 Bedford Blvd, NY, NY
	3	italian		2	Tiger Forest	tf@lehman.edu	718-960-1234	125 Bedford Blvd, NY, NY
	4	mexican		3	Mark Jordan	mj@lehman.edu	718-960-4426	225 Bedford Blvd, NY, NY

Product table

	id	name	price	description	last_update	category_id
•	1	burger	5.70	hamburger sandwich consisting of one cooked p	2019-03-20 14:47:50	1
	2	chickensandwich	6.39	grilled chicken sandwich	2019-03-20 14:47:50	1
	3	friedchicken	7.99	5 piece fried chicken meal	2019-03-20 14:47:50	1
	4	salad	6.76	caesar chicken salad	2019-03-20 14:47:50	1
	5	forkstirfry	6.29	prime fork stir fry	2019-03-20 14:47:50	2
	6	kung-pao-chicken	6.49	simmering chicken in a flavorful sauce made wit	2019-03-20 14:47:51	2
	7	mugugaipan	6.59	stir-fried dish consisting of sliced or cubed chick	2019-03-20 14:47:51	2
	8	szechuanchicken	6.55	spicy Szechuan chicken	2019-03-20 14:47:51	2
	9	italianpizza	4.89	two piece italian pizza with three toppings	2019-03-20 14:47:51	3
	10	italiansausagesandwich	6.19	roasted italian sausage peppers mushroom san	2019-03-20 14:47:51	3
	11	seafoodpasta	8.15	Italian Seafood Pasta	2019-03-20 14:47:51	3
	12	spaghetti	6.39	slow-cooked meatballs spaghetti	2019-03-20 14:47:51	3
	13	beeftacos	6.59	beef tacos served with salad and fresh tomatoe	2019-03-20 14:47:51	4
	14	fajitas	7.49	beef fajitas	2019-03-20 14:47:51	4
	15	quesadilla	6.29	A flour tortilla is heated on a griddle, then flippe	2019-03-20 14:47:51	4
	16	Burrito	6.49	a warm, soft flour tortilla wrapped around seas	2019-03-20 14:47:52	4

customer_order table

ordered_product table

					customer_order_id	product_id	quantity
id	amount	date created	confirmation number	customer id	1	1	5
iu .	aniount	uale_urealeu	commadon_number	customer_iu	1	3	5
1	68.64	2019-03-21 07:01:44	1	1	2	5	2
2	58.71	2019-03-21 07:01:44	2	2	2	7	3
3	12.78	2019-03-21 07:01:44	3	3	3	2	2

- a) Explain entity integrity constraint, and show an example
- b) Explain referential integrity constraint and show two examples
- c) Explain the difference between solid line connecting two entity types and dotted line connecting two entity types
- d) Show how to insert a new tuple into the customer table, please note that the customer id is auto generated.
- e) Write a SQL statement to retrieve customer name, email, and maximum order amount
- f) Write a SQL statement to list products grouped by each category name
- g) Write a SQL statement to retrieve at least 3 products in each category from the product table

[Q.2] Answer the following questions based on the tennis database schema

- (a) Write a SQL to create a view that stores all town names from the players table. And write a SQL to retrieve the date from the view
- (b) Write a SQL statement to retrieve the number of top 3 best players. The best player is defined as the person with highest matches won
- (c) Write a SQL statement to retrieve 3 lowest penalty amounts from the penalties table
- (d) MySQL supports UNION operator, so the following SQL works

Select playerno From players Union Select playersno From matches

MySQL however does not provide intersection operator. Write a SQL statement using temptable (and populate tuple by select statements) to get the intersection of two sets of players.

[Q.3] Answer the following questions for a simple library application.

The data requirements of the library application are summarized as follows: Design an ER schema for this application, and draw an ER diagram for that schema. Specify key attributes of each entity type and structural constraints on each relationship type. Note any unspecified requirements, and make appropriate assumptions to make the specification complete.

- BOOK entity is identified by BookId, it has title and multiple author names.
- PUBLISHER entity consists of Name, Address, and Phone attributes. Name is the key for the PUBLISHER.
- LIBRARY_BRANCH entity has BranchId as a key and BranchName attribute additionally.
- Each LIBRARY_BRANCH has one or more copies of the same book. In such a case, noOfCopies attribute needs to be maintained by the relationship type.
- BORROWER entity has BrowerId as key and additionally has name, address, phone attributes.

- A book is published by only one publisher. A book can be loaned to a borrower at a specific library branch.
- a) Draw ER diagram for the conceptual schema of the library database application. Note: you may need to have appropriate assumptions in requirements gathering process in order to make the specification complete.
- b) Map the conceptual schema to logical database schema.
- c) Write SQL queries for the following queries on the library database:
 - a. How many copies of the book titled "Database Systems" are owned by the library branch "Lehman"?
 - b. Write a SQL to retrieve the names of all borrowers who checked out any book
 - c. Write a SQL, for each library branch, retrieve the name and the total number of books loaned out from the library branch.

[Q.4] Answer the questions based on the following three tables populated in the company database as shown below

Employee				
SSN	Fname	Lname		
222443333	Jim	Brown		
333556666	John	Aikman		
456789999	Adam	Smith		
555225555	Rob	Scneider		

Project					
Pname	Pnumber	Plocation	Dnum		
ProjA	1	Boston	3		
ProjB	2	NYC	3		
ProjC	3	Chicago	3		
ProjD	6	Atlanta	2		

Works_On					
Essn	Pno	Hours			
222443333	1	20			
222443333	2	22			
222443333	3	10			
333556666	1	15			
456789999	6	12			
555225555	2	20			
555225555	3	10			

a) Show data retrieved by the following query

SELECT Fname, Lname FROM EMPLOYEE WHERE EXISTS (SELECT * FROM WORKS_ON WO1 WHERE (WO1.PNO IN (SELECT PNUMBER FROM PROJECT WHERE DNUM = 3) AND EXISTS (SELECT *

XISTS (SELECT * FROM WORKS_ON WO2 WHERE WO2.ESSN = SSN AND WO2.PNO =

WO1.PNO)));

b) Show data retrieved by the following query

SELECT Fname, Lname FROM EMPLOYEE WHERE NOT EXISTS (SELECT *

FROM WORKS_ON WO1 WHERE (WO1.PNO IN (SELECT PNUMBER FROM PROJECT WHERE DNUM = 3)

AND EXISTS (SELECT * FROM WORKS_ON WO2 WHERE WO2.ESSN = SSN AND WO2.PNO =

WO1.PNO)));

c) Show data retrieved by the following query

SELECT Fname, Lname FROM EMPLOYEE WHERE EXISTS (SELECT * FROM WORKS_ON WO1 WHERE (WO1.PNO IN (SELECT PNUMBER FROM PROJECT WHERE DNUM = 3) AND NOT EXISTS (SELECT * FROM WORKS_ON WO2 WHERE WO2.ESSN = SSN AND WO2.PNO =

WO1.PNO)));

d) Show data retrieved by the following query

SELECT Fname, Lname FROM EMPLOYEE WHERE NOT EXISTS (SELECT * FROM WORKS_ON WO1 WHERE (WO1.PNO IN (SELECT PNUMBER FROM PROJECT WHERE DNUM = 3) AND NOT EXISTS (SELECT * FROM WORKS_ON WO2 WHERE WO2.ESSN = SSN AND WO2.PNO =

WO1.PNO)));

- e) Explain difference between left outer join and inner join, write a SQL query to retrieve data by left outer join of Employee and Works_On table
- f) Write a SQL query to retrieve Dnum to control at least 3 projects