Version 1

- Answer Question 1 on the exam paper.
- Answer Questions 2-5 on the yellow paper.
- One question per page, use only one side of the yellow paper.
- Write your name on the exam paper.
- Write your name and version number on the top of the yellow paper.
- 1. (24 Points) Show the most efficient routing tables for routers A, B, C, and D. Make sure you account for traffic to the Internet. Use the shortest possible route. Router E should only be used for Internet traffic.



|          | Router A | Router B | Router C | Router D |
|----------|----------|----------|----------|----------|
| Network  | Next Hop | Next Hop | Next Hop | Next Hop |
| 10.0.0.0 |          |          |          |          |
| 20.0.0.0 |          |          |          |          |
| 30.0.0.0 |          |          |          |          |
| 40.0.0.0 |          |          |          |          |
| 50.0.0.0 |          |          |          |          |
| Default  |          |          |          |          |

- 2. (26 Points) Explain fragmentation as it relates to datagrams. Why is it necessary? How does IP keep track of the fragments? Where does it occur? When and where are the fragments reassembled? Give examples and be as specific as possible.
- 3. (20 Points) Given the class A network address 115.0.0.0 will be divided into multiple subnets.
  - a. (5 Points) How many bits will be necessary to address 15,000 subnets?
  - b. (5 Points) What is the maximum number of hosts on each subnet?
  - c. (5 Points) What is the subnet mask?
  - d. (5 Points) Write the dotted decimal IP address of subnet 13,793 host 975
- 4. (15 Points) Given the IP address 175.233.197.241 and the subnet mask of 255.255.252.0.
  - a. (5 Points) What is the network number?
  - b. (5 Points) What is the subnet number?
  - c. (5 Points) What is the host number?

5. (25 Points) A frame is formatted as follows:

| Destination Hardware<br>Address | Source Hardware<br>Address | Frame Type | Frame Data      |
|---------------------------------|----------------------------|------------|-----------------|
| 6 Bytes                         | 6 Bytes                    | 2 Bytes    | 46 - 1500 Bytes |

An IP datagram is formatted as follows:

| Byte     |                                      |                   |      |   | 0   |        |     |     |                       |    |      |     | 1     |      |      |       |      | 2            |       |      |     |   |      |    |    |    |      | 3    |    |      |      |     |  |  |
|----------|--------------------------------------|-------------------|------|---|-----|--------|-----|-----|-----------------------|----|------|-----|-------|------|------|-------|------|--------------|-------|------|-----|---|------|----|----|----|------|------|----|------|------|-----|--|--|
| bit      | 0                                    | 1                 | 2    | 3 | 4   | 5      | 6   | 7   | 8 9 10 11 12 13 14 15 |    |      |     |       | 1    | 6 17 | 1     | 8 1  | 9 20         | ) 2   | 21 2 | 2 2 | 3 | 24 2 | 25 | 26 | 27 | 7 28 | 3 29 | 30 | ) 31 |      |     |  |  |
| 0        |                                      | Ver               | sior | ı | Hea | ader I | .en | gth |                       |    | Тур  | e C | )f Se | ervi | ice  |       |      | Total Length |       |      |     |   |      |    |    |    |      |      |    |      |      |     |  |  |
| 4        | Identification Flags Fragment Offset |                   |      |   |     |        |     |     |                       |    |      |     |       |      |      |       |      |              |       |      |     |   |      |    |    |    |      |      |    |      |      |     |  |  |
| 8        | TTL Type Header Checksum             |                   |      |   |     |        |     |     |                       |    |      |     |       |      |      |       |      |              |       |      |     |   |      |    |    |    |      |      |    |      |      |     |  |  |
| 12       |                                      | Source IP Address |      |   |     |        |     |     |                       |    |      |     |       |      |      |       |      |              |       |      |     |   |      |    |    |    |      |      |    |      |      |     |  |  |
| 16       |                                      |                   |      |   |     |        |     |     |                       |    |      |     |       |      | Des  | stina | atio | n IF         | P Add | res  | s   |   |      |    |    |    |      |      |    |      |      |     |  |  |
| Optional |                                      |                   |      |   |     |        |     |     | IP                    | Op | otio | ons | (Ma   | ay E | Be C | Dmi   | tted | I)           |       |      |     |   |      |    |    |    |      |      |    | F    | Padd | ing |  |  |
| 20       |                                      | IP Payload Data   |      |   |     |        |     |     |                       |    |      |     |       |      |      |       |      |              |       |      |     |   |      |    |    |    |      |      |    |      |      |     |  |  |

A UDP datagram is formatted as follows:

| Byte | 0               | 1                     | 2                       | 3                       |  |  |  |  |  |
|------|-----------------|-----------------------|-------------------------|-------------------------|--|--|--|--|--|
| bit  | 0 1 2 3 4 5 6 7 | 8 9 10 11 12 13 14 15 | 16 17 18 19 20 21 22 23 | 24 25 26 27 28 29 30 31 |  |  |  |  |  |
| 0    | Sour            | e Port                | Destination Port        |                         |  |  |  |  |  |
| 4    | UDP Mes         | age Length            | UDP Checksum            |                         |  |  |  |  |  |
| 8    |                 | UDP Payl              | oad Data                |                         |  |  |  |  |  |

| 42 | C7 | E7 | CE | C5 | 8D | 81 | 81 | E5         | 75 | C8 | E5 | 08 | 00 | 45 | A3 |
|----|----|----|----|----|----|----|----|------------|----|----|----|----|----|----|----|
| 00 | 72 | C8 | 6C | 6C | AA | 2F | ED | E0         | D3 | A4 | 88 | 6B | 80 | DE | 9C |
| A4 | 2E | 3C | 98 | 13 | 45 | 86 | 4D | <b>0</b> E | 5F | 60 | 55 | 6D | F6 | C4 | F6 |
| D9 | 69 | 46 | D3 | 35 | D0 | 40 | A3 | 21         | 5F | 5A | 2F | 2B | 11 | 75 | 7B |
| AC | 25 | 25 | FF | 3E | 42 | 9A | 16 | E2         | A3 | 2D | AF | D7 | 06 | DF | C4 |
| 6D | 9A | 1E | 34 | 0B | 71 | 31 | CD | CD         | F3 | 94 | 9A | 41 | 35 | 60 | CC |
| E5 | E5 | 84 | D5 | 13 | BC | A1 | 74 | 10         | 28 | 02 | 92 | 66 | 63 | 51 | 49 |
| 1E | 57 | E9 | E0 | E9 | F2 | 26 | A7 | FB         | A7 | 5D | 48 | 20 | 7A | 82 | F8 |

- a. Find the destination hardware address.
- b. Find the source hardware address.
- c. What type of frame is this?
- d. What is the IP total length?
- e. What is the Identification?
- f. What Flag(s) are set in the IP header?
- g. What is the fragment offset?
- h. What is the TTL count?
- i. What is the IP Header Checksum?
- j. Find the source IP address.
- k. What class is the source IP address?
- 1. What is the network ID in the source IP address?
- m. What is the host ID in the source IP address?
- n. Write the source IP address in dotted decimal notation.
- o. Find the destination IP address.

- p. What class is the destination IP address?
- q. What is the network ID in the destination IP address?
- r. What is the host ID in the destination IP address?
- s. Write the destination IP address in dotted decimal notation.
- t. Can this message be delivered directly by the source to the destination, or will it require routers to handle the message. Explain..
- u. Find the UDP source port.
- v. Find the UDP destination port.
- w. Find the UDP checksum.
- x. Find the UDP Message Length
- y. If the IP header includes no options or padding, what are the first five bytes of the UDP datagram data?

Version 2

- Answer Question 1 on the exam paper.
- Answer Questions 2-5 on the yellow paper.
- One question per page, use only one side of the yellow paper.
- Write your name on the exam paper.
- Write your name and version number on the top of the yellow paper.
- 1. (24 Points) Show the most efficient routing tables for routers A, B, C, and D. Make sure you account for traffic to the Internet. Use the shortest possible route. Router E should only be used for Internet traffic.



|          | Router A | Router B | Router C | Router D |
|----------|----------|----------|----------|----------|
| Network  | Next Hop | Next Hop | Next Hop | Next Hop |
| 10.0.0.0 |          |          |          |          |
| 20.0.0.0 |          |          |          |          |
| 30.0.0.0 |          |          |          |          |
| 40.0.0.0 |          |          |          |          |
| 50.0.0.0 |          |          |          |          |
| Default  |          |          |          |          |

- 2. (26 Points) Explain fragmentation as it relates to datagrams. Why is it necessary? How does IP keep track of the fragments? Where does it occur? When and where are the fragments reassembled? Give examples and be as specific as possible.
- 3. (20 Points) Given the class A network address 117.0.0.0 will be divided into multiple subnets.
  - a. (5 Points) How many bits will be necessary to address 15,250 subnets?
  - b. (5 Points) What is the maximum number of hosts on each subnet?
  - c. (5 Points) What is the subnet mask?
  - d. (5 Points) Write the dotted decimal IP address of subnet 14,575 host 1,001.
- 4. (15 Points) Given the IP address 183.239.229.251 and the subnet mask of 255.255.252.0.
  - a. (5 Points) What is the network number?
  - b. (5 Points) What is the subnet number?
  - c. (5 Points) What is the host number?

5. (25 Points) Given that a frame is formatted as follows:

| Destination Hardware<br>Address | Source Hardware<br>Address | Frame Type | Frame Data      |
|---------------------------------|----------------------------|------------|-----------------|
| 6 Bytes                         | 6 Bytes                    | 2 Bytes    | 46 - 1500 Bytes |

An IP datagram is formatted as follows:

| Byte     | 0                        | 1                                                  |            | 2              | 3                       |  |  |  |  |  |
|----------|--------------------------|----------------------------------------------------|------------|----------------|-------------------------|--|--|--|--|--|
| bit      | 0 1 2 3 4 5 6 7          | 8 9 10 11 12 13 14 15                              | 16 17 18   | 19 20 21 22 23 | 24 25 26 27 28 29 30 31 |  |  |  |  |  |
| 0        | Version Header Length    | Version Header Length Type Of Service Total Length |            |                |                         |  |  |  |  |  |
| 4        | Identif                  | agment Offset                                      |            |                |                         |  |  |  |  |  |
| 8        | TTL Type Header Checksum |                                                    |            |                |                         |  |  |  |  |  |
| 12       | Source IP Address        |                                                    |            |                |                         |  |  |  |  |  |
| 16       |                          | Destination                                        | IP Address |                |                         |  |  |  |  |  |
| Optional |                          | IP Options (May Be Omitted)                        |            |                | Padding                 |  |  |  |  |  |
| 20       | IP Payload Data          |                                                    |            |                |                         |  |  |  |  |  |

A UDP datagram is formatted as follows:

| Byte | 0               | 1                     | 2                       | 3                       |  |  |  |  |  |
|------|-----------------|-----------------------|-------------------------|-------------------------|--|--|--|--|--|
| bit  | 0 1 2 3 4 5 6 7 | 8 9 10 11 12 13 14 15 | 16 17 18 19 20 21 22 23 | 24 25 26 27 28 29 30 31 |  |  |  |  |  |
| 0    | Sour            | e Port                | Destination Port        |                         |  |  |  |  |  |
| 4    | UDP Mes         | age Length            | UDP Checksum            |                         |  |  |  |  |  |
| 8    |                 | UDP Payl              | oad Data                |                         |  |  |  |  |  |

| C9 | BC | 18 | C9 | 91         | 75 | F5 | C3 | C5 | 36 | 02         | 72 | 08         | 00 | 45 | 2A |
|----|----|----|----|------------|----|----|----|----|----|------------|----|------------|----|----|----|
| 00 | 72 | A0 | 72 | 7B         | AD | F6 | 0B | BE | 83 | 20         | 9B | 12         | D0 | B8 | 0B |
| FC | 1D | 71 | 35 | B5         | D9 | FE | 5B | 34 | 62 | 2F         | 9D | D0         | 0A | B2 | 42 |
| BF | 89 | 3D | 4B | 10         | 72 | DE | F0 | 5E | 85 | <b>6</b> E | 71 | A2         | BC | AE | 8A |
| DF | C7 | 91 | 9A | 55         | D0 | 7D | A2 | 2D | 2E | C0         | 1C | 30         | D2 | 67 | BE |
| 52 | E0 | 71 | FA | 13         | FE | 3A | 6D | 77 | E0 | B2         | C2 | <b>6</b> E | 14 | 95 | 51 |
| 41 | 7E | 0A | 21 | 40         | 42 | C4 | D3 | F0 | C5 | 74         | D5 | BC         | 51 | 40 | 43 |
| 59 | B6 | 82 | AF | <b>6</b> E | 2B | 3F | D4 | 06 | EA | 2D         | B7 | 64         | 69 | 92 | 89 |

- a. Find the destination hardware address.
- b. Find the source hardware address.
- c. What type of frame is this?
- d. What is the IP total length?
- e. What is the Identification?
- f. What Flag(s) are set in the IP header?
- g. What is the fragment offset?
- h. What is the TTL count?
- i. What is the IP Header Checksum?
- j. Find the source IP address.
- k. What class is the source IP address?
- 1. What is the network ID in the source IP address?
- m. What is the host ID in the source IP address?
- n. Write the source IP address in dotted decimal notation.
- o. Find the destination IP address.

- p. What class is the destination IP address?
- q. What is the network ID in the destination IP address?
- r. What is the host ID in the destination IP address?
- s. Write the destination IP address in dotted decimal notation.
- t. Can this message be delivered directly by the source to the destination, or will it require routers to handle the message. Explain..
- u. Find the UDP source port.
- v. Find the UDP destination port.
- w. Find the UDP checksum.
- x. Find the UDP Message Length
- y. If the IP header includes no options or padding, what are the first five bytes of the UDP datagram data?

## Version 3

- Answer Question 1 on the exam paper.
- Answer Questions 2-5 on the yellow paper.
- One question per page, use only one side of the yellow paper.
- Write your name on the exam paper.
- Write your name and version number on the top of the yellow paper.
- 1. (24 Points) Show the most efficient routing tables for routers A, B, C, and D. Make sure you account for traffic to the Internet. Use the shortest possible route. Router E should only be used for Internet traffic.



|          | Router A | Router B | Router C | Router D |
|----------|----------|----------|----------|----------|
| Network  | Next Hop | Next Hop | Next Hop | Next Hop |
| 10.0.0.0 |          |          |          |          |
| 20.0.0.0 |          |          |          |          |
| 30.0.0.0 |          |          |          |          |
| 40.0.0.0 |          |          |          |          |
| 50.0.0.0 |          |          |          |          |
| Default  |          |          |          |          |

- 2. (26 Points) Explain fragmentation as it relates to datagrams. Why is it necessary? How does IP keep track of the fragments? Where does it occur? When and where are the fragments reassembled? Give examples and be as specific as possible.
- 3. (20 Points) Given the class A network address 121.0.0.0 will be divided into multiple subnets.
  - a. (5 Points) How many bits will be necessary to address 16,000 subnets?
  - b. (5 Points) What is the maximum number of hosts on each subnet?
  - c. (5 Points) What is the subnet mask?
  - d. (5 Points) Write the dotted decimal IP address of subnet 15,329 host 959.
- 4. (15 Points) Given the IP address 189.243.215.195 and the subnet mask of 255.255.252.0.
  - a. (5 Points) What is the network number?
  - b. (5 Points) What is the subnet number?
  - c. (5 Points) What is the host number?

5. (25 Points) Given that a frame is formatted as follows:

| Destination Hardware<br>Address | Source Hardware<br>Address | Frame Type | Frame Data      |
|---------------------------------|----------------------------|------------|-----------------|
| 6 Bytes                         | 6 Bytes                    | 2 Bytes    | 46 - 1500 Bytes |

An IP datagram is formatted as follows:

| Byte     | 0 1                                   |                        |  |  |  |  |  |  |    |    |      |     |              | 2    |      |      |       |      |        |     | 3    |     |      |     |   |      |    |    |    |      |      |     |      |  |
|----------|---------------------------------------|------------------------|--|--|--|--|--|--|----|----|------|-----|--------------|------|------|------|-------|------|--------|-----|------|-----|------|-----|---|------|----|----|----|------|------|-----|------|--|
| bit      | 0 1 2 3 4 5 6 7 8 9 10 11 1           |                        |  |  |  |  |  |  |    |    |      |     | 2            | 13   | 14   | 15   | 1     | 6 17 | 1      | 8 1 | 9 20 | ) 2 | 21 2 | 2 2 | 3 | 24 2 | 25 | 26 | 27 | 7 28 | 3 29 | 30  | ) 31 |  |
| 0        | Version Header Length Type Of Service |                        |  |  |  |  |  |  |    |    |      |     | Total Length |      |      |      |       |      |        |     |      |     |      |     |   |      |    |    |    |      |      |     |      |  |
| 4        | Identification Flags Fragment Offset  |                        |  |  |  |  |  |  |    |    |      |     |              |      |      |      |       |      |        |     |      |     |      |     |   |      |    |    |    |      |      |     |      |  |
| 8        | TTL Type Header Checksum              |                        |  |  |  |  |  |  |    |    |      |     |              |      |      |      |       |      |        |     |      |     |      |     |   |      |    |    |    |      |      |     |      |  |
| 12       |                                       | Source IP Address      |  |  |  |  |  |  |    |    |      |     |              |      |      |      |       |      |        |     |      |     |      |     |   |      |    |    |    |      |      |     |      |  |
| 16       |                                       | Destination IP Address |  |  |  |  |  |  |    |    |      |     |              |      |      |      |       |      |        |     |      |     |      |     |   |      |    |    |    |      |      |     |      |  |
| Optional |                                       |                        |  |  |  |  |  |  | IP | Op | otio | ons | (Ma          | ay E | Be ( | Dmi  | tted  | I)   |        |     |      |     |      |     |   |      |    |    |    | F    | Padd | ing |      |  |
| 20       |                                       |                        |  |  |  |  |  |  |    |    |      |     |              |      |      | IP F | Paylo | oad  | l Data | 9   |      |     |      |     |   |      |    |    |    |      |      |     |      |  |

A UDP datagram is formatted as follows:

| Byte | 0               | 1                     | 2                       | 3                       |  |  |  |  |  |  |  |  |
|------|-----------------|-----------------------|-------------------------|-------------------------|--|--|--|--|--|--|--|--|
| bit  | 0 1 2 3 4 5 6 7 | 8 9 10 11 12 13 14 15 | 16 17 18 19 20 21 22 23 | 24 25 26 27 28 29 30 31 |  |  |  |  |  |  |  |  |
| 0    | Sour            | e Port                | Destination Port        |                         |  |  |  |  |  |  |  |  |
| 4    | UDP Mess        | age Length            | UDP Checksum            |                         |  |  |  |  |  |  |  |  |
| 8    |                 | UDP Payl              | oad Data                |                         |  |  |  |  |  |  |  |  |

| 7A | F4 | A1 | 8C | BB | DC | 76 | 65 | 34 | 66 | 7C | A6 | 08 | 00 | 45 | 97 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 00 | 72 | 2A | D9 | 77 | 65 | 73 | 9F | 04 | 79 | DD | 3B | 0C | 01 | 5A | 5A |
| 16 | CC | 4D | B8 | 7E | FD | C4 | 1A | 3E | 9F | 6F | 60 | EC | D6 | 54 | 2C |
| 17 | 60 | 0A | BA | 80 | 55 | 69 | 3B | C0 | 46 | EA | 9B | A6 | 8F | 73 | 71 |
| 33 | F2 | 22 | 2F | 8B | 42 | F5 | 2F | 6C | 8F | 1F | 5E | 79 | D6 | DB | F6 |
| 44 | F0 | 29 | FC | CA | 79 | 2B | 25 | C9 | 02 | AA | 6D | F7 | 78 | F8 | 03 |
| 06 | 91 | 14 | 00 | B0 | 71 | B6 | 58 | 56 | 22 | EE | B6 | 99 | 5F | B5 | E4 |
| 9A | 20 | AC | AF | F0 | 7B | E3 | CD | 26 | BB | 89 | A1 | 69 | 70 | 90 | B4 |

- a. Find the destination hardware address.
- b. Find the source hardware address.
- c. What type of frame is this?
- d. What is the IP total length?
- e. What is the Identification?
- f. What Flag(s) are set in the IP header?
- g. What is the fragment offset?
- h. What is the TTL count?
- i. What is the IP Header Checksum?
- j. Find the source IP address.
- k. What class is the source IP address?
- 1. What is the network ID in the source IP address?
- m. What is the host ID in the source IP address?
- n. Write the source IP address in dotted decimal notation.
- o. Find the destination IP address.

- p. What class is the destination IP address?
- q. What is the network ID in the destination IP address?
- r. What is the host ID in the destination IP address?
- s. Write the destination IP address in dotted decimal notation.
- t. Can this message be delivered directly by the source to the destination, or will it require routers to handle the message. Explain..
- u. Find the UDP source port.
- v. Find the UDP destination port.
- w. Find the UDP checksum.
- x. Find the UDP Message Length
- y. If the IP header includes no options or padding, what are the first five bytes of the UDP datagram data?

Midterm Exam Name:\_\_\_\_\_

# Total of 110 Points

Version 4

- Answer Question 1 on the exam paper.
- Answer Questions 2-5 on the yellow paper.
- One question per page, use only one side of the yellow paper.
- Write your name on the exam paper.
- Write your name and version number on the top of the yellow paper.
- 1. (24 Points) Show the most efficient routing tables for routers A, B, C, and D. Make sure you account for traffic to the Internet. Use the shortest possible route. Router E should only be used for Internet traffic.



|          | Router A | Router B | Router C | Router D |
|----------|----------|----------|----------|----------|
| Network  | Next Hop | Next Hop | Next Hop | Next Hop |
| 10.0.0.0 |          |          |          |          |
| 20.0.0.0 |          |          |          |          |
| 30.0.0.0 |          |          |          |          |
| 40.0.0.0 |          |          |          |          |
| 50.0.0.0 |          |          |          |          |
| Default  |          |          |          |          |

- 2. (26 Points) Explain fragmentation as it relates to datagrams. Why is it necessary? How does IP keep track of the fragments? Where does it occur? When and where are the fragments reassembled? **Give examples and be as specific as possible**.
- 3. (20 Points) Given the class A network address 123.0.0.0 will be divided into multiple subnets.
  - a. (5 Points) How many bits will be necessary to address 15,750 subnets?
  - b. (5 Points) What is the maximum number of hosts on each subnet?
  - c. (5 Points) What is the subnet mask?
  - d. (5 Points) Write the dotted decimal IP address of subnet 15,299- host 1,010.
- 4. (15 Points) Given the IP address 179.233.223.211 and the subnet mask of 255.255.252.0.
  - a. (5 Points) What is the network number?
  - b. (5 Points) What is the subnet number?
  - c. (5 Points) What is the host number?

5. (25 Points) Given that a frame is formatted as follows:

| Destination Hardware<br>Address | Source Hardware<br>Address | Frame Type | Frame Data      |
|---------------------------------|----------------------------|------------|-----------------|
| 6 Bytes                         | 6 Bytes                    | 2 Bytes    | 46 - 1500 Bytes |

An IP datagram is formatted as follows:

| Byte     | 0 1                                   |                        |  |  |  |  |  |  |    |    |      |     |              | 2    |      |      |       |      |        |     | 3    |     |      |     |   |      |    |    |    |      |      |     |      |  |
|----------|---------------------------------------|------------------------|--|--|--|--|--|--|----|----|------|-----|--------------|------|------|------|-------|------|--------|-----|------|-----|------|-----|---|------|----|----|----|------|------|-----|------|--|
| bit      | 0 1 2 3 4 5 6 7 8 9 10 11 1           |                        |  |  |  |  |  |  |    |    |      |     | 2            | 13   | 14   | 15   | 1     | 6 17 | 1      | 8 1 | 9 20 | ) 2 | 21 2 | 2 2 | 3 | 24 2 | 25 | 26 | 27 | 7 28 | 3 29 | 30  | ) 31 |  |
| 0        | Version Header Length Type Of Service |                        |  |  |  |  |  |  |    |    |      |     | Total Length |      |      |      |       |      |        |     |      |     |      |     |   |      |    |    |    |      |      |     |      |  |
| 4        | Identification Flags Fragment Offset  |                        |  |  |  |  |  |  |    |    |      |     |              |      |      |      |       |      |        |     |      |     |      |     |   |      |    |    |    |      |      |     |      |  |
| 8        | TTL Type Header Checksum              |                        |  |  |  |  |  |  |    |    |      |     |              |      |      |      |       |      |        |     |      |     |      |     |   |      |    |    |    |      |      |     |      |  |
| 12       |                                       | Source IP Address      |  |  |  |  |  |  |    |    |      |     |              |      |      |      |       |      |        |     |      |     |      |     |   |      |    |    |    |      |      |     |      |  |
| 16       |                                       | Destination IP Address |  |  |  |  |  |  |    |    |      |     |              |      |      |      |       |      |        |     |      |     |      |     |   |      |    |    |    |      |      |     |      |  |
| Optional |                                       |                        |  |  |  |  |  |  | IP | Op | otio | ons | (Ma          | ay E | Be ( | Dmi  | tted  | I)   |        |     |      |     |      |     |   |      |    |    |    | F    | Padd | ing |      |  |
| 20       |                                       |                        |  |  |  |  |  |  |    |    |      |     |              |      |      | IP F | Paylo | oad  | l Data | 9   |      |     |      |     |   |      |    |    |    |      |      |     |      |  |

A UDP datagram is formatted as follows:

| Byte | 0               | 1                     | 2                       | 3                       |  |  |  |  |  |  |  |  |
|------|-----------------|-----------------------|-------------------------|-------------------------|--|--|--|--|--|--|--|--|
| bit  | 0 1 2 3 4 5 6 7 | 8 9 10 11 12 13 14 15 | 16 17 18 19 20 21 22 23 | 24 25 26 27 28 29 30 31 |  |  |  |  |  |  |  |  |
| 0    | Sour            | e Port                | Destination Port        |                         |  |  |  |  |  |  |  |  |
| 4    | UDP Mess        | age Length            | UDP Checksum            |                         |  |  |  |  |  |  |  |  |
| 8    |                 | UDP Payl              | oad Data                |                         |  |  |  |  |  |  |  |  |

| D3 | E4 | 5E | 8E | AC | 07         | 86         | EE | 8D | 24 | 62 | 35 | 08 | 00 | 45 | 51 |
|----|----|----|----|----|------------|------------|----|----|----|----|----|----|----|----|----|
| 00 | 72 | E5 | CE | 78 | 02         | FD         | 93 | 49 | EE | AA | 15 | D0 | 79 | 13 | 1E |
| 18 | 77 | F5 | FB | 0F | 5B         | C1         | E9 | E6 | 4B | E5 | 64 | 2C | FF | 2D | A8 |
| 35 | BF | 99 | D4 | E3 | 11         | 58         | 34 | FE | 49 | 1C | AD | 81 | 82 | D5 | C0 |
| E5 | 6A | CD | FC | 66 | 04         | <b>8</b> E | F8 | 38 | F5 | C2 | BB | 9B | 8B | FD | A7 |
| 18 | 79 | F5 | 6C | 31 | 67         | 93         | 3A | 88 | CD | 79 | C8 | 1F | 91 | 50 | 09 |
| 22 | 3D | 21 | 33 | 32 | 39         | 35         | 3F | 61 | E4 | 5C | 2C | 7B | CC | DB | 4A |
| 45 | 0A | AA | 2F | D2 | <b>0</b> E | E3         | 83 | 8C | B2 | 37 | D0 | A6 | 0A | A4 | E2 |

- a. Find the destination hardware address.
- b. Find the source hardware address.
- c. What type of frame is this?
- d. What is the IP total length?
- e. What is the Identification?
- f. What Flag(s) are set in the IP header?
- g. What is the fragment offset?
- h. What is the TTL count?
- i. What is the IP Header Checksum?
- j. Find the source IP address.
- k. What class is the source IP address?
- 1. What is the network ID in the source IP address?
- m. What is the host ID in the source IP address?
- n. Write the source IP address in dotted decimal notation.
- o. Find the destination IP address.

- p. What class is the destination IP address?
- q. What is the network ID in the destination IP address?
- r. What is the host ID in the destination IP address?
- s. Write the destination IP address in dotted decimal notation.
- t. Can this message be delivered directly by the source to the destination, or will it require routers to handle the message. Explain..
- u. Find the UDP source port.
- v. Find the UDP destination port.
- w. Find the UDP checksum.
- x. Find the UDP Message Length
- y. If the IP header includes no options or padding, what are the first five bytes of the UDP datagram data?