CMP 426/697 Fall 2019 Homework 4 (Due Date: Friday October 25, 2019)

- For question 1, CMP 426 students should do parts (a) (f) and may do part (g) for extra credit.
- For question 1, CMP 697 students should do parts (a) (g).
- For question 2, CMP 426 students and CMP 697 students should answer all parts.

You can type up the answers and submit on Blackboard as a word or pdf file or hand-write them and submit on Blackboard a clear image of them (.jpg or .pdf).

(Question 1). For each part, you will be given a scheduler and a list of processes, with their arrival time and burst time. You should:

i) draw a Gantt Chart showing the order in which the jobs will be run by the CPU and for how long (7 points each)

- ii) compute the average turnaround time (7 points each)
- iii) compute the average response time (7 points each)
- iv) compute the average waiting time (7 points each)
- a) Scheduler: First-in-first-out (FIFO)

Process	Arrival Time	Burst Time
P1	0 ms	8 ms
P2	4 ms	4 ms
P3	10 ms	1 ms

b) Scheduler: First-in-first-out (FIFO)

Process	Arrival Time	Burst Time
P1	0 ms	20 ms
P2	10 ms	50 ms
P3	30 ms	10 ms

c) Scheduler: Non preemptive Shortest Job First(SJF)

Process	Arrival Time	Burst Time
P1	0 ms	20 ms
P2	0 ms	30 ms
P3	10 ms	10 ms
P4	30 ms	40 ms

1) F	1) Preemptive Shortest Job First(Shortest-remaining-time-fi			
	Process	Arrival Time	Burst Time	
	P1	0 ms	20 ms	
	P2	0 ms	30 ms	
	P3	10 ms	10 ms	
	P4	30 ms	40 ms	

d) Preemptive Shortest Job First(Shortest-remaining-time-first)

e) Priority Scheduling (smaller number implies higher priority)

Process	Priority	Burst Time	Arrival Time
P1	40	20	0
P2	30	25	25
P3	30	25	30
P4	35	15	60
P5	5	10	100
P6	10	10	105

f) Round Robin with uses a 10 ms time slice

Process	Arrival Time	Burst Time
P1	0 ms	30 ms
P2	10 ms	40 ms
P3	20 ms	10 ms

g) (for CMP 697, but CMP 426 students may do for extra credit) Scheduler: Multi-Level Feedback Queue (MLFQ) which uses 10ms time slices and 3 queues. Jobs are boosted back to highest priority every 30ms.

Process	Arrival Time	Burst Time
P1	0 ms	50 ms
P2	10 ms	10 ms
P3	20 ms	50 ms

(Question 2). Consider the following set of processes. With the length of the CPU Burst given in milliseconds:

Process	Burst Time	Priority	Arrival Time
P1	2	2	0
P2	1	1	0
P3	8	4	0
P4	4	2	0
P5	5	3	0

The processes are assumed to have arrived in the order P1, P2, P3, P4 P5, all at time 0.

- i) draw a Gantt Charts that illustrates the execution of these processes using the following scheduling algorithms: FCFS, SJF and nonpreemptive priority(a larger number implies a higher priority) and RR (quantum = 2). (5 points each)
- ii) Compute the average turnaround time for each scheduling algorithm from part i) (5 points each)
- iii) Compute the average response time for each scheduling algorithm from part i) (5 points each)
- iv) Compute the average waiting time for each scheduling algorithm from part i) (5 points each)
- v) Which algorithms results in the minimum average waiting time? (5 points)
- vi) Which algorithms results in the minimum average response time? (5 points)
- vii) Which algorithms results in the minimum average turnaround time? (5 points)