Spring 2019 CMP 168 Final Exam V1 124 points total

Name:_____

Date:_____

(24 points / 2 points each)	Trace the code and write	e the result (Write EF	RROR if there is an ERROR)
-----------------------------	--------------------------	------------------------	----------------------------

	Code	Method Call	Results
	<pre>public static int q1(int a, int b) { if (a == 0) { return b;</pre>	q1(4, 2);	
1	<pre>} else if (a < 0) { return b + 3; } else { return q1(a - b, b * 2); }</pre>	q1(6, 2);	
		q1(14, 6);	
		q1(12, 4);	
2	<pre>public static void q2(boolean a,</pre>	q2(true, false, true);	
	<pre>} else if (a && c) { System.out.println("high"); } else if (b && c) { System.out.println("low"); } else if ((a !b) && c) { System.out.println("wrong"); } else { System.out.println("in"); }</pre>	q2(false, false, true);	
		q2(false, true, true);	
	1	q2(true, true, false);	
3	<pre>public static void q3(char[] chars,</pre>	char[] a = {'a', 'e', 'i', 'o', 'u'}; q3(a, 2, 5, 'c');	
	<pre>int index = (1 * j) * 0, try { chars[index] = c; System.out.println("Success!" + c); } catch (IndexOutOfBoundsException e) { System.out.println("No Good!"); } catch (NullPointerException e) { System.out.println("Really Bad!"); } </pre>	char[] a = {'a', 'b', 'c', 'd'}; q3(a, 7, 5, 'o');	
		char[] a = {'x', 'y', 'z'}; q3(a, 8, 4, 'w');	

		char[] a = null; q3(a, 8, 4, 'w')	
--	--	--------------------------------------	--

4 (25 points / 5 points each) Create the Java class Animal that has the following private attributes:

Attribute	name : String	numLegs : int	gender : char

a. Create a default constructor that initializes all 3 attributes to the following values

Attribute	name	numLegs	gender
Default Value	"unknown"	0	ʻu'

b. Create an overloaded constructor that takes in values for all 3 attributes and assigns them.

c. Create getter and setter methods for all 3 attributes.

Getters	Setters

d. Create the **equals** method. Two **Animal** objects are equal when their **numLegs** and **gender** are the same. (Disregard the names)

e. Create the **toString** method so that it returns a well formatted String including all attributes.

5 (20 points / 5 points each) Create the Java class **Giraffe** that inherits from the **Animal** class. The **Giraffe** class has the following **private** attributes:

Attribute	neckLength : int	height : double	foods : String[]
			4

a. Create a **default constructor** that calls the parent constructor and initializes all 3 attributes to the following values

Attribute	neckLength	height	foods
Default Value	0	0.0	Length of 3

b. Create an **overloaded constructor** that takes in values for all 3 attributes as well as the attributes of the parent class' constructor and pass them to the parent constructor or assign them accordingly.

c. Create a **helper method** that determines the equality of two String arrays and returns a boolean, by comparing the value at each index location. Return true if all elements of the arrays matches, return false if there is any mismatch. (Note: this method will be used by the equals method in part e)

private boolean doArraysMatch(String[] a, String[] b) {

}

d. Create a helper method that returns the array of foods as a comma separated String.

private String getFoodsAsString() {
}

e. Create the **equals** method. Remember to include the super class's **equals** method. Two Giraffe objects are equal when all their attributes are the same. (Note: be sure to use the helper method from part c)

f. Create the **toString** method so that it returns a String including all attributes from both the parent and child classes. (Note: be sure to use the helper method from part d)

6 (10 points) Remember the recursive Searching algorithm BinarySearch. Write a recursive method to search for a target character in the array and return the index location if found or -1 if it is not found.

public static int binarySearch(char target, char[] theValues, int firstIndex, int lastIndex) {

}

7 (35 points / 7 points each) Write the code to create a GUI based class **TemperatureConverter** which inherits from **JFrame** and implements the **ActionListerner** interface.

Example: Clicked "F to C" button	Example: Clicked "C to F" button	
 Temperature Converter 82.0 F = 27.78 C 	Temperature Converter 32.0 C = 89.60 F	
82 F to C C to F	32 F to C C to F	

a. Create the **constructor** so that the JButtons have listeners attached, and all components are added to the appropriate JPanel.

b. Create the **getDoubleFromTextField** method that takes in a JTextField and returns the value it contained as a double it should handle exceptions appropriately within the method.

public double getDoubleFromTextField(JTextField jtf) throws Exception {
3

c. Create the method convertTemp that takes in a temperature as a double, and the unit as a char that we are converting from. It should return the converted temperature as a formatted String ("%.2f", tempF

```
+ " F") Of ("%.2f", tempC + " C")
```

Example: convertTemp(100.0, 'C') returns "212.00 F" convertTemp(87.0, 'F') returns "30.56 C"

The conversion formulas are:

}

F = (C * 9.0/5.0) + 32.0C = (F - 32.0) * 5.0/9.0

public String convertTemp(double temperature, char unit) {

d. Create the **actionPerformed** method so that it determines which button was clicked and updates the lblOut with the conversion sentence shown in the example.

e. Create a method addConversionToFile that appends a conversion to an output file named **temperatures.txt** for the examples given in 7c, the file would have:

100.0 C = 212.00 F 87.0 F = 30.56 C

public void addConversionToFile(String conversion) {

}