I0S 7 & Objective C

Objective-C

@ New language to learn!
Strict superset of C
Adds syntax for classes, methods, etc.
A few things to “think differently” about (e.g. properties, dynamic binding)

@ Most important concept to understand today: Properties
Usually we do not access instance variables directly in Objective-C.
Instead, we use “properties.”
A “property” is just the combination of a getter method and a setter method in a class.
The getter (usually) has the name of the property (e.g. “myValue®)
The setters name is “set” plus capitalized property name (e.g. “setMyValue:”)
(To make this look nice, we always use a lowercase letter as the first letter of a property name.)
We just call the setter to store the value we want and the getter to get it. Simple.

@ This is just your first glimpse of this language!
We'll go much more into the details next week.
Dont get too freaked out by the syntax at this point.

2 Files For Every Class

Objective-C

Private Implementation

Header File “.h”

Objective-C

Its superclass.

@interface Card : NSObject

The name
of this class. is the root class from which pretty
much all iOS classes inherit
(including the classes you author yourself).

Dont forget this!

Stanford CS193p

@end Fall 2013

Implementation File “.m”

Objective-C

@interface Card : NSObject @implementation Card

Note, superclass is not specified here.

Stanford CS193p
@end @end Fall 2013

import

Objective-C

@interface Card : NSObject @implementation Card

Card.h

#import <Foundation/NSObject.h>

@end @end

Card.m

Stanford CS193p
Fall 2013

Superclass in i0S

i Objective-C

#import <Foundation/Foundation.h>

If the superclass is in iOS itself, we import the entire
“framework™ that includes the superclass.
In this case, Foundation, which contains basic non-Ul objects like

@interface Care

Stanford CS193p
Fall 2013

@import

Objective-C

Card.h Card.m

@import Foundation;

In fact, in iOS 7 (only), there is special syntax for
importing an entire framework called

@implementation Card

Stanford CS193p
@end @end Fall 2013

Must Import Our Own
Header File

Objective-C

Card.h Card.m
#import <Foundation/Foundation.h> #import "Card.h"
Our own header file must be imported
into our implementation file.
@interface Card : NSObject @implementation Card

Stanford CS193p
@end @end Fall 2013

Private Declarations

Objective-C

Card.m
#import <Foundation/Foundation.h> #import "Card.h"
@interface Card()
Private declarations can go here.
@end
@interface Card : NSObject @implementation Card

Stanford CS193p
@end @end Fall 2013

Our First Property

Objective-C
Card.h Card.m

#import "Card.h"

#import <Foundation/Foundation.h>
@interface Card()

@end

@interface Card : NSObject @implementation Card

@property (strong) NSString *contents;

In iOS, we don’t access instance variables directly.
Instead, we use an which declares two methods:a “setter” and a “getter™.
It is with those two methods that the s instance variable is accessed

(both publicly and privately).

This particular is a pointer.
Specifically, a pointer to an object whose class is (or inherits from)

ALL objects live in the heap (i.e. are pointed to) in Objective-C!
Thus you would never have a property of type “ " (rather,

Because this is in this class’s header file, it is public.

Its setter and getter can be called from outside this class’s block.
Stanford CS193p

Fall 2013

@end @end

strong or weak

Objective-C

Card.h

#import <Foundation/Foundation.h> #import "Card.h"

@interface Card()

@end

@interface Card : NSObject @implementation Card

@property (strong) NSString *contents;

means:
“keep the object that this property points to

in memory until | set this property to (zero)
(and it will stay in memory until everyone who has a
pointer to it sets their property to too)”

would mean:

“if no one else has a pointer to this object,
then you can throw it out of memory
and set this property to
(this can happen at any time)”

@end @end

Card.m

Stanford CS193p
Fall 2013

atomic or nonatomic

Objective-C

Card.h Card.m

#import <Foundation/Foundation.h> #import "Card.h"

@interface Card()

@end

@interface Card : NSObject @implementation Card

@property (strong, nonatomic) NSString *contents;

means:
“access to this property is not thread-safe”.
We will always specify this for object pointers in this course.
If you do not, then the compiler will generate locking code that
will complicate your code elsewhere.

Stanford CS193p

@end @end Fall 2013

synthesize

Objective-C

Card.h

#import <Foundation/Foundation.h>

is the line of code that actually creates the
backing instance variable that is set and gotten.

Notice that by default the backing variable’s name is the same as
the property’s name but with an underbar in front.

@interface Card : NSObject

@property (strong, nonatomic) NSString *contents; @synthesize contents = _contents;

— (NSString *)contents

This is the implementation that the {
compiler generates automatically for you } ST IS
(behind the scenes).
You are welcome to write the setter or getter - (void)setContents: (NSString *)contents
yourself, but this would only be necessary if you {
needed to do something in addition to simply } —contents = contents;

setting or getting the value of the property.

Stanford CS193p
@end @end Fall 2013

Hidden Getter & Setter

Objective-C

#import <Foundation/Foundation.h>

@interface Card : NSObject

@property (strong, nonatomic) NSString kcontents;

@end

#import "Card.h"
@interface Card()

@end

@implementation Card

Because the compiler takes care of
everything you need to implement a

property, it's usually only one line of code
(the declaration)
to add one to your class.

Stanford CS193p
@end Fall 2013

Primitive Properties

i Objective-C

#import <Foundation/Foundation.h> #import "Card.h"

@interface Card()

Notice no or here.
Primitive types are not stored in the heap, so there’s no need to
@i specify how the storage for them in the heap is treated. entation Card

@property (strong,®nonatomic) NSString *contents;

@property (nonatomic) BOOL chosen; Let’s look at some more properties.
@property (nonatomic) BOOL matched; These are not pointers.

They are simple .

Properties can be
)/ C type. C does not define a “boolean” type.
Thatincludes This is an Objective-C typedef.

,etc.,even C It's values are o1
structs.

Stanford CS193p
@end @end Fall 2013

Behind The Scenes

Objective-C

Card.h Card.m

#import <Foundation/Foundation.h> #import "Card.h"
@interface Card()
@end

@interface Card : NSObject @implementation Card

@property (strong, nonatomic) NSString xcontents; @synthesize chosen = _chosen;

@synthesize matched = _matched;
@property (nonatomic) BOOL chosen;

@property (nonatomic) BOOL matched; — (BOOL) chosen
{

return _chosen; R . .
} Here’s what the compiler is

— (void)setChosen: (BOOL)chosen doing behind the scenes for
{ these two properties.

_chosen = chosen;

(BOOL)matched
return _matched;
(void)setMatched: (BOOL)matched

_matched = matched;

e IR

Stanford CS193p
@end @end Fall 2013

Change Getter Name

Objective-C
Card.h Card.m

#import "Card.h"

#import <Foundation/Foundation.h>

It is actually possible to change the name of the getter that is
generated. The only time you'll ever see that done in this class

@interface Card : NSO (or anywhere probably) is boolean getters.

@synthesize chosen = _chosen;
@synthesize matched = _matched;

@property (strong, nonatomic) NSS§tring xcontents;

@property (nonatomic, getter=isChosen) BOOL chosen;
@property (nonatomic, getter=isMatched) BOOL matched; - (BOOL)isChosen Note change in getter method.

{

}
— (void)setChosen: (BOOL)chosen
{

return _chosen;

This is done simply to make

_chosen = chosen;

— (BOOL)isMatched Note change in getter method.
{

return _matched;

the code “read” a little bit nicer.
You'll see this in action later.

(void)setMatched: (BOOL)matched
_matched = matched;

Stanford CS193p
@end @end Fall 2013

Getter & Setter
Still Hidden

Objective-C

Card.h Card.m

#import <Foundation/Foundation.h> #import "Card.h"

@interface Card()
@end
@interface Card : NSObject @implementation Card
@property (strong, nonatomic) NSString xcontents;

@property (nonatomic, getter=isChosen) BOOL chosen;
@property (nonatomic, getter=isMatched) BOOL matched;

Remember, unless you need to do something besides setting or

getting when a property is being set or gotten,
the implementation side of this will all happen automatically for you.

Stanford CS193p
@end @end Fall 2013

Public Method
Declaration

Objective-C

Card.h Card.m

#import <Foundation/Foundation.h> #import "Card.h"

@interface Card()
@end
@interface Card : NSObject @implementation Card

SR Enough properties for now.
@prope Let’s take a look at defining methods.

@prope

— (int)match:(Card %*)card;

Here’s the declaration of a public
method called match: which takes one
argument (a pointer to a Card) and

returns an integer.

What makes this method public?
Because we've declared it in the header file.

Stanford CS193p
@end @end Fall 2013

Public Method
Implementation

Objective-C

#import <Foundation/Foundation.h>

@interface Card : NSObject
@property (strong, nonatomic) NSString *contents;

@property (nonatomic, getter=isChosen) BOOL chosen;
@property (nonatomic, getter=isMatched) BOOL matched;

— (int)match:(Card *)card;

Here’s the declaration of a public
method called match: which takes one

argument (a pointer to a Card) and
returns an integer.

@end

#import "Card.h"
@interface Card()

@end

@implementation Card

— (int)match: (Card *)card

{
int score = 0;
match: is going to return a “score” which says how good a match
the passed card is to the Card that is receiving this message.
0 means “no match”, higher numbers mean a better match.
return score;
}

Stanford CS193p
@end Fall 2013

Call A Method With

[] or.

Objective-C

Card.h

#import <Foundation/Foundation.h>

@interface Card : NSObject
@property (strong, nonatomic) NSString *contents;

@property (nonatomic, getter=isChosen) BOOL chosen;
@property (nonatomic, getter=isMatched) BOOL matched;

— (int)match:(Card %*)card;

@end

Card.m
#import "Card.h"

@interface Card()
@end

@implementation Card

There’s a lot going on here!

For the first time, we are seeing the
“calling” side of properties (and methods).

— (int)match: (Card %x)card

{
int score = 0;
if ([card.contents isEqualToString:self.contents]) {
score = 1;
}
For this example, we'll return 1 if the passed card has
return score; .
} the same contents as we do or @ otherwise

(you could imagine more complex scoring).

Stanford CS193p
@end Fall 2013

o »”

. Notation For Getters
and Setters Only

Objective-C

Card.h Card.m

#import <Foundation/Foundation.h> #import "Card.h"

@interface Card()

@end
Notice that we are calling the “getter” for
the contents
@property (strong, nonatomic) NSString kcontents; (both on our and on the passed card).
This calling syntax is called “dot notation.”
It’s only for setters and getters.

@interface Card : NSObject @implementation Card

@property (nonatomic, getter=isChosen) BOOL chosen;
@property (nonatomic, getter=isMatched) BOOL matched;

— (int)match:(Card *)card; — (int)match:(Card * d
{

int score = 0;

if ([card.contents isEqualToString:self.contents]) {
score = 1;
¥

return score;

Stanford CS193p
@end @end Fall 2013

“[1” Notation For Everything Else

Objective-C

Card.h Card.m

#import <Foundation/Foundation.h> #import "Card.h"

@interface Card()

Recall that the contents @end

property is an

@interface Card : NSObject @implementation Card

@property (strong, nonatomic) NSString *contents;

@property (nonatomic, getter=isChosen) BOOL chosen;
@property (nonatomic, getter=isMatched) BOOL matched;

- (int)match:(Card %)card; — (int)match:(Card x)card is an method
{ which takes another as an argument and

int score = 0; returns a (if the 2 strings are the same).

if ([card.contents isEqualToString:self.contents]) {
core = 1;

Also, we see the “square bracket™ notation we use to

send a message to an object.
In this case, the message is being sent
to the returned by the contents getter.

Stanford CS193p
@end @end Fall 2013

Match Multiple Cards
Declaration

Objective-C

Card.h Card.m

#import <Foundation/Foundation.h> #import "Card.h"

@interface Card()
@end
@interface Card : NSObject @implementation Card
@property (strong, nonatomic) NSString xcontents;

@property (nonatomic, getter=isChosen) BOOL chosen;
@property (nonatomic, getter=isMatched) BOOL matched;

— (int)match: (NSArray x)otherCards; — (int)match: (NSArray *)otherCards

{

int scope = 0;

([card.contents isEqualToString:self.contents]) {
We could make match: even more powerful by score = 1;

allowing it to match against multiple cards by passing an
array of cards using the class in Foundation.

return score;

Stanford CS193p
@end @end Fall 2013

Match Multiple Cards
Implementation

Objective-C

#import <Foundation/Foundation.h> #import "Card.h"
@interface Card()
@end

ELnteriacERtand i RN ot S8 - We'll implement a very simple match scoring system here which is

match the receiving Card’s contents.
(You could imagine giving more points if multiple cards match.)

@property (nonatomic, getter=isChosen) BOOL chosen;
@property (nonatomic, getter=isMatched) BOOL matched;

— (int)match: (NSArray x)otherCards; — (int)match: (NSArray x)otherCards
{

int score = 0;

for (Card xcard in otherCards) {
if ([card.contents isEqualToString:self.contents]) {
score = 1;

¥

Note the - - | looping syntax here.
This is called “fast enumeration.”
It works on arrays, dictionaries, etc.

return score;

Stanford CS193p
@end @end Fall 2013

Deck Class

Objective-C

#import <Foundation/Foundation.h> #import "Deck.h"

Deck.h

@interface Deck()

@interface Deck : NSObject
@end

@implementation Deck

@end

Let’s look at another class.

This one represents a deck of cards.

@end

Deck.m

Stanford CS193p
Fall 2013

Methods With Multiple Arguments

Objective-C

#import <Foundation/Foundation.h> #import "Deck.h"

Deck.h Deck.m

@interface Deck()
@interface Deck : NSObject
@end

— (void)addCard: (Card *)card atTop:(BOOL)atTop;
@implementation Deck

— (Card *)drawRandomCard;
Note that this method has 2 arguments
(and returns nothing).

It’s called “addCard:atTop:".

@end

And this one takes no arguments and returns a Card
(i.e.a pointer to an instance of a Card in the heap).

Stanford CS193p
@end Fall 2013

Must Import Card.h

Objective-C

Deck.h

#import <Foundation/Foundation.h> #import "Deck.h"
#import "Card.h"

We must the header file for

any class we use in this file (e.g. Card). e Jis il

@interface Deck : NSObject

@end

- (void)addCard: (Card *)card atTop:(BOOL)atTop;
@implementation Deck

— (Card *)drawRandomCard;

@end

Stanford CS193p
@end Fall 2013

Define Methods in Deck.m

Objective-C

#import <Foundation/Foundation.h> #import "Deck.h"
#import "Card.h"

@interface Deck()
@interface Deck : NSObject

@end
— (void)addCard: (Card x)card atTop: (BOOL)atTop;

@implementation Deck
— (Card *)drawRandomCard;

@end

(void)addCard: (Card %)card atTop:(BOOL)atTop

(Card %)drawRandomCard { }
Stanford CS193p
@end Fall 2013

No Optional Arguments

Objective-C

#import <Foundation/Foundation.h> #import "Deck.h"
#import "Card.h"

Deck.m

Deck.h

Arguments to methods
@interface Deck : NSObject (||ke the atTop: argument)
are never “optional.”

- (void)addCard: (Card *)card atTop:(BOOL)atTop;

@implementation Deck

— (Card *)drawRandomCard;

@end

(void)addCard: (Card %)card atTop:(BOOL)atTop

(Card %)drawRandomCard { }
Stanford CS193p
@end Fall 2013

Can Define A New addCard Method
With One Argument

Objective

D e Ne
#import <Foundation/Foundation.h> #import "Deck.h"

#import "Card.h"

@interface Deck : NSObject e atTop: arg -

— (void)addCard: (Card *)card atTop:(BOOL)atTop; ALILSF UG

— (void)addCard: (Card %*)card; @implementation Deck

— (Card *)drawRandomCard; oweve e want an addCard

@end el AL LU RALAS

(void)addCard: (Card %x)card atTop: (BOOL)atTop

(Card %x)drawRandomCard { }
Stanford CS193p
@end Fall 2013

Implement New AddCard Method

Objective-C

#import "Deck.h"

Deck.h

#import <Foundation/Foundation.h>
#import "Card.h"

Arguments to methods
@interface Deck : NSObject (Iike the atTop: argument)

— (void)addCard: (Card *x)card atTop: (BOOL)atTop; A= lisds optlonal.

— (void)addCard: (Card *)card; @implementation Deck

- (Card x)drawRandomCard; However, if we want an addCard:
method without atTop:, we can

d
3 define it separately.

- (void)addCard: (Card x)card atTop:(BOOL)atTop

{
}
— (void)addCard: (Card *)card
And then simply implement it in t
[self addCard:card atTop:NO];
terms of the the other method. } -

— (Card x)drawRandomCard { }
Stanford CS193p

@end Fall 2013

Need Storage To Hold Cards

Objective-C

#import <Foundation/Foundation.h> #import "Deck.h"
#import "Card.h"

@interface Deck()
@interface Deck : NSObject

@end
— (void)addCard: (Card x)card atTop:(BOOL)atTop;
— (void)addCard: (Card x)card; @implementation Deck

— (Card *)drawRandomCard;

@end

A deck of cards obviously needs some

storage to keep the cards in. — (void)addCard: (Card %x)card atTop:(BOOL)atTop

{

We need an for that.

But we don’t want it to be public

(since it’s part of our private, internal
implementation).
}
- (void)addCard: (Card *)card
{
[self addCard:card atTop:NO];

}

— (Card %)drawRandomCard { }
Stanford CS193p
@end Fall 2013

Define The Cards Array As Private
Property

Objective-C

#import <Foundation/Foundation.h> #import "Deck.h"
#import "Card.h"

Deck.m

@interface Deck()
@interface Deck : NSObject @property (strong, nonatomic) NSMutableArray *cards; // of Card
@end
- (void)addCard: (Card *)card atTop:(BOOL)atTop;
— (void)addCard: (Card *)card; @implementation Deck

So we put the declaration we

— (Card *)drawRandomCard; need here in our

@end

A deck of cards obviously needs some

storage to keep the cards in. — (void)addCard: (Card x)card atTop:(BOOL)atTop

{

We need an for that.

But we don’t want it to be public

(since it’s part of our private, internal
implementation).
}
- (void)addCard: (Card *)card
{
[self addCard:card atTop:NO];

}

— (Card %)drawRandomCard { }
Stanford CS193p
@end Fall 2013

Implement addCard:atTop:

iy Objective-C

#import <Foundation/Foundation.h> #import "Deck.h"
#import "Card.h"

Deck.m

@interface Deck()

@interface Deck : NSObject @property (strong, nonatomic) NSMutableArray xcards; // of Card
@end

— (void)addCard: (Card *)card atTop:(BOOL)atTop;

— (void)addCard: (Card x)card; @implementation Deck

- (Card *)drawRandomCard; Now that we have a property to store our cards in,
@end let’s take a look at a sample implementation of the

addCard:atTop: method.

(void)addCard: (Card x)card atTop:(BOOL)atTop

if (atTop) {

[self.cards insertObject:card atIndex:0];
}oelse {

[self.cards addObject:card];
¥

el — (void)addCard: (Card %)card

ELRRF and these are methods.

(insertObject:atIndex: and addObject:).
(Card x)drawRandomCard { }

Stanford CS193p
@end Fall 2013

When Does (cards *) Property Get
Allocated?

Sy Objective-C

#import <Foundation/Foundation.h> #import "Deck.h"
#import "Card.h"

Deck.m

@interface Deck()

@interface Deck : NSObject @property (strong, nonatomic) NSMutableArray xcards; // of Card
@end

— (void)addCard: (Card *)card atTop: (BOOL)atTop;

— (void)addCard: (Card *)card; @implementation Deck

— (Card *)drawRandomCard;

@end

But there’s a problem here.

When does the object pointed to by the pointer — (void)addCard: (Card *)card atTop:(BOOL)atTop
returned by .cards ever get created? {
if (atTop) {
[self.cards insertObject:card atIndex:0];
} else {
[self.cards addObject:card];
¥

} Declaring a makes
space in the instance for the

— (void)addCard:(Card x)card pointer itself, but not does not

{ .
[self addCard:card atTop:NO]; a"ocgte Shacs "!the he%p for the
} object the pointer points to.

— (Card %)drawRandomCard { }
Stanford CS193p
@end Fall 2013

Getter For (cards *) Property

Objective-C

Deck.h

#import <Foundation/Foundation.h> #import "Deck.h"
#import "Card.h"

Deck.m

@interface Deck()

@interface Deck : NSObject @property (strong, nonatomic) NSMutableArray xcards; // of Card
@end

— (void)addCard: (Card *)card atTop:(BOOL)atTop;

— (void)addCard: (Card *)card; @implementation Deck

— (Card x)drawRandomCard; — (NSMutableArray x)cards

. S— {
@end The place to put this needed heap allocation is return _cards;
in the getter for the cards) }

- (void)addCard: (Card %)card atTop:(BOOL)atTop

{
if (atTop) {
[self.cards insertObject:card atIndex:0];
} else {
[self.cards addObject:card];
¥
¥
- (void)addCard: (Card x)card
{
[self addCard:card atTop:NO];
¥

— (Card %)drawRandomCard { }
Stanford CS193p
@end Fall 2013

Lazy Instantiation In Getter

Ay Objective-C

#import <Foundation/Foundation.h> #import "Deck.h"
#import "Card.h"

Deck.m

@interface Deck()

@interface Deck : NSObject @property (strong, nonatomic) NSMutableArray xcards; // of Card
@end
- (void)addCard: (Card x)card atTop:(BOOL)atTop; _ We'll talk about allocating and
— (void)addCard: (Card *)card; @implementation Deck initializing objects TS (N
- (Card *)drawRandomCard; - (NSMutableArray *)cards here’s a simple way to do it.
The pl his needed heap allocation is W I
@end e place to put this needed heap allocation is if (!_cards) _cards = [[NSMutableArray alloc] initl];
in the getter for the cards h return _cards;
¥

— (void)addCard: (Car@ x)card atTop:(BOOL)atTop

{
if (atTop) All properties start out with a value of 0
y elize}f. (called for pointers to objects).
PRTR So all we need to do is allocate and initialize the object if
} the pointer to it is
} This is called “lazy instantiation™.
ISP, Now you can start to see the usefulness of a
{
[self addCard:card atTop:NO];
}

— (Card %)drawRandomCard { }
Stanford CS193p
@end Fall 2013

Now addCard:atTop: Will Work

Objective-C

Deck.h

#import <Foundation/Foundation.h> #import "Deck.h"
#import "Card.h"

Deck.m

@interface Deck()

@interface Deck : NSObject @property (strong, nonatomic) NSMutableArray xcards; // of Card
— (void)addCard: (Card x)card atTop:(BOOL)atTop; S

— (void)addCard: (Card *)card; @implementation Deck

— (Card *)drawRandomCard; — (NSMutableArray x)cards

@end { if (! _cards) _cards = [[NSMutableArray allocl initl;

return _cards;

}

- (void)addCard: (Card %)card atTop:(BOOL)atTop
{
if (atTop) {
[self.cards insertObject:card atIndex:0];

Now the cards property will always at

least be an empty mutable array, so this } else {
code will always do what we want. - [self.cards addObject:card];
}
- (void)addCard: (Card *)card
i [self addCard:card atTop:NO];

— (Card %)drawRandomCard { }
Stanford CS193p
@end Fall 2013

Collapse Code To Make Room

Deck.h

Objective-C

#import <Foundation/Foundation.h>
#import "Card.h"

@interface Deck : NSObject

— (void)addCard: (Card %)card atTop:(BOOL)atTop;
— (void)addCard: (Card x)card;

— (Card *)drawRandomCard;

@end

Let’s collapse the code we've written

so far to make some space.

#import "Deck.h"

@interface Deck()

@property (strong, nonatomic) NSMutableArray *cards; // of Card
@end

@implementation Deck

— (NSMutableArray *)cards

if (! _cards) _cards = [[NSMutableArray alloc] initl;
return _cards;

(void)addCard: (Card x)card atTop:(B0OOL)atTop { =}
(void)addCard: (Card x)card {2}

(Card %)drawRandomCard

Stanford CS193p
@end Fall 2013

drawRandomCard: Returns A (Card *)

Objective-C

#import <Foundation/Foundation.h> #import "Deck.h"
#import "Card.h"

Deck.h Deck.m

@interface Deck()

@interface Deck : NSObject @property (strong, nonatomic) NSMutableArray xcards; // of Card
— (void)addCard: (Card x)card atTop:(BOOL)atTop; S

— (void)addCard: (Card x)card; @implementation Deck

— (Card x)drawRandomCard; — (NSMutableArray x)cards

@end ! if (! _cards) _cards = [[NSMutableArray alloc] initl;

return _cards;

(void)addCard: (Card x)card atTop:(BOOL)atTop { ==}
(void)addCard:(Card *)card {2}

(Card %)drawRandomCard

{
Card xrandomCard = nil;
drawRandomCard simply grabs a card from a
random spot in our . cards array.
return randomCard;
¥

Stanford CS193p
@end Fall 2013

Implement drawRandomCard:

Objective-C

Deck.h

#import <Foundation/Foundation.h> #import "Deck.h"
#import "Card.h"

Deck.m

@interface Deck()

@interface Deck : NSObject @property (strong, nonatomic) NSMutableArray *cards; // of Card
@end
— (void)addCard: (Card %)card atTop:(BOOL)atTop;
— (void)addCard: (Card x)card; @implementation Deck
— (Card x)drawRandomCard; — (NSMutableArray *)cards
{
@end if (! _cards) _cards = [[NSMutableArray alloc] initl;
return _cards;
¥

(void)addCard: (Card %)card atTop:(BOOL)atTop { ==}
(void)addCard:(Card x)card {2}

(Card %)drawRandomCard

arc4random() returns'a random integer. This is the C modulo operator.

unsigned index = arc4random() % [self.cards countl;
randomCard = self.cards[index];
[self.cards removeObjectAtIndex:index];

return randomCard; These square brackets actually are the
} equivalent of sending the message
objectAtIndexedSubscript: to the array. SRPNSSSRGSEER

@end Fall 2013

Protect Against An Empty Array

A Objective-C

#import <Foundation/Foundation.h> #import "Deck.h"
#import "Card.h"

Deck.m

@interface Deck()

@interface Deck : NSObject @property (strong, nonatomic) NSMutableArray xcards; // of Card
@end
— (void)addCard: (Card x)card atTop:(BOOL)atTop;
— (void)addCard: (Card x)card; @implementation Deck
— (Card x)drawRandomCard; — (NSMutableArray x)cards
{
@end if (! _cards) _cards = [[NSMutableArray alloc] initl;
return _cards;
¥

(void)addCard: (Card %x)card atTop:(BOOL)atTop {2}
(void)addCard:(Card x)card {2}

(Card %)drawRandomCard

Card xrandomCard = nil;

if ([self.cards count]) {
Calling objectAtIndexedSubscript: with an unsigned index = arc4random() % [self.cards countl;

argument of zero on an empty array will crash andomCard = self.cards[index];
(array index out of bounds)! [self.cards removeObjectAtIndex:index];

So let’s protect against that case. return randomCard;

Stanford CS193p
@end Fall 2013

Create A Subclass of Card

Objective-C

PlayingCard.h PlayingCard.m

Let’s see what it’s like to make a subclass of one of our own classes.
In this example, a subclass of Card specific to a playing card (e.g. A®).

Stanford CS193p
Fall 2013

Make Sure To Have Correct Imports

PlayingCard.h

#import "Card.h"

@interface PlayingCard : Card

Of course we must

And

Objective-C

#import "PlayingCard.h"

@implementation PlayingCard

our superclass.

our own header file in our implementation file.

@end

PlayingCard.m

Stanford CS193p
Fall 2013

Define The Properties

Objective-C

PlayingCard.h PlayingCard.m

#import "Card.h" #import "PlayingCard.h"
@interface PlayingCard : Card @implementation PlayingCard

@property (strong, nonatomic) NSString ksuit;
@property (nonatomic) NSUInteger rank;

A PlayingCard has some properties that a
el vanilla Card doesn’t have.

Namely, the PlayingCard’s suit and rank.

Stanford CS193p

@end Fall 2013

More About PlayingCard Properties

Objective-C
PlayingCard.h PlayingCard.m

#import "Card.h"

#import "PlayingCard.h"

@interface PlayingCard : Card @implementation PlayingCard

@property (strong, nonatomic) NSString xsuit;

S (oer o)) S ni e fore We'll represent the suit as an that simply

contains a single character corresponding to the suit
(i.e. one of these characters: # ¥ §).
If this propertyis | it'll mean “suit not set”.

@end
We'll represent the rank as an integer from

0 (rank not set) to 13 (a King).

is a typedef for an unsigned integer.

We could just use the C type unsigned int here.
It's mostly a style choice.
Many people like to use and in public API
and unsigned int and int inside implementation.
But be careful, int is 32 bits, might be 64 bits.
If you have an that is really big (i.e.> 32 bits worth)
it could get truncated if you assign it to an int.
Probably safer to use one or the other everywhere.

Stanford CS193p
@end Fall 2013

Override The Getter For
contents Property

Objective-C

PlayingCard.h PlayingCard.m

#import "Card.h" #import "PlayingCard.h"
@interface PlayingCard : Card @implementation PlayingCard

@property (strong, nonatomic) NSString %suit; [— (NSString *)contents
@property (nonatomic) NSUInteger rank; {

return [N6String stringWithFormat:@"%d%@", self.rank, self.suitl;
@end

Users of our PlayingCard class might well simply
access suit and rank properties directly.
But we can also support our superclass’s contents
property by overriding the getter to return a

suitable (no pun intended)

Even though we are overriding the implementation of
the method, we are not
re-declaring the contents property in our header file.
WEe'll just inherit that declaration from our superclass.

Stanford CS193p
@end Fall 2013

stringWithFormat Method

Objective-C

PlayingCard.h PlayingCard.m

#import "Card.h" #import "PlayingCard.h"
@interface PlayingCard : Card @implementation PlayingCard — .

The method stringWithFormat: is an
@property (strong, nonatomic) NSString *suit; fl - (NSString *)contents P““hoétm“35°rt°f"keushgthe
@property (nonatomic) NSUInteger rank; { C function printf to create the string.

return [NSString stringWithFormat:@"%d%@", self.rank, self.suitl;

@end

Note we are creating an here
in a different way than alloc/init.

We'll see more about “class methods” like
stringWithFormat:a little later.

Users of our PlayingCard class might well simply
access suit and rank properties directly.
But we can also support our superclass’s contents
property by overriding the getter to return a

suitable (no pun intended)

Even though we are overriding the implementation of
the method, we are not
re-declaring the contents property in our header file.
We'll just inherit that declaration from our superclass.

Stanford CS193p
@end Fall 2013

Limitation of Current Implementation

Objective-C

PlayingCard.h PlayingCard.m

#import "Card.h" #import "PlayingCard.h"

@interface PlayingCard : Card @implementation PlayingCard
Calling the getters of our two properties

@property (strong, nonatomic) NSString xsuit; — (NSString *)contents (rank and suit) on our
@property (nonatomic) NSUInteger rank;

return [NSString stringWithFormat:@"%d%@", self.rank, self.suitl;

@end

But this is a pretty bad representation of the card
(e.g., it would say instead of and instead of

Stanford CS193p
@end Fall 2013

A Fix To The Problem

Objective-C

PlayingCard.h PlayingCard.m

#import "Card.h" #import "PlayingCard.h"
@interface PlayingCard : Card @implementation PlayingCard
@property (strong, nonatomic) NSString xsuit; @ — (NSString %*)contents
@property (nonatomic) NSUInteger rank; {
NsArray *rankStrings = @ [@ll?ll'@IIAII'@IIZII'@lI3II ooao '@Illoli'@llJll'@llQll ’@IIKII] :
return [rankStrings[self.rank] stringByAppendingString:self.suit];
+
@end We'll create an of s, each of which

corresponds to a given rank.
Again, @ will be “rank not set” (so we’'ll use ?).
11,12 and 13 will be J Q K and 1 will be A.

Then we'll create our “| #” string by appending
(with the method)

the suit onto the end of the string we get by
looking in the array.

Stanford CS193p
@end Fall 2013

More About @

Objective-C
PlayingCard.h PlayingCard.m

#import "Card.h"

#import "PlayingCard.h"

@interface PlayingCard : Card @implementation PlayingCard

Notice the notation to create an array.

@property (strong, nonatomic) NSString xsuit;

- (NSString *)contents
@property (nonatomic) NSUInteger rank; {

NsArray *ranKStringS = @[@Il?ll’@IIAII'@IIZII'@II3II' .. .'@Illoll,@llJll'@llQll’@IIKII] ;
return [rankStrings[self.rank] stringByAppendingString:self.suit];

end , . . .
£ Here’s the array-accessing [] notation again

(like we used with .cards earlier).

Also note the notation to create a (constant)

All of these notations are converted into normal message-sends by the compiler.
For example, ... is [[NSArray allocl soolk
rankStrings[self.rank] is [rankStrings self.rank].

Stanford CS193p
Fall 2013

Modify suit Getter To Return “?”
When Not Set

Objective-C

PlayingCard.h PlayingCard.m

#import "Card.h" #import "PlayingCard.h"
@interface PlayingCard : Card @implementation PlayingCard
@property (strong, nonatomic) NSString *suit; — (NSString %*)contents
@property (nonatomic) NSUInteger rank; {

NSArray *rankStrings = @[@II?II'@IIAII'@IIZII,@II3II' . .'@Illall'@llJll'@lloll'@IIKII] :
return [rankStrings[self.rank] stringByAppendingString:self.suit];

@end
This is nice because a “not yet set” rank shows up as 7.

But what about a “not yet set” suit?
Let’s override the getter for suit to make a suit of return ?.

Yet another nice use for properties versus direct instance variables.

— (NSString *)suit
{

}

return _suit ? _suit : @"?";

Stanford CS193p
@end Fall 2013

Modify suit Setter To Protect Against
Invalid Content

Objective-C

PlayingCard.h PlayingCard.m

#import "Card.h" #import "PlayingCard.h"
@interface PlayingCard : Card @implementation PlayingCard
@property (strong, nonatomic) NSString *suit; — (NSString *)contents

@property (nonatomic) NSUInteger rank;
NsArray *rankStringS = @[@ll?'l'@IIAII'@Ilzll'@II3II' e .'@Illall'@llJll'@iloll'@IIKII] ;
return [rankStrings[self.rank] stringByAppendingString:self.suit];

@end

Let’s take this a little further and override the setter for suit to have it
check to be sure no one tries to set a suit to something invalid.

— (void)setSuit: (NSString *)suit

if ([@l@"v",@"¢",@"+",@"%"] containsObject:suit]) {
_suit = suit;

¥
b
— (NSString *)suit
{
return _suit ? _suit : @"?";
¥

Stanford CS193p
@end Fall 2013

Sending Message To An NSArray
Created by @[]

Objective-C

PlayingCard.h PlayingCard.m

#import "Card.h" #import "PlayingCard.h"
@interface PlayingCard : Card @implementation PlayingCard
@property (strong, nonatomic) NSString *suit; — (NSString %*)contents
@property (nonatomic) NSUInteger rank; {

NSArray *rankstrings = @ [@u?u '@IIAII '@uzu '@113“ - ,@“10" ,@"J" '@IIQII '@IIKII] ;
return [rankStrings[self.rank] stringByAppendingString:self.suit];

@end
Notice that we can embed the array
creation as the target of this message send.
We're simply sending to
the array created by the

— (void)setSuit: (NSString *)suit

{

if ([@l@"e",@"+",@"+",@"+"] containsObject:suit]) {

_suit = suit;

¥

b .
is

— (NSString *)suit method.
{

return _suit ? _suit : @"?";
}

Stanford CS193p
@end Fall 2013

Problem With Implementing BOTH The
Setter And The Getter For A Property

Objective-C

PlayingCard.h PlayingCard.m

#import "Card.h" #import "PlayingCard.h"
@interface PlayingCard : Card @implementation PlayingCard
@property (strong, nonatomic) NSString *suit; — (NSString *)contents
@property (nonatomic) NSUInteger rank; {

NSArray *rankStrings = @[@"?",@"A",@"2",@"3",...,@"10",@"J3",@"Q",@"K"];
return [rankStrings[self.rank] stringByAppendingString:self.suit];
But there’s a problem here now. b
A compiler warning will be generated
if we do this.
Why?

@end

Because if you implement BOTH the
setter and the getter for a property,
then you have to create the instance

variable for the property yourself. — (void)setSuit: (NSString *)suit
{

if ([el@"e",@"+",@"+",@"%"] containsObject:suit]) {
_suit = suit;
¥
}

— (NSString *)suit
{

return _suit ? _suit : @"?";

Stanford CS193p
@end Fall 2013

Must Synthesize The suit Property

Objective-C

PlayingCard.h PlayingCard.m

#import "Card.h" #import "PlayingCard.h"
@interface PlayingCard : Card @implementation PlayingCard
@property (strong, nonatomic) NSString *suit; — (NSString *)contents
@property (nonatomic) NSUInteger rank; {

NSArray *rankstl‘ings = @ [@u ?u '@"A" '@nzn '@ll 3:- A, ,@“10“ '@an ’@uou '@"K"] :
return [rankStrings[self.rank] stringByAppendingString:self.suit];

But there’s a problem here now. b
@end A compller v;armr:ig v::l be generated @synthesize suit = _suit; // because we provide setter AND getter
if we do this.
Why?
Because if you implement BOTH the Luckily, the compiler can help with this If you implement only the setter OR
- 2 . the getter (or neither), the compiler
setter and the getter for a property, using the directive. T e
then you have to create the instance
variable for the property yourself. — (void)setSuit: (NSString *)suit
{
if ([@I@"v",@"+",@"+",@"%"] containsObject:suit]) {
_suit = suit;
}
}
— (NSString *)suit
{
return _suit ? _suit : @"?";
¥

Stanford CS193p
@end Fall 2013

Only Access PropertyName From
Setter & Getter

Objective-C

PlayingCard.h PlayingCard.m

#import "Card.h" #import "PlayingCard.h"
@interface PlayingCard : Card @implementation PlayingCard
@property (strong, nonatomic) NSString ksuit; — (NSString *)contents
@property (nonatomic) NSUInteger rank; {

NSArray *rankst rings = @ [@u ?II '@IIAII '@llzll ’@||3|l i '@“10" '@IIJII ,@uou '@IIKII] :
return [rankStrings[self.rank] stringByAppendingString:self.suit];
ks

@end @synthesize suit = _suit; // because we provide setter AND getter

You should only ever access the instance variable directly ...

— (void)setSuit: (NSString *)suit

C ...in the property’s setter ...

if ([el@"*", @ sue@

_suit = suit;

containsObject:suit]) {

b ... In its getter ...

— (NSString *)suit
{

...or in an initializer (more on this later).

return _suit ? _suit : @"?";

Stanford CS193p
@end Fall 2013

Class Methods

Objective-C

PlayingCard.h PlayingCard.m

#import "Card.h" #import "PlayingCard.h"
@interface PlayingCard : Card @implementation PlayingCard
@property (strong, nonatomic) NSString *suit; — (NSString *)contents
@property (nonatomic) NSUInteger rank; {

NsArray *rankStringS = @ [@II?II ’@IIAII'@IIZII,@II3II’ . '@Illoll '@IIJII '@IIOII ,@IIKII] ;
return [rankStrings[self.rank] stringByAppendingString:self.suit];
¥

@end @synthesize suit = _suit; // because we provide setter AND getter

All of the methods we've seen so far
are “instance methods”.
They are methods sent to instances of a class.
But it is also possible to create methods {
that are sent to the class itself. if (lel@"e",@"+",@"+",@"+"] containsObject:suitl]) {
Usually these are either creation methods } _suit = suit;
(like or)
or utility methods.

— (void)setSuit: (NSString x)suit

}

— (NSString *)suit
{

return _suit ? _suit : @"?";

Stanford CS193p
@end Fall 2013

Our First Class Method

Objective-C
PlayingCard.h PlayingCard.m

#import "Card.h" #import "PlayingCard.h"

@interface PlayingCard : Card @implementation PlayingCard

@property (strong, nonatomic) NSString xsuit; J§ — (NSString %*)contents
@property (nonatomic) NSUInteger rank;
NsArray *rankStrings = @[@ll?ll'@IIAII'@IIZII'@lI3II' .. .'@Illoli'@llJll'@llQll'@IIKII] :

Tt) return [rankStrings[self.rank] stringByAppendingString:self.suit];

Instance methods start with —
@synthesize suit = _suit; // because we provide setter AND getter

. - + (NSArray *)validSuits : : :
Here’s an example of a class utility method c Since a class method is not sent to.an .msmnce. we
cannot reference our properties in here

which returns an of the s return _ . :
which are valid suits (e.g. & & V¥ .and Q) } (since properties represent per-instance storage).

— (void)setSuit: (NSString *)suit
{
if ([@[@"v",@"¢",@"+",@"%"] containsObject:suit]) {
_suit = suit;

}

}

— (NSString *)suit
{

}

return _suit ? _suit : @"?";

Stanford CS193p
@end Fall 2013

Move The NSArray To The validSuits
Method

Objective-C

PlayingCard.h PlayingCard.m

#import "Card.h" #import "PlayingCard.h"
@interface PlayingCard : Card @implementation PlayingCard
@property (strong, nonatomic) NSString xsuit; J§ — (NSString %*)contents
@property (nonatomic) NSUInteger rank; {

NsArray *rankStrings = @[@ll?'l’@llAll'@llzll’@ll3ll' .. .'@Illoll,@ilJ.l'@llQll'@IIKII] ;
return [rankStrings[self.rank] stringByAppendingString:self.suit];
It

@end @synthesize suit = _suit; // because we provide setter AND getter

. o + (NSArray x)validSuits
Here'’s an example of a class utility method {

which returns an of the s return @[@"V",@"¢",@"4",@"%"];
which are valid suits (e.g. #, e, ¥ and 9). ¥

— (void)setSuit: (NSString *)suit

We actually already have the array
of valid suits, so let’s just move that
up into our new class method.

{
if (I containsObject:suit]) {
_suit = suit;
¥
Y
— (NSString *)suit
{
return _suit ? _suit : @"?";
¥

Stanford CS193p
@end Fall 2013

Call validSuits From The Setter

Objective-C

PlayingCard.h PlayingCard.m

#import "Card.h" #import "PlayingCard.h"
@interface PlayingCard : Card @implementation PlayingCard
@property (strong, nonatomic) NSString xsuit; — (NSString %*)contents
@property (nonatomic) NSUInteger rank; {

NSArray *I"ankstrings = @ [@u ?Il '@IIAII '@nzn '@u 3:- . ,@“10" '@IIJII ’@uou ’@IIKII] ;
return [rankStrings[self.rank] stringByAppendingString:self.suitl];
¥

@end @synthesize suit = _suit; // because we provide setter AND getter

+ (NSArray x)validSuits
{ See how the name of the class appears in

y return @l@"v”,@"¢",@"s",@"s"1; the place you'd normally see a pointer to
an instance of an object?

— (void)setSuit: (NSString x)

Now let’s invoke our new if ([[PlayingCard validSuits] containsObject:suit]) {
class method here. _suit = suit;

¥

¥

— (NSString *)suit
{

It
Stanford CS193p
@end Fall 2013

return _suit ? _suit : @"?";

Notice How A Class Method Is Invoked

Objective-C

PlayingCard.h PlayingCard.m

#import "Card.h" #import "PlayingCard.h"
@interface PlayingCard : Card @implementation PlayingCard
@property (strong, nonatomic) NSString xsuit; — (NSString *)contents

@property (nonatomic) NSUInteger rank;
NSArray *rankStrings = @ [@Il?ll'@IIAII'@IlZII’@II3II' s '@Illall,@llJll'@llQII ’@IIKII] ;
return [rankStrings[self.rank] stringByAppendingString:self.suit];

¥

@end @synthesize suit = _suit; // because we provide setter AND getter

+ (NSArray x)validSuits
{ See how the name of the class appears in

return @l@"v”,@"e", @ 4", "s"1; the place you'd normally see a pointer to
an instance of an object?

¥
— (void)setSuit: (NSString x)

Now let’s invoke our new if ([[PlayingCard validSuits] containsObject:suit]) {
class method here. _suit = suit;
}

It'd probably be instructive to go back and look at the invocation of

}

) . the class method a few slides ago.
— (NSString *)suit B -~ =
Also, make sure you understand that above
return _suit ? _suit is not a class method, it is an instance method.

¥
Stanford CS193p
@end Fall 2013

You Can Make A Class Method Public

Objective-C

PlayingCard.h PlayingCard.m

#import "Card.h" #import "PlayingCard.h"
@interface PlayingCard : Card @implementation PlayingCard
@property (strong, nonatomic) NSString xsuit; — (NSString %*)contents
@property (nonatomic) NSUInteger rank; {
NSArray *ranKStrings = @[@II?II'@IIAII'@IIZII,@II3II' e .'@lllall'@llJll’@lloll'@IIKII] ;

+ (NSArray x)validSuits; return [rankStrings[self.rank] stringByAppendingString:self.suit];

¥
@end @synthesize suit = _suit; // because we provide setter AND getter

. + (NSArray *)validSuits
The class method might be { y

useful to users of our PlayingCard class, return @[@"e",@"¢",@"+",@"*"];
so let’s make it public. b

— (void)setSuit: (NSString *)suit

{
if ([[PlayingCard validSuits] containsObject:suitl]) {
_suit = suit;
¥
¥
— (NSString *)suit
{
return _suit ? _suit : @"?";
¥

Stanford CS193p
@end Fall 2013

Collapse Methods To Make Room

Objective-C

PlayingCard.h PlayingCard.m

#import "Card.h" #import "PlayingCard.h"
@interface PlayingCard : Card @implementation PlayingCard
@property (strong, nonatomic) NSString *suit; — (NSString *)contents
@property (nonatomic) NSUInteger rank; {
NSArray *rankSt rings = @[@II ?II'@IIAII,@IIZII ’@II3II 5000 '@Il 10!!,@!IJII,@IIQII'@IIKII] ;

+ (NSArray x)validSuits; return [rankStrings[self.rank] stringByAppendingString:self.suit];

ks
@end @synthesize suit = _suit; // because we provide setter AND getter

+ (NSArray x)validSuits {2}
— (void)setSuit: (NSString *)suit {==}
— (NSString *)suit {2}

Stanford CS193p
@end Fall 2013

Our Second Class Method

Objective-C

PlayingCard.h PlayingCard.m

#import "Card.h" #import "PlayingCard.h"
@interface PlayingCard : Card @implementation PlayingCard
@property (strong, nonatomic) NSString xsuit; — (NSString %*)contents
@property (nonatomic) NSUInteger rank; {
NSArray xrankStrings =
+ (NSArray x)validSuits; return [rankStrings[self.rank] stringByAppendingString:self.suitl];
¥
@end @synthesize suit = _suit; // because we provide setter AND getter

+ (NSArray *)validSuits {:==}
— (void)setSuit: (NSString x)suit {=}
(NSString *)suit {2}

’ + (NSA *) rankStri
Let’s move our other array c (NSArray *)rankStrings

(the strings of the ranks) return @[@ll?ll'@llAll,@llzll'@|l3ll' [,@lllell,@llJ.l’@’lQll'@llKll] ;
into a class method too. b

Stanford CS193p
@end Fall 2013

Invoke Our New Class Method

Objective-C

PlayingCard.h PlayingCard.m

#import "Card.h" #import "PlayingCard.h"

@interface PlayingCard : Card @implementation PlayingCard And now let’s call
] that class method.

@property (strong, nonatomic) NSString xsuit; J§ — (NSString %*)contents

@property (nonatomic) NSUInteger rank;
NSArray xrankStrings = [PlayingCard rankStrings];

+ (NSArray x)validSuits; return [rankStrings[self.rank] stringByAppendingString:self.suit];
¥
@end @synthesize suit = _suit; // because we provide sef@er AND getter
+ (NSArray x)validSuits {2}
— (void)setSuit:(NSString *)suit {2} Note that we are not
— (NSString *x)suit {G=} required to declare this earlier

We'll leave this one private d .
in the file than we use it.

because the public API for (NSArray *)rankStrings

iy
the rank is purely numeric. return @l@"?",@"A",@"2",@" 3", ...,@"10",@"3",@"q",@"k"1 ;

Stanford CS193p
@end Fall 2013

Our Third Class Method Is Also Public

Objective-C

PlayingCard.h PlayingCard.m

#import "Card.h" #import "PlayingCard.h"
@interface PlayingCard : Card @implementation PlayingCard
@property (strong, nonatomic) NSString *suit; — (NSString *)contents
@property (nonatomic) NSUInteger rank; {
NSArray xrankStrings = [PlayingCard rankStringsl;
+ (NSArray x)validSuits; return [rankStrings[self.rank] stringByAppendingString:self.suit];
+ (NSUInteger)maxRank; ks
@end @synthesize suit = _suit; // because we provide setter AND getter

+ (NSArray %x)validSuits {2}
— (void)setSuit: (NSString *)suit {==}
(NSString *)suit {2}

+ (NSArray x)rankStrings
{
return @ [@Il ?Il'@llAll'@llzll '@113" R '@II 10u '@an ,@"Q" '@IIKII] ;
}
But here’s another class
method that might be good + (NSUInteger)maxRank { return [[self rankStrings] countl-1; }

to make public.

So we'll add it to the header file.

Stanford CS193p
@end Fall 2013

Use Our New Class Method In The
rank Setter

Objective-C

PlayingCard.h PlayingCard.m

#import "Card.h" #import "PlayingCard.h"
@interface PlayingCard : Card @implementation PlayingCard
@property (strong, nonatomic) NSString *suit; — (NSString %*)contents
@property (nonatomic) NSUInteger rank; {
NSArray xrankStrings = [PlayingCard rankStringsl;
+ (NSArray *x)validSuits; return [rankStrings[self.rank] stringByAppendingString:self.suit];
+ (NSUInteger)maxRank; }
@end @synthesize suit = _suit; // because we provide setter AND getter

+ (NSArray x)validSuits {2}
— (void)setSuit: (NSString x)suit {=}
(NSString *)suit {2}

(NSArray x)rankStrings

-+

return @ [@ll?ll,@IIAII,@IIZI"@"3", - ,@“10“,@"‘]" ,@"Q",@“K"] ;

(NSUInteger)maxRank { return [[self rankStrings] countl-1; }

And, finally, let’s use maxRank inside the

(void)setRank: (NSUInteger) rank
setter for the rank to make sure

the rank is never set to an improper value. if (rank <= [PlayingCard maxRank]) {
_rank = rank;

}

Stanford CS193p
@end Fall 2013

That’s It For PlayingCard

Objective-C

PlayingCard.h PlayingCard.m

#import "Card.h" #import "PlayingCard.h"
@interface PlayingCard : Card @implementation PlayingCard
@property (strong, nonatomic) NSString *suit; — (NSString %*)contents
@property (nonatomic) NSUInteger rank; {
NSArray *rankStrings = [PlayingCard rankStringsl];
+ (NSArray x)validSuits; return [rankStrings[self.rank] stringByAppendingString:self.suit];
+ (NSUInteger)maxRank; +
@end @synthesize suit = _suit; // because we provide setter AND getter

+ (NSArray x)validSuits {:=}
— (void)setSuit: (NSString x)suit {=}
(NSString *)suit {2}

That's it for our PlayingCard. 1{L (SAray P IEnkSEEngs
It’s a good example of array return @[@II?II,@IlAII,@II2I',@II3II, R '@Illell'@llJll,@llQll,@llKll] ;
notation, , class b

methods, and using getters and
setters for validation.

+ (NSUInteger)maxRank { return [[self rankStrings] countl-1; }

— (void)setRank: (NSUInteger) rank
if (rank <= [PlayingCard maxRank]) {

_rank = rank;

Stanford CS193p
@end Fall 2013

PlayingCardDeck Inherits From Deck

PlayingCardDeck.h

#import "Deck.h"
@interface PlayingCardDeck : Deck

@end

Let’s look at one last class.
This one is a subclass of Deck and
represents a full 52-card deck of
PlayingCards.

Objective-C

#import "PlayingCardDeck.h"

@implementation PlayingCardDeck

PlayingCardDeck.m

Stanford CS193p
Fall 2013

PlayingCardDeck Overrides init

PlayingCardDeck.h

#import "Deck.h"
@interface PlayingCardDeck : Deck

@end

It appears to have no public API,

but it is going to override a
method that Deck inherits from
NSObject called

will contain everything
necessary to initialize a
PlayingCardDeck.

Objective-C

#import "PlayingCardDeck.h"

@implementation PlayingCardDeck

PlayingCardDeck.m

Stanford CS193p
Fall 2013

Objective-C
PlayingCardDeck.h PlayingCardDeck.m

#import "Deck.h" #import "PlayingCardDeck.h"

@interface PlayingCardDeck : Deck
@implementation PlayingCardDeck

@end
- (instancetype)init

{

Initialization in Objective-C happens immediately after allocation.
We always nest a call to init around a call to alloc.
e.g.Deck *myDeck = [[PlayingCardDeck |
or NSMutableArray *cards = [[NSMutableArray

Classes can have more complicated initializers than just plain“init”
(e.g. initWithCapacity: or some such).
We'll talk more about that next week as well.

Stanford CS193p
Fall 2013

Instancetype

Objective-C
PlayingCardDeck.h PlayingCardDeck.m

#import "Deck.h" #import "PlayingCardDeck.h"

@interface PlayingCardDeck : Deck

@implementation PlayingCardDeck
@end

- (instancetype)init

{

Notice this weird “return type” of instancetype.
It basically tells the compiler that this method returns an

object which will be the same type as the object that this
message was sent to.
We will pretty much only use it for init methods.
Don’t worry about it too much for now.
But always use this return type for your init methods.

Stanford CS193p
Fall 2013

Only Time You Assign To self

Objective-C
PlayingCardDeck.h PlayingCardDeck.m

#import "Deck.h" #import "PlayingCardDeck.h"

@interface PlayingCardDeck : Deck
@implementation PlayingCardDeck

@end
- (instancetype)init

{

self = [super initl;

ST LR This sequence of code might also seem weird.

Especially an assignment to !

This is the ONLY time you would ever assign something to
The idea here is to return if you cannot initialize this object.
But we have to check to see if our class can initialize itself.
The assignment to is a bit of protection against our trying to
continue to initialize ourselves if our class couldn’t initialize.
Just always do this and don’t worry about it too much.

}

return self;

}

@end

Stanford CS193p
Fall 2013

Objective-C
PlayingCardDeck.h PlayingCardDeck.m

#import "Deck.h" #import "PlayingCardDeck.h"

Sending a message to is how

@implementation PlayingCardDeck we send a message’ t? ourselves, !’Ut
@end use our superclass’s implementation
- (instancetype)init instead of our own.

Standard object-oriented stuff.

@interface PlayingCardDeck : Deck

{

self = [super initl;

if (self) {

}

return self;

Stanford CS193p
Fall 2013

Iterate Through Suits & Ranks

Objective-C
PlayingCardDeck.h PlayingCardDeck.m

#import "Deck.h" #import "PlayingCardDeck.h"

@interface PlayingCardDeck : Deck
@implementation PlayingCardDeck

@end
— (instancetype)init

{

self = [super init];

if (self) {
The implementation of init is quite simple. for (NSString suit in [PlayingCard validSuitsl) {

We'll just iterate through all the suits and for (NSUInteger rank = 1; rank <= [PlayingCard maxRankl; rank++) {
then through all the ranks in that suit ...

return self;

}

@end

Stanford CS193p
Fall 2013

alloc & init A PlayingCard

Objective-C
PlayingCardDeck.h PlayingCardDeck.m

#import "Deck.h" #import "PlayingCardDeck.h"

@interface PlayingCardDeck : Deck

@implementation PlayingCardDeck
@end

— (instancetype)init

{

self = [super init];

if (self) {
for (NSString xsuit in [PlayingCard validSuits]) {
for (NSUInteger rank = 1; rank <= [PlayingCard maxRank]l; rank++) {
Then we will allocate and initialize PlayingCard *card = [[PlayingCard alloc] initl];

a PlayingCard card.rank = rank;
and then set its suit and rank. card.suit = suit;

We never implemented an init
method in PlayingCard, so it just
inherits the one from :
Even so, we must always call an
init method after alloc.

return self;

Stanford CS193p
Fall 2013

Add The Card To The Deck

Objective-C
PlayingCardDeck.h PlayingCardDeck.m

#import "Deck.h" #import "PlayingCardDeck.h"

#import "PlayingCard.h"
@interface PlayingCardDeck : Deck

@implementation PlayingCardDeck
@end

— (instancetype)init

{

self = [super init];

if (self) {
for (NSString xsuit in [PlayingCard validSuits]) {

for (NSUInteger rank = 1; rank <= [PlayingCard maxRank]l; rank++) {
PlayingCard *card = [[PlayingCard alloc] initl];
card.rank = rank;
Finally we just add each PlayingCard card.suit = suit;

we create to our [self addCard:card];

(we are a Deck, remember).

return self;

Stanford CS193p
Fall 2013

That’s It For PlayingCardDeck

Objective-C
PlayingCardDeck.h PlayingCardDeck.m

#import "Deck.h" #import "PlayingCardDeck.h"

#import "PlayingCard.h"
@interface PlayingCardDeck : Deck

@implementation PlayingCardDeck
@end

— (instancetype)init

{

self = [super init];

if (self) {
for (NSString xsuit in [PlayingCard validSuits]) {

for (NSUInteger rank = 1; rank <= [PlayingCard maxRank]; rank++) {
PlayingCard *card = [[PlayingCard alloc] initl];
card.rank = rank;
card.suit = suit;
[self addCard:card];

And that’s it!
return self; We inherit everything else we need to
be a Deck of cards
(like the ability to drawRandomCard)
from our superclass.

}

@end

Stanford CS193p
Fall 2013

Key References

All slides in this presentation were imported
from:

CS193P: iPhone Application Development.
This course was taught at Stanford University,
Fall 2013, by Paul Hegarty.

The course and all of its accompanying material
is available on iTunes U.

