PlayingCardDeck Class

PlayingCardDeck Inherits From Deck

PlayingCardDeck.h

#import "Deck.h"
@interface PlayingCardDeck : Deck

@end

Let’s look at one last class.
This one is a subclass of Deck and
represents a full 52-card deck of
PlayingCards.

Objective-C

#import "PlayingCardDeck.h"

@implementation PlayingCardDeck

PlayingCardDeck.m

PlayingCardDeck Overrides init

PlayingCardDeck.h

#import "Deck.h"
@interface PlayingCardDeck : Deck

@end

It appears to have no public API,

but it is going to override a
method that Deck inherits from
NSObject called

will contain everything
necessary to initialize a
PlayingCardDeck.

Objective-C

#import "PlayingCardDeck.h"

@implementation PlayingCardDeck

PlayingCardDeck.m

INnit

Objective-C
PlayingCardDeck.h | PlayingCardDeck.m

#import "Deck.h" #import "PlayingCardDeck.h"

@interface PlayingCardDeck : Deck

@implementation PlayingCardDeck
@end

- (instancetype)init

{

Initialization in Objective-C happens immediately after allocation.
We always nest a call to init around a call to alloc.
e.g.Deck xmyDeck = [[PlayingCardDeck 1]
or NSMutableArray xcards = [[NSMutableArray 1

Classes can have more complicated initializers than just plain “init™
(e.g initWithCapacity: or some such).
We'll talk more about that next week as well.

- callan init method immediately after calling
alloc to make space in the heap for that new object.
| And call alloc without immediately calling some

Instancetype

Objective-C

PlayingCardDeck.h

#import "Deck.h" #import "PlayingCardDeck.h"

PlayingCardDeck.m

@interface PlayingCardDeck : Deck

@implementation PlayingCardDeck
@end

- (instancetype)init

{

Notice this weird “return type” of instancetype.

It basically tells the compiler that this method returns an
object which will be the same type as the object that this
message was sent to.

We will pretty much only use it for init methods.
Don’t worry about it too much for now.

But always use this return type for your init methods.

Only Time You Assign To self

Objective-C
PlayingCardDeck.h PlayingCardDeck.m

#import "Deck.h" #import "PlayingCardDeck.h"

@interface PlayingCardDeck : Deck

@implementation PlayingCardDeck
@end

- (instancetype)init

{

self = [super initl;
1 (self) o This sequence of code might also seem weird.
Especially an assignment to !
This is the ONLY time you would ever assign something to
The idea here is to return if you cannot initialize this object.
But we have to check to see if our class can initialize itself.
The assignment to is a bit of protection against our trying to
continue to initialize ourselves if our class couldn’t initialize.

¥ Just always do this and don’t worry about it too much.

return self;

}

@end

Objective-C
PlayingCardDeck.h ‘ PlayingCardDeck.m

#import "Deck.h" #import "PlayingCardDeck.h"
Sending a message to is how
@implementation PlayingCardDeck we send a message to ourselves, but
@end use our superclass’s implementation
- (instancetype)init instead of our own.

@interface PlayingCardDeck : Deck

{ - -
il = [z Srals Standard object-oriented stuff.

if (self) {

}

return self;

}

@end

Iterate Through Suits & Ranks

PlayingCardDeck.h

#import "Deck.h"
@interface PlayingCardDeck : Deck

@end

The implementation of init is quite simple.

We'll just iterate through all the suits and
then through all the ranks in that suit ...

Objective-C

#import "PlayingCardDeck.h"

@imp

= {(al

{

}

@end

PlayingCardDeck.m

lementation PlayingCardDeck
nstancetype)init

self = [super init];

if (self) {

for (NSString %suit in [PlayingCard validSuits]) {
for (NSUInteger rank = 1; rank <= [PlayingCard maxRank]; rank++) {

return self;

alloc & init A PlayingCard

Objective-C
PlayingCardDeck.h | PlayingCardDeck.m

#import "Deck.h" #import "PlayingCardDeck.h"

@interface PlayingCardDeck : Deck

@implementation PlayingCardDeck
@end

— (instancetype)init

{

self = [super init];

if (self) {
for (NSString %suit in [PlayingCard validSuits]) {
for (NSUInteger rank = 1; rank <= [PlayingCard maxRank]; rank++) {
Then we will allocate and initialize PlayingCard xcard = [[PlayingCard alloc] initl;

a PlayingCard card.rank = rank;
and then set its suit and rank. card.suit = suit;

We never implemented an init
method in PlayingCard, so it just
inherits the one from
Even so, we must always call an
init method after alloc.

return self;

Add The Card To The Deck

Objective-C
PlayingCardDeck.h ' PlayingCardDeck.m

#import "Deck.h" #import "PlayingCardDeck.h"

#import "PlayingCard.h"
@interface PlayingCardDeck : Deck

@implementation PlayingCardDeck
@end

— (instancetype)init

{

self = [super init];

if (self) {
for (NSString %suit in [PlayingCard validSuits]) {
for (NSUInteger rank = 1; rank <= [PlayingCard maxRank]; rank++) {
PlayingCard *card = [[PlayingCard alloc]l initl;
card.rank = rank;
Finally we just add each PlayingCard card.suit = suit;
we create to our [self addCard:card];

(we are a Deck, remember).

return self;

That’s It For PlayingCardDeck

Objective-C
PlayingCardDeck.h | PlayingCardDeck.m

#import "Deck.h" #import "PlayingCardDeck.h"
#import "PlayingCard.h"
@interface PlayingCardDeck : Deck

@implementation PlayingCardDeck
@end

— (instancetype)init
{

self = [super initl;

if (self) {
for (NSString *suit in [PlayingCard validSuits]) {
for (NSUInteger rank = 1; rank <= [PlayingCard maxRankl; rank++) {
PlayingCard xcard = [[PlayingCard alloc] initl;
card.rank = rank;
card.suit = suit;
[self addCard:card];

And that’s it!
return self; We inherit everything else we need to
b be a Deck of cards
@end (like the ability to drawRandomCard)
from our superclass.

Key References

Paul Hegarty
CS193P: iPhone Application Development.

