
© 2011 Pearson Addison-Wesley. All rights reserved 15 A-1

 Chapter 15

	

External Methods	

© 2011 Pearson Addison-Wesley. All rights reserved 15 A-2

A Look At External Storage
•  External storage	

–  Exists beyond the execution period of a program	

–  Generally, there is more external storage than internal

memory	

•  Sequential access file	

–  To access the data, you must advance the file window
beyond all the intervening data	

–  Resembles a linked list	

•  Random access file	

–  Data can be accessed at a given position directly	

–  Resembles an array	

–  Essential for external tables	

© 2011 Pearson Addison-Wesley. All rights reserved 15 A-3

A Look At External Storage

Figure 15-1
Internal and external memory

© 2011 Pearson Addison-Wesley. All rights reserved 15 A-4

A Look At External Storage

•  A file consists of data records	

–  Records are organized into one or more blocks	

•  The number of records in a block is a function of the size of
the records	

•  Random access file	

–  All input and output is at the block level	

•  Buffer	

–  A location that temporarily stores data as it makes its

way from one process or location to another	

–  Used while transferring data between internal and

external memory	

© 2011 Pearson Addison-Wesley. All rights reserved 15 A-5

A Look At External Storage

Figure 15-2
A file partitioned into blocks of records

© 2011 Pearson Addison-Wesley. All rights reserved 15 A-6

A Look At External Storage

•  Once the system has read a block into the buffer
buf, the program can process the records in the
block	

•  If the program modifies the records in buf, it
must write buf back out to dataFile

•  The number of block accesses should be reduced
as much as possible	

–  Block access time is the dominant factor when

considering an algorithm’s efficiency	

© 2011 Pearson Addison-Wesley. All rights reserved 15 A-7

Sorting Data in An External File

•  The challenge with sorting data in an external file	

–  An external file is too large to fit into internal memory

all at once	

–  Sorting algorithms presented earlier in the book assume

that all the data to be sorted is available at one time in
internal memory	

•  Solution	

–  Use a modified version of mergesort	

© 2011 Pearson Addison-Wesley. All rights reserved 15 A-8

Sorting Data in An External File

•  External mergesort	

–  Phase 1	

•  Read a block from F (data file to be sorted) into internal
memory, sort its records by using an internal sort, and write the
sorted block out to F1 (a work file) before reading the next
block from F	

•  Repeat the above step for all the blocks of F	

–  Phase 2 (a sequence of merge steps)	

•  Each merge step 	

–  Merges pairs of sorted runs to form larger sorted runs	

–  Doubles the number of blocks in each sorted run	

–  Halves the total number of sorted runs	

•  At the end	

–  F1 will contain all the records of the original file in sorted order	

© 2011 Pearson Addison-Wesley. All rights reserved 15 A-9

Sorting Data in An External File

Figure 15-3
a) 16 sorted runs, 1
block each, in file F1;
b) 8 sorted runs, 2
blocks each, in file F2;
c) 4 sorted runs, 4
blocks each, in file F1;
d) 2 sorted runs, 8
blocks each, in file F2

© 2011 Pearson Addison-Wesley. All rights reserved 15 A-10

External Tables

•  External implementation of the ADT table	

–  Records are stored in search-key order	

•  The file can be traversed in sorted order	

•  Main advantage	

–  A binary search can be used to locate the block that
contains a given search key	

•  Main disadvantage	

– tableInsert and tableDelete operations can

require many costly block accesses due to the need to shift
records	

© 2011 Pearson Addison-Wesley. All rights reserved 15 A-11

External Tables

Figure 15-5
Shifting across block boundaries

© 2011 Pearson Addison-Wesley. All rights reserved 15 A-12

Indexing An External File
•  An index (or index file)	

–  Used to locate items in an external data file	

–  Contains an index record for each record in the data file	

Figure 15-6
A data file with an index

© 2011 Pearson Addison-Wesley. All rights reserved 15 A-13

Indexing An External File

•  An index record has two parts	

–  A key contains the same value as the search key of its

corresponding record in the data file	

–  A pointer shows the number of the block in the data file

that contains the data record	

•  Advantages of an index file	

–  An index file can often be manipulated with fewer
block accesses than would be needed to manipulate the
data file	

–  Data records do not need to be shifted during insertions
and deletions	

–  Allows multiple indexing	

© 2011 Pearson Addison-Wesley. All rights reserved 15 A-14

Indexing An External File
•  A simple scheme for organizing the index file	

–  Store index records sequentially	

Figure 15-7
A data file with a sorted index file

© 2011 Pearson Addison-Wesley. All rights reserved 15 A-15

Indexing An External File

•  Storing index records sequentially	

–  tableRetrieve operation	

•  Can be performed by using a binary search on the index file	

–  tableInsert and tableDelete operations	

•  Require only the shifting of index records, not data records	

–  Benefits of shifting index records rather than data records	

»  Reduction in the maximum number of block accesses
required	

»  Reduction in the time requirement for a single shift	

–  More efficient than having a sorted data file	

–  Not as efficient as using hashing or search trees to

organize the index file	

© 2011 Pearson Addison-Wesley. All rights reserved 15 A-16

External Hashing
•  The index file, not the data file, is hashed	

–  Each entry table[i] is associated with a linked list of blocks of
the index file	

–  Each block of table[i]’s linked list contains index records
whose keys hash into location i

–  To form the linked list, space must be reserved in each block for a
block pointer	

•  A block pointer is the integer block number of the next block in the
chain	

Figure 15-9
A single block with a pointer

© 2011 Pearson Addison-Wesley. All rights reserved 15 A-17

External Hashing

Figure 15-8
A hashed index file

© 2011 Pearson Addison-Wesley. All rights reserved 15 A-18

External Hashing

•  Retrieval under external hashing of an index file	

–  Apply the hash function to the search key	

–  Find the first block in the chain of index blocks (these

blocks contain index records that hash into location i)	

–  Search for the block with the desired index record	

–  Retrieve the data item, if present	

© 2011 Pearson Addison-Wesley. All rights reserved 15 A-19

External Hashing

•  Insertion under external hashing of an index file	

–  Step 1: Insert the data record into the data file	

•  New record can be inserted anywhere in the data file	

–  Step 2: Insert a corresponding index record into the

index file	

•  For an index record that has key value searchKey and

reference value p	

–  Apply the hash function to searchKey, letting	

»  i = h(searchKey)
–  Insert the index record < searchKey, p> into the chain of

blocks that the entry table[i] points to	

© 2011 Pearson Addison-Wesley. All rights reserved 15 A-20

External Hashing

•  Deletion under external hashing of an index file	

–  To delete the data record whose search key is
searchKey

•  Step 1: Search the index file for the corresponding index record	

–  Apply the hash function to searchKey, letting	

»  i = hash(searchKey)
–  Search the chain of index blocks pointed to by the entry
table[i] for an index record whose key value equals
searchKey	

–  If an index record < searchKey, p> is found	

»  Note the block number p
»  Delete the index record	

© 2011 Pearson Addison-Wesley. All rights reserved 15 A-21

External Hashing

•  Deletion under external hashing of an index file	

–  To delete the data record whose search key is
searchKey

–  Step 2: Delete the data record from the data file	

•  Access the block p	

•  Search the block for the record	

•  Delete the record	

•  Write the block back to the file	

© 2011 Pearson Addison-Wesley. All rights reserved 15 A-22

External Hashing

•  External hashing implementation	

–  Should be chosen for performing the following

operations on a large external table	

• tableRetrieve
• tableInsert
• tableDelete

–  Not practical for some operations, such as	

•  Sorted traversal	

•  Retrieval of the smallest or largest item	

•  Range queries that require ordered data	

© 2011 Pearson Addison-Wesley. All rights reserved 15 B-23

B-Trees
•  To organize the index file as an external search tree	

–  Use block numbers for child pointers	

•  A child pointer value of –1 is used as the null pointer	

Figure 15-10a
a) Blocks organized into a 2-3 tree

© 2011 Pearson Addison-Wesley. All rights reserved 15 B-24

B-Trees

•  If the index file is organized into a 2-3 tree	

–  Each node would contain	

•  Either one or two index records, each of the form 	

 <key, pointer>

•  Three child pointers	

Figure 15-10b
b) a single node of the 2-3 tree

© 2011 Pearson Addison-Wesley. All rights reserved 15 B-25

B-Trees

•  An external 2-3 tree is adequate, but an
improvement is possible	

•  To improve efficiency	

–  Allow each node to have as many children as possible	

•  In an external environment, the advantage of keeping a search
tree short far outweighs the disadvantage of performing extra
work at each node	

•  Block size should be the only limiting factor for the number of
children	

© 2011 Pearson Addison-Wesley. All rights reserved 15 B-26

B-Trees

•  Binary search tree	

–  If a node N has two children, it must contain one key

value	

•  2-3 tree	

–  If a node N has three children, it must contain two key
values	

•  General search tree	

–  If a node N has m children, it must contain m – 1 key

values	

© 2011 Pearson Addison-Wesley. All rights reserved 15 B-27

B-Trees

Figure 15-11
a) A node with two children; b) a node with three children; c) a node with m
children

© 2011 Pearson Addison-Wesley. All rights reserved 15 B-28

B-Trees

•  B-tree of degree m	

–  All leaves are at the same level	

–  Nodes	

•  Each node contains between m – 1 and [m/2] records	

•  Each internal node has one more child than it has records	

•  Exception: The root can contain as few as one record and can

have as few as two children	

–  Example	

•  A 2-3 tree is a B-tree of degree 3	

© 2011 Pearson Addison-Wesley. All rights reserved 15 B-29

B-Trees

Figure 15-13
A B-tree of degree 5

© 2011 Pearson Addison-Wesley. All rights reserved 15 B-30

B-Trees

•  Insertion into a B-tree	

–  Step 1: Insert the data record into the data file	

–  Step 2: Insert a corresponding index record into the

index file	

© 2011 Pearson Addison-Wesley. All rights reserved 15 B-31

B-Trees

Figure 15-14a and b
The steps for inserting 55

© 2011 Pearson Addison-Wesley. All rights reserved 15 B-32

B-Trees

Figure 15-14c-e
The steps for inserting 55

© 2011 Pearson Addison-Wesley. All rights reserved 15 B-33

B-Trees

•  Deletion from a B-tree	

–  Step 1: Locate the index record in the index file	

–  Step 2: Delete the data record from the data file	

© 2011 Pearson Addison-Wesley. All rights reserved 15 B-34

B-Trees

Figure 15-15a and b
The steps for deleting 73

© 2011 Pearson Addison-Wesley. All rights reserved 15 B-35

B-Trees

Figure 15-15c
The steps for deleting 73

© 2011 Pearson Addison-Wesley. All rights reserved 15 B-36

B-Trees

Figure 15-15d
The steps for deleting 73

© 2011 Pearson Addison-Wesley. All rights reserved 15 B-37

B-Trees

Figure 15-15e and f
The steps for deleting 73

© 2011 Pearson Addison-Wesley. All rights reserved 15 B-38

Traversals

•  Accessing only the search key of each record, not
the data file	

–  Not efficiently supported by the hashing

implementation	

–  Efficiently supported by the B-tree implementation	

•  The search keys can be visited in sorted order by using an
inorder traversal of the B-tree	

•  Accessing the entire data record	

–  Not efficiently supported by the B-tree implementation	

© 2011 Pearson Addison-Wesley. All rights reserved 15 B-39

Multiple Indexing

•  Advantage	

–  Allows multiple data organizations	

•  Disadvantage	

–  More storage space	

–  Additional overhead for updating each index whenever

the data file is modified	

© 2011 Pearson Addison-Wesley. All rights reserved 15 B-40

Multiple Indexing

Figure 15-16
Multiple index files

© 2011 Pearson Addison-Wesley. All rights reserved 15 B-41

Summary

•  An external file is partitioned into blocks	

–  Each block typically contains many data records	

–  A block is generally the smallest unit of transfer

between internal and external memory	

•  In a random access file, the ith block can be

accessed without accessing the blocks that precede
it	

•  A modified mergesort algorithm can be used to
sort an external file of records	

© 2011 Pearson Addison-Wesley. All rights reserved 15 B-42

Summary

•  An index to a data file is a file that contains an
index record for each record in the data file	

•  The index file can be organized using either
hashing or a B-tree	

–  These schemes allow you to perform the basic table

operations by using only a few block accesses	

•  Several index files can be used with the same data

file to perform different types of operations
efficiently	

