
© 2011 Pearson Addison-Wesley. All rights reserved 14 A-1

 Chapter 14

	

	
 	
Graphs	

© 2011 Pearson Addison-Wesley. All rights reserved 14 A-2

Terminology

•  G = {V, E}	

•  A graph G consists of two sets	

–  A set V of vertices, or nodes	

–  A set E of edges 	

•  A subgraph	

–  Consists of a subset of a graph’s vertices and a subset

of its edges	

•  Adjacent vertices	

–  Two vertices that are joined by an edge	

© 2011 Pearson Addison-Wesley. All rights reserved 14 A-3

Terminology

Figure 14-2
a) A campus map as a graph; b) a subgraph

© 2011 Pearson Addison-Wesley. All rights reserved 14 A-4

Terminology

•  A path between two vertices	

–  A sequence of edges that begins at one vertex and ends

at another vertex	

–  May pass through the same vertex more than once	

•  A simple path	

–  A path that passes through a vertex only once	

•  A cycle	

–  A path that begins and ends at the same vertex	

•  A simple cycle	

–  A cycle that does not pass through a vertex more than

once	

© 2011 Pearson Addison-Wesley. All rights reserved 14 A-5

Terminology

•  A connected graph	

–  A graph that has a path between each pair of distinct

vertices	

•  A disconnected graph	

–  A graph that has at least one pair of vertices without a
path between them	

•  A complete graph	

–  A graph that has an edge between each pair of distinct

vertices	

© 2011 Pearson Addison-Wesley. All rights reserved 14 A-6

Terminology

Figure 14-3
Graphs that are a) connected; b) disconnected; and c) complete

© 2011 Pearson Addison-Wesley. All rights reserved 14 A-7

Terminology

•  Multigraph	

–  Not a graph	

–  Allows multiple edges between vertices	

Figure 14-4
a) A multigraph is not a graph; b)

a self edge is not allowed in a

graph

© 2011 Pearson Addison-Wesley. All rights reserved 14 A-8

Terminology
•  Weighted graph	

–  A graph whose edges have numeric labels	

Figure 14-5a
a) A weighted graph

© 2011 Pearson Addison-Wesley. All rights reserved 14 A-9

Terminology
•  Undirected graph	

–  Edges do not indicate a direction	

•  Directed graph, or diagraph	

–  Each edge is a directed edge	

Figure 14-5b
b) A directed graph

© 2011 Pearson Addison-Wesley. All rights reserved 14 A-10

Terminology

•  Directed graph	

–  Can have two edges between a pair of vertices, one in

each direction	

–  Directed path	

•  A sequence of directed edges between two vertices	

–  Vertex y is adjacent to vertex x if	

•  There is a directed edge from x to y	

© 2011 Pearson Addison-Wesley. All rights reserved 14 A-11

Graphs As ADTs

•  Graphs can be used as abstract data types	

•  Two options for defining graphs	

–  Vertices contain values	

–  Vertices do not contain values	

•  Operations of the ADT graph	

–  Create an empty graph	

–  Determine whether a graph is empty	

–  Determine the number of vertices in a graph	

–  Determine the number of edges in a graph	

© 2011 Pearson Addison-Wesley. All rights reserved 14 A-12

Graphs As ADTs

•  Operations of the ADT graph (Continued)	

–  Determine whether an edge exists between two given

vertices; for weighted graphs, return weight value	

–  Insert a vertex in a graph whose vertices have distinct

search keys that differ from the new vertex’s search
key	

–  Insert an edge between two given vertices in a graph	

–  Delete a particular vertex from a graph and any edges

between the vertex and other vertices	

–  Delete the edge between two given vertices in a graph	

–  Retrieve from a graph the vertex that contains a given

search key	

© 2011 Pearson Addison-Wesley. All rights reserved 14 A-13

Implementing Graphs

•  Most common implementations of a graph	

–  Adjacency matrix	

–  Adjacency list	

•  Adjacency matrix	

–  Adjacency matrix for a graph with n vertices numbered

0, 1, …, n – 1	

•  An n by n array matrix such that matrix[i][j] is	

–  1 (or true) if there is an edge from vertex i to vertex j	

–  0 (or false) if there is no edge from vertex i to vertex j	

© 2011 Pearson Addison-Wesley. All rights reserved 14 A-14

Implementing Graphs

Figure 14-6
a) A directed graph and b) its adjacency matrix

© 2011 Pearson Addison-Wesley. All rights reserved 14 A-15

Implementing Graphs
•  Adjacency matrix for a weighted graph with n vertices

numbered 0, 1, …, n – 1	

–  An n by n array matrix such that matrix[i][j] is	

•  The weight that labels the edge from vertex i to vertex j if there is an
edge from i to j	

•  ∞ if there is no edge from vertex i to vertex j	

Figure 14-7
a) A weighted undirected

graph and b) its

adjacency matrix

© 2011 Pearson Addison-Wesley. All rights reserved 14 A-16

Implementing Graphs

•  Adjacency list	

–  An adjacency list for a graph with n vertices numbered

0, 1, …, n – 1	

•  Consists of n linked lists	

•  The ith linked list has a node for vertex j if and only

if the graph contains an edge from vertex i to vertex
j	

–  This node can contain either	

»  Vertex j’s value, if any	

»  An indication of vertex j’s identity	

© 2011 Pearson Addison-Wesley. All rights reserved 14 A-17

Implementing Graphs

Figure 14-8
a) A directed graph and

b) its adjacency list

© 2011 Pearson Addison-Wesley. All rights reserved 14 A-18

Implementing Graphs

•  Adjacency list for an undirected graph	

–  Treats each edge as if it were two directed edges in opposite

directions	

Figure 14-9
a) A weighted undirected graph and b) its adjacency list

© 2011 Pearson Addison-Wesley. All rights reserved 14 A-19

Implementing Graphs

•  Adjacency matrix compared with adjacency list	

–  Two common operations on graphs	

•  Determine whether there is an edge from vertex i to vertex j	

•  Find all vertices adjacent to a given vertex i	

–  Adjacency matrix	

•  Supports operation 1 more efficiently	

–  Adjacency list	

•  Supports operation 2 more efficiently	

•  Often requires less space than an adjacency matrix	

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-20

Implementing a Graph Class
Using the JCF

•  ADT graph not part of JCF	

•  Can implement a graph using an adjacency list

consisting of a vector of maps	

•  Implementation presented uses TreeSet class	

© 2011 Pearson Addison-Wesley. All rights reserved 14 A-21

Graph Traversals

•  A graph-traversal algorithm	

–  Visits all the vertices that it can reach	

–  Visits all vertices of the graph if and only if the graph is

connected	

•  A connected component	

–  The subset of vertices visited during a traversal that begins at a
given vertex	

–  Can loop indefinitely if a graph contains a loop	

•  To prevent this, the algorithm must	

–  Mark each vertex during a visit, and 	

–  Never visit a vertex more than once	

© 2011 Pearson Addison-Wesley. All rights reserved 14 A-22

Graph Traversals

Figure 14-10
Visitation order for a) a depth-first search; b) a breadth-first search

© 2011 Pearson Addison-Wesley. All rights reserved 14 B-23

Depth-First Search

•  Depth-first search (DFS) traversal	

–  Proceeds along a path from v as deeply into the graph

as possible before backing up	

–  Does not completely specify the order in which it

should visit the vertices adjacent to v	

–  A last visited, first explored strategy	

© 2011 Pearson Addison-Wesley. All rights reserved 14 B-24

Breadth-First Search

•  Breadth-first search (BFS) traversal	

–  Visits every vertex adjacent to a vertex v that it can

before visiting any other vertex	

–  A first visited, first explored strategy	

–  An iterative form uses a queue	

–  A recursive form is possible, but not simple	

© 2011 Pearson Addison-Wesley. All rights reserved 14 B-25

Implementing a BFS Iterator
Class Using the JCF

•  BFSIterator class uses the ListIterator
class	

–  As a queue to keep track of the order the vertices

should be processed	

•  BFSIterator constructor	

–  Initiates methods used to determine BFS order of
vertices for the graph	

•  Graph is searched by processing vertices from
each vertex’s adjacency list	

–  In the order that they were pushed onto the queue	

© 2011 Pearson Addison-Wesley. All rights reserved 14 B-26

Applications of Graphs:
Topological Sorting

•  Topological order	

–  A list of vertices in a directed graph without cycles

such that vertex x precedes vertex y if there is a
directed edge from x to y in the graph	

–  There may be several topological orders in a given
graph	

•  Topological sorting	

–  Arranging the vertices into a topological order	

© 2011 Pearson Addison-Wesley. All rights reserved 14 B-27

Topological Sorting

Figure 14-15
The graph in Figure 14-14
arranged according to the
topological orders a) a, g, d,
b, e, c, f and b) a, b, g, d, e, f,
c

Figure 14-14
A directed graph without

cycles

© 2011 Pearson Addison-Wesley. All rights reserved 14 B-28

Topological Sorting

•  Simple algorithms for finding a topological order	

–  topSort1	

•  Find a vertex that has no successor	

•  Remove from the graph that vertex and all edges that lead to it,

and add the vertex to the beginning of a list of vertices	

•  Add each subsequent vertex that has no successor to the

beginning of the list	

•  When the graph is empty, the list of vertices will be in

topological order 	

© 2011 Pearson Addison-Wesley. All rights reserved 14 B-29

Topological Sorting

•  Simple algorithms for finding a topological order
(Continued)	

–  topSort2	

•  A modification of the iterative DFS algorithm	

•  Strategy	

–  Push all vertices that have no predecessor onto a stack	

–  Each time you pop a vertex from the stack, add it to the

beginning of a list of vertices	

–  When the traversal ends, the list of vertices will be in

topological order	

© 2011 Pearson Addison-Wesley. All rights reserved 14 B-30

Spanning Trees

•  A tree	

–  An undirected connected graph without cycles	

•  A spanning tree of a connected undirected graph G	

–  A subgraph of G that contains all of G’s vertices and

enough of its edges to form a tree	

•  To obtain a spanning tree from a connected

undirected graph with cycles	

–  Remove edges until there are no cycles	

© 2011 Pearson Addison-Wesley. All rights reserved 14 B-31

Spanning Trees

•  You can determine whether a connected graph
contains a cycle by counting its vertices and edges	

–  A connected undirected graph that has n vertices must

have at least n – 1 edges	

–  A connected undirected graph that has n vertices and

exactly n – 1 edges cannot contain a cycle	

–  A connected undirected graph that has n vertices and

more than n – 1 edges must contain at least one cycle	

© 2011 Pearson Addison-Wesley. All rights reserved 14 B-32

Spanning Trees

Figure 14-19
Connected graphs that each have four vertices and three edges

© 2011 Pearson Addison-Wesley. All rights reserved 14 B-33

The DFS Spanning Tree

•  To create a depth-first search (DFS) spanning tree	

–  Traverse the graph using a depth-first search and mark

the edges that you follow	

–  After the traversal is complete, the graph’s vertices and

marked edges form the spanning tree	

© 2011 Pearson Addison-Wesley. All rights reserved 14 B-34

The BFS Spanning Tree

•  To create a breath-first search (BFS) spanning tree	

–  Traverse the graph using a bread-first search and mark

the edges that you follow	

–  When the traversal is complete, the graph’s vertices

and marked edges form the spanning tree	

© 2011 Pearson Addison-Wesley. All rights reserved 14 B-35

Minimum Spanning Trees

•  Minimum spanning tree	

–  A spanning tree for which the sum of its edge weights

is minimal	

•  Prim’s algorithm	

–  Finds a minimal spanning tree that begins at any vertex	

–  Strategy	

•  Find the least-cost edge (v, u) from a visited vertex v to some
unvisited vertex u	

•  Mark u as visited	

•  Add the vertex u and the edge (v, u) to the minimum spanning

tree	

•  Repeat the above steps until there are no more unvisited

vertices	

© 2011 Pearson Addison-Wesley. All rights reserved 14 B-36

Shortest Paths

•  Shortest path between two vertices in a weighted
graph	

–  The path that has the smallest sum of its edge weights	

•  Dijkstra’s shortest-path algorithm	

–  Determines the shortest paths between a given origin

and all other vertices	

–  Uses	

•  A set vertexSet of selected vertices	

•  An array weight, where weight[v] is the weight of the shortest

(cheapest) path from vertex 0 to vertex v that passes through
vertices in vertexSet	

© 2011 Pearson Addison-Wesley. All rights reserved 14 B-37

Circuits
•  A circuit	

–  A special cycle that passes through every vertex (or edge) in a
graph exactly once	

•  Euler circuit	

–  A circuit that begins at a vertex v, passes through every edge

exactly once, and terminates at v	

–  Exists if and only if each vertex touches an even number of edges	

Figure 14-27
a) Euler’s bridge problem

and b) its multigraph

representation

© 2011 Pearson Addison-Wesley. All rights reserved 14 B-38

Some Difficult Problems

•  Three applications of graphs	

–  The traveling salesperson problem	

–  The three utilities problem	

–  The four-color problem	

•  A Hamilton circuit	

–  Begins at a vertex v, passes through every vertex

exactly once, and terminates at v	

© 2011 Pearson Addison-Wesley. All rights reserved 14 B-39

Summary

•  The two most common implementations of a
graph are the adjacency matrix and the adjacency
list	

•  Graph searching	

–  Depth-first search goes as deep into the graph as it can

before backtracking	

–  Bread-first search visits all possible adjacent vertices

before traversing further into the graph	

•  Topological sorting produces a linear order of the

vertices in a directed graph without cycles	

© 2011 Pearson Addison-Wesley. All rights reserved 14 B-40

Summary

•  Trees are connected undirected graphs without
cycles	

–  A spanning tree of a connected undirected graph is a

subgraph that contains all the graph’s vertices and
enough of its edges to form a tree	

•  A minimum spanning tree for a weighted
undirected graph is a spanning tree whose edge-
weight sum is minimal	

•  The shortest path between two vertices in a
weighted directed graph is the path that has the
smallest sum of its edge weights	

© 2011 Pearson Addison-Wesley. All rights reserved 14 B-41

Summary

•  An Euler circuit in an undirected graph is a cycle
that begins at vertex v, passes through every edge
in the graph exactly once, and terminates at v	

•  A Hamilton circuit in an undirected graph is a
cycle that begins at vertex v, passes through every
vertex in the graph exactly once, and terminates at
v	

