

Chapter 14

Graphs

- $G = \{V, E\}$
- A graph G consists of two sets
 - A set V of vertices, or nodes
 - A set E of edges
- A subgraph
 - Consists of a subset of a graph's vertices and a subset of its edges
- Adjacent vertices
 - Two vertices that are joined by an edge

Figure 14-2

a) A campus map as a graph; b) a subgraph

- A path between two vertices
 - A sequence of edges that begins at one vertex and ends at another vertex
 - May pass through the same vertex more than once
- A simple path
 - A path that passes through a vertex only once
- A cycle
 - A path that begins and ends at the same vertex
- A simple cycle
 - A cycle that does not pass through a vertex more than once

- A connected graph
 - A graph that has a path between each pair of distinct vertices
- A disconnected graph
 - A graph that has at least one pair of vertices without a path between them
- A complete graph
 - A graph that has an edge between each pair of distinct vertices

Figure 14-3

Graphs that are a) connected; b) disconnected; and c) complete

© 2011 Pearson Addison-Wesley. All rights reserved

• Multigraph

- Not a graph
- Allows multiple edges between vertices

Figure 14-4

a) A multigraph is not a graph;b)a self edge is not allowed in agraph

- Weighted graph
 - A graph whose edges have numeric labels

Figure 14-5a

a) A weighted graph

- Undirected graph
 - Edges do not indicate a direction
- Directed graph, or diagraph
 - Each edge is a directed edge

- Directed graph
 - Can have two edges between a pair of vertices, one in each direction
 - Directed path
 - A sequence of directed edges between two vertices
 - Vertex y is adjacent to vertex x if
 - There is a directed edge from x to y

Graphs As ADTs

- Graphs can be used as abstract data types
- Two options for defining graphs
 - Vertices contain values
 - Vertices do not contain values
- Operations of the ADT graph
 - Create an empty graph
 - Determine whether a graph is empty
 - Determine the number of vertices in a graph
 - Determine the number of edges in a graph

Graphs As ADTs

- Operations of the ADT graph (Continued)
 - Determine whether an edge exists between two given vertices; for weighted graphs, return weight value
 - Insert a vertex in a graph whose vertices have distinct search keys that differ from the new vertex's search key
 - Insert an edge between two given vertices in a graph
 - Delete a particular vertex from a graph and any edges between the vertex and other vertices
 - Delete the edge between two given vertices in a graph
 - Retrieve from a graph the vertex that contains a given search key

- Most common implementations of a graph
 - Adjacency matrix
 - Adjacency list
- Adjacency matrix
 - Adjacency matrix for a graph with n vertices numbered 0, 1, ..., n-1
 - An n by n array matrix such that matrix[i][j] is
 - -1 (or true) if there is an edge from vertex i to vertex j
 - -0 (or false) if there is no edge from vertex i to vertex j

Figure 14-6

a) A directed graph and b) its adjacency matrix

- Adjacency matrix for a weighted graph with n vertices numbered 0, 1, ..., n – 1
 - An n by n array matrix such that matrix[i][j] is
 - The weight that labels the edge from vertex i to vertex j if there is an edge from i to j
 - ∞ if there is no edge from vertex i to vertex j

- Adjacency list
 - An adjacency list for a graph with n vertices numbered 0, 1, ..., n-1
 - Consists of n linked lists
 - The ith linked list has a node for vertex j if and only if the graph contains an edge from vertex i to vertex j
 - This node can contain either
 - » Vertex j's value, if any
 - » An indication of vertex j's identity

Figure 14-8 a) A directed graph and b) its adjacency list

- Adjacency list for an undirected graph
 - Treats each edge as if it were two directed edges in opposite directions

Figure 14-9

a) A weighted undirected graph and b) its adjacency list

- Adjacency matrix compared with adjacency list
 - Two common operations on graphs
 - Determine whether there is an edge from vertex i to vertex j
 - Find all vertices adjacent to a given vertex i
 - Adjacency matrix
 - Supports operation 1 more efficiently
 - Adjacency list
 - Supports operation 2 more efficiently
 - Often requires less space than an adjacency matrix

Implementing a Graph Class Using the JCF

- ADT graph not part of JCF
- Can implement a graph using an adjacency list consisting of a vector of maps
- Implementation presented uses TreeSet class

Graph Traversals

- A graph-traversal algorithm
 - Visits all the vertices that it can reach
 - Visits all vertices of the graph if and only if the graph is connected
 - A connected component
 - The subset of vertices visited during a traversal that begins at a given vertex
 - Can loop indefinitely if a graph contains a loop
 - To prevent this, the algorithm must
 - Mark each vertex during a visit, and
 - Never visit a vertex more than once

Graph Traversals

Figure 14-10

Visitation order for a) a depth-first search; b) a breadth-first search

© 2011 Pearson Addison-Wesley. All rights reserved

Depth-First Search

- Depth-first search (DFS) traversal
 - Proceeds along a path from *v* as deeply into the graph as possible before backing up
 - Does not completely specify the order in which it should visit the vertices adjacent to v
 - A last visited, first explored strategy

Breadth-First Search

- Breadth-first search (BFS) traversal
 - Visits every vertex adjacent to a vertex v that it can before visiting any other vertex
 - A first visited, first explored strategy
 - An iterative form uses a queue
 - A recursive form is possible, but not simple

Implementing a BFS Iterator Class Using the JCF

- BFSIterator class uses the ListIterator class
 - As a queue to keep track of the order the vertices should be processed
- BFSIterator constructor
 - Initiates methods used to determine BFS order of vertices for the graph
- Graph is searched by processing vertices from each vertex's adjacency list

– In the order that they were pushed onto the queue

Applications of Graphs: Topological Sorting

- Topological order
 - A list of vertices in a directed graph without cycles such that vertex x precedes vertex y if there is a directed edge from x to y in the graph
 - There may be several topological orders in a given graph
- Topological sorting
 - Arranging the vertices into a topological order

Topological Sorting

Figure 14-14 A directed graph without cycles

Figure 14-15 The graph in Figure 14-14 arranged according to the topological orders a) *a*, *g*, *d*, *b*, *e*, *c*, *f* and b) *a*, *b*, *g*, *d*, *e*, *f*, *c*

Topological Sorting

- Simple algorithms for finding a topological order
 - topSort1
 - Find a vertex that has no successor
 - Remove from the graph that vertex and all edges that lead to it, and add the vertex to the beginning of a list of vertices
 - Add each subsequent vertex that has no successor to the beginning of the list
 - When the graph is empty, the list of vertices will be in topological order

Topological Sorting

- Simple algorithms for finding a topological order (Continued)
 - topSort2
 - A modification of the iterative DFS algorithm
 - Strategy
 - Push all vertices that have no predecessor onto a stack
 - Each time you pop a vertex from the stack, add it to the beginning of a list of vertices
 - When the traversal ends, the list of vertices will be in topological order

Spanning Trees

- A tree
 - An undirected connected graph without cycles
- A spanning tree of a connected undirected graph G
 - A subgraph of G that contains all of G's vertices and enough of its edges to form a tree
- To obtain a spanning tree from a connected undirected graph with cycles
 - Remove edges until there are no cycles

Spanning Trees

- You can determine whether a connected graph contains a cycle by counting its vertices and edges
 - A connected undirected graph that has n vertices must have at least n – 1 edges
 - A connected undirected graph that has n vertices and exactly n – 1 edges cannot contain a cycle
 - A connected undirected graph that has n vertices and more than n – 1 edges must contain at least one cycle

Figure 14-19

Connected graphs that each have four vertices and three edges

© 2011 Pearson Addison-Wesley. All rights reserved

The DFS Spanning Tree

- To create a depth-first search (DFS) spanning tree
 - Traverse the graph using a depth-first search and mark the edges that you follow
 - After the traversal is complete, the graph's vertices and marked edges form the spanning tree

The BFS Spanning Tree

- To create a breath-first search (BFS) spanning tree
 - Traverse the graph using a bread-first search and mark the edges that you follow
 - When the traversal is complete, the graph's vertices and marked edges form the spanning tree

Minimum Spanning Trees

- Minimum spanning tree
 - A spanning tree for which the sum of its edge weights is minimal
- Prim's algorithm
 - Finds a minimal spanning tree that begins at any vertex
 - Strategy
 - Find the least-cost edge (v, u) from a visited vertex v to some unvisited vertex u
 - Mark u as visited
 - Add the vertex u and the edge (v, u) to the minimum spanning tree
 - Repeat the above steps until there are no more unvisited vertices

Shortest Paths

- Shortest path between two vertices in a weighted graph
 - The path that has the smallest sum of its edge weights
- Dijkstra's shortest-path algorithm
 - Determines the shortest paths between a given origin and all other vertices
 - Uses
 - A set vertexSet of selected vertices
 - An array weight, where weight[v] is the weight of the shortest (cheapest) path from vertex 0 to vertex v that passes through vertices in vertexSet

Circuits

- A circuit
 - A special cycle that passes through every vertex (or edge) in a graph exactly once
- Euler circuit
 - A circuit that begins at a vertex v, passes through every edge exactly once, and terminates at v
 - Exists if and only if each vertex touches an even number of edges

Some Difficult Problems

- Three applications of graphs
 - The traveling salesperson problem
 - The three utilities problem
 - The four-color problem
- A Hamilton circuit
 - Begins at a vertex v, passes through every vertex exactly once, and terminates at v

Summary

- The two most common implementations of a graph are the adjacency matrix and the adjacency list
- Graph searching
 - Depth-first search goes as deep into the graph as it can before backtracking
 - Bread-first search visits all possible adjacent vertices before traversing further into the graph
- Topological sorting produces a linear order of the vertices in a directed graph without cycles

Summary

- Trees are connected undirected graphs without cycles
 - A spanning tree of a connected undirected graph is a subgraph that contains all the graph's vertices and enough of its edges to form a tree
- A minimum spanning tree for a weighted undirected graph is a spanning tree whose edgeweight sum is minimal
- The shortest path between two vertices in a weighted directed graph is the path that has the smallest sum of its edge weights

Summary

- An Euler circuit in an undirected graph is a cycle that begins at vertex v, passes through every edge in the graph exactly once, and terminates at v
- A Hamilton circuit in an undirected graph is a cycle that begins at vertex v, passes through every vertex in the graph exactly once, and terminates at v