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Terminology 

•  G = {V, E}	

•  A graph G consists of two sets	


–  A set V of vertices, or nodes	

–  A set E of edges 	


•  A subgraph	

–  Consists of a subset of a graph’s vertices and a subset 

of its edges	

•  Adjacent vertices	


–  Two vertices that are joined by an edge	
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Terminology 

Figure 14-2 
a) A campus map as a graph; b) a subgraph 
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Terminology 

•  A path between two vertices	

–  A sequence of edges that begins at one vertex and ends 

at another vertex	

–  May pass through the same vertex more than once	


•  A simple path	

–  A path that passes through a vertex only once	


•  A cycle	

–  A path that begins and ends at the same vertex	


•  A simple cycle	

–  A cycle that does not pass through a vertex more than 

once	




© 2011 Pearson Addison-Wesley. All rights reserved 14 A-5 

Terminology 

•  A connected graph	

–  A graph that has a path between each pair of distinct 

vertices	

•  A disconnected graph	


–  A graph that has at least one pair of vertices without a 
path between them	


•  A complete graph	

–  A graph that has an edge between each pair of distinct 

vertices	
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Terminology 

Figure 14-3 
Graphs that are a) connected; b) disconnected; and c) complete 
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Terminology 

•  Multigraph	

–  Not a graph	

–  Allows multiple edges between vertices	


Figure 14-4 
a) A multigraph is not a graph; b) 

a self edge is not allowed in a 

graph 
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Terminology 
•  Weighted graph	


–  A graph whose edges have numeric labels	


Figure 14-5a 
a) A weighted graph 
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Terminology 
•  Undirected graph	


–  Edges do not indicate a direction	

•  Directed graph, or diagraph	


–  Each edge is a directed edge	


Figure 14-5b 
b) A directed graph 
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Terminology 

•  Directed graph	

–  Can have two edges between a pair of vertices, one in 

each direction	

–  Directed path	


•  A sequence of directed edges between two vertices	

–  Vertex y is adjacent to vertex x if	


•  There is a directed edge from x to y	
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Graphs As ADTs 

•  Graphs can be used as abstract data types	

•  Two options for defining graphs	


–  Vertices contain values	

–  Vertices do not contain values	


•  Operations of the ADT graph	

–  Create an empty graph	

–  Determine whether a graph is empty	

–  Determine the number of vertices in a graph	

–  Determine the number of edges in a graph	




© 2011 Pearson Addison-Wesley. All rights reserved 14 A-12 

Graphs As ADTs 

•  Operations of the ADT graph (Continued)	

–  Determine whether an edge exists between two given 

vertices; for weighted graphs, return weight value	

–  Insert a vertex in a graph whose vertices have distinct 

search keys that differ from the new vertex’s search 
key	


–  Insert an edge between two given vertices in a graph	

–  Delete a particular vertex from a graph and any edges 

between the vertex and other vertices	

–  Delete the edge between two given vertices in a graph	

–  Retrieve from a graph the vertex that contains a given 

search key	
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Implementing Graphs 

•  Most common implementations of a graph	

–  Adjacency matrix	

–  Adjacency list	


•  Adjacency matrix	

–  Adjacency matrix for a graph with n vertices numbered 

0, 1, …, n – 1	

•  An n by n array matrix such that matrix[i][j] is	


–  1 (or true) if there is an edge from vertex i to vertex j	

–  0 (or false) if there is no edge from vertex i to vertex j	
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Implementing Graphs 

Figure 14-6 
a) A directed graph and b) its adjacency matrix 
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Implementing Graphs 
•  Adjacency matrix for a weighted graph with n vertices 

numbered 0, 1, …, n – 1	

–  An n by n array matrix such that matrix[i][j] is	


•  The weight that labels the edge from vertex i to vertex j if there is an 
edge from i to j	


•  ∞ if there is no edge from vertex i to vertex j	


Figure 14-7 
a) A weighted undirected 

graph and b) its 

adjacency matrix 
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Implementing Graphs 

•  Adjacency list	

–  An adjacency list for a graph with n vertices numbered 

0, 1, …, n – 1	

•  Consists of n linked lists	

•  The ith linked list has a node for vertex j if and only 

if the graph contains an edge from vertex i to vertex 
j	


–  This node can contain either	

»  Vertex j’s value, if any	

»  An indication of vertex j’s identity	
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Implementing Graphs 

Figure 14-8 
a) A directed graph and 

b) its adjacency list 
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Implementing Graphs 

•  Adjacency list for an undirected graph	

–  Treats each edge as if it were two directed edges in opposite 

directions	


Figure 14-9 
a) A weighted undirected graph and b) its adjacency list 
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Implementing Graphs 

•  Adjacency matrix compared with adjacency list	

–  Two common operations on graphs	


•  Determine whether there is an edge from vertex i to vertex j	

•  Find all vertices adjacent to a given vertex i	


–  Adjacency matrix	

•  Supports operation 1 more efficiently	


–  Adjacency list	

•  Supports operation 2 more efficiently	

•  Often requires less space than an adjacency matrix	
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Implementing a Graph Class 
Using the JCF 

•  ADT graph not part of JCF	

•  Can implement a graph using an adjacency list 

consisting of a vector of maps	

•  Implementation presented uses TreeSet class	
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Graph Traversals 

•  A graph-traversal algorithm	

–  Visits all the vertices that it can reach	

–  Visits all vertices of the graph if and only if the graph is 

connected	

•  A connected component	


–  The subset of vertices visited during a traversal that begins at a 
given vertex	


–  Can loop indefinitely if a graph contains a loop	

•  To prevent this, the algorithm must	


–  Mark each vertex during a visit, and 	

–  Never visit a vertex more than once	
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Graph Traversals 

Figure 14-10 
Visitation order for a) a depth-first search; b) a breadth-first search 
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Depth-First Search 

•  Depth-first search (DFS) traversal	

–  Proceeds along a path from v as deeply into the graph 

as possible before backing up	

–  Does not completely specify the order in which it 

should visit the vertices adjacent to v	

–  A last visited, first explored strategy	
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Breadth-First Search 

•  Breadth-first search (BFS) traversal	

–  Visits every vertex adjacent to a vertex v that it can 

before visiting any other vertex	

–  A first visited, first explored strategy	

–  An iterative form uses a queue	

–  A recursive form is possible, but not simple	
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Implementing a BFS Iterator 
Class Using the JCF 

•  BFSIterator class uses the ListIterator 
class	

–  As a queue to keep track of the order the vertices 

should be processed	

•  BFSIterator constructor	


–  Initiates methods used to determine BFS order of 
vertices for the graph	


•  Graph is searched by processing vertices from 
each vertex’s adjacency list	

–  In the order that they were pushed onto the queue	
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Applications of Graphs: 
Topological Sorting 

•  Topological order	

–  A list of vertices in a directed graph without cycles 

such that vertex x precedes vertex y if there is a 
directed edge from x to y in the graph	


–  There may be several topological orders in a given 
graph	


•  Topological sorting	

–  Arranging the vertices into a topological order	
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Topological Sorting 

Figure 14-15 
The graph in Figure 14-14 
arranged according to the 
topological orders a) a, g, d, 
b, e, c, f  and b) a, b, g, d, e, f, 
c 

Figure 14-14 
A directed graph without 

cycles 
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Topological Sorting 

•  Simple algorithms for finding a topological order	

–  topSort1	


•  Find a vertex that has no successor	

•  Remove from the graph that vertex and all edges that lead to it, 

and add the vertex to the beginning of a list of vertices	

•  Add each subsequent vertex that has no successor to the 

beginning of the list	

•  When the graph is empty, the list of vertices will be in 

topological order 	
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Topological Sorting 

•  Simple algorithms for finding a topological order 
(Continued)	

–  topSort2	


•  A modification of the iterative DFS algorithm	

•  Strategy	


–  Push all vertices that have no predecessor onto a stack	

–  Each time you pop a vertex from the stack, add it to the 

beginning of a list of vertices	

–  When the traversal ends, the list of vertices will be in 

topological order	
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Spanning Trees 

•  A tree	

–  An undirected connected graph without cycles	


•  A spanning tree of a connected undirected graph G	

–  A subgraph of G that contains all of G’s vertices and 

enough of its edges to form a tree	

•  To obtain a spanning tree from a connected 

undirected graph with cycles	

–  Remove edges until there are no cycles	
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Spanning Trees 

•  You can determine whether a connected graph 
contains a cycle by counting its vertices and edges	

–  A connected undirected graph that has n vertices must 

have at least n – 1 edges	

–  A connected undirected graph that has n vertices and 

exactly n – 1 edges cannot contain a cycle	

–  A connected undirected graph that has n vertices and 

more than n – 1 edges must contain at least one cycle	
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Spanning Trees 

Figure 14-19 
Connected graphs that each have four vertices and three edges 
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The DFS Spanning Tree 

•  To create a depth-first search (DFS) spanning tree	

–  Traverse the graph using a depth-first search and mark 

the edges that you follow	

–  After the traversal is complete, the graph’s vertices and 

marked edges form the spanning tree	
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The BFS Spanning Tree 

•  To create a breath-first search (BFS) spanning tree	

–  Traverse the graph using a bread-first search and mark 

the edges that you follow	

–  When the traversal is complete, the graph’s vertices 

and marked edges form the spanning tree	
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Minimum Spanning Trees 

•  Minimum spanning tree	

–  A spanning tree for which the sum of its edge weights 

is minimal	

•  Prim’s algorithm	


–  Finds a minimal spanning tree that begins at any vertex	

–  Strategy	


•  Find the least-cost edge (v, u) from a visited vertex v to some 
unvisited vertex u	


•  Mark u as visited	

•  Add the vertex u and the edge (v, u) to the minimum spanning 

tree	

•  Repeat the above steps until there are no more unvisited 

vertices	
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Shortest Paths 

•  Shortest path between two vertices in a weighted 
graph	

–  The path that has the smallest sum of its edge weights	


•  Dijkstra’s shortest-path algorithm	

–  Determines the shortest paths between a given origin 

and all other vertices	

–  Uses	


•  A set vertexSet of selected vertices	

•  An array weight, where weight[v] is the weight of the shortest 

(cheapest) path from vertex 0 to vertex v that passes through 
vertices in vertexSet	
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Circuits 
•  A circuit	


–  A special cycle that passes through every vertex (or edge) in a 
graph exactly once	


•  Euler circuit	

–  A circuit that begins at a vertex v, passes through every edge 

exactly once, and terminates at v	

–  Exists if and only if each vertex touches an even number of edges	


Figure 14-27 
a) Euler’s bridge problem 

and b) its multigraph 

representation 
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Some Difficult Problems 

•  Three applications of graphs	

–  The traveling salesperson problem	

–  The three utilities problem	

–  The four-color problem	


•  A Hamilton circuit	

–  Begins at a vertex v, passes through every vertex 

exactly once, and terminates at v	
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Summary 

•  The two most common implementations of a 
graph are the adjacency matrix and the adjacency 
list	


•  Graph searching	

–  Depth-first search goes as deep into the graph as it can 

before backtracking	

–  Bread-first search visits all possible adjacent vertices 

before traversing further into the graph	

•  Topological sorting produces a linear order of the 

vertices in a directed graph without cycles	
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Summary 

•  Trees are connected undirected graphs without 
cycles	

–  A spanning tree of a connected undirected graph is a 

subgraph that contains all the graph’s vertices and 
enough of its edges to form a tree	


•  A minimum spanning tree for a weighted 
undirected graph is a spanning tree whose edge-
weight sum is minimal	


•  The shortest path between two vertices in a 
weighted directed graph is the path that has the 
smallest sum of its edge weights	
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Summary 

•  An Euler circuit in an undirected graph is a cycle 
that begins at vertex v, passes through every edge 
in the graph exactly once, and terminates at v	


•  A Hamilton circuit in an undirected graph is a 
cycle that begins at vertex v, passes through every 
vertex in the graph exactly once, and terminates at 
v	



