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 Chapter 13 

Advanced Implementation of 
Tables	
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Balanced Search Trees 

•  The efficiency of the binary search tree 
implementation of the ADT table is related to the 
tree’s height	


–  Height of a binary search tree of n items 	



•  Maximum: n	


•  Minimum: ⎡log2(n + 1)⎤	



•  Height of a binary search tree is sensitive to the 
order of insertions and deletions	



•  Variations of the binary search tree	


–  Can retain their balance despite insertions and deletions	
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2-3 Trees 

•  A 2-3 tree 	


–  Has 2-nodes and 3-nodes	



•  A 2-node	


–  A node with one data item and two children	



•  A 3-node	


–  A node with two data items and three children	



–  Is not a binary tree	


–  Is never taller than a minimum-height binary tree	



•  A 2-3 tree with n nodes never has height greater than 	


	

⎡log2(n + 1)⎤	
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2-3 Trees 

•  Rules for placing data items in the nodes of a 2-3 tree	


–  A 2-node must contain a single data item whose search key is	



•  Greater than the left child’s search key(s)	


•  Less than the right child’s search(s)	



–  A 3-node must contain two data items whose search keys S and L 
satisfy the following	



•  S is	


–  Greater than the left child’s search key(s)	


–  Less than the middle child’s search key(s)	



•  L is	


–  Greater than the middle child’s search key(s)	


–  Less than the right child’s search key(s)	



–  A leaf may contain either one or two data items	
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2-3 Trees 

Figure 13-3 
Nodes in a 2-3 tree a) a 2-node; b) a 3-node 
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2-3 Trees 

•  Traversing a 2-3 tree	


–  To traverse a 2-3 tree	



•  Perform the analogue of an inorder traversal	



•  Searching a 2-3 tree	


–  Searching a 2-3 tree is as efficient as searching the 

shortest binary search tree	


•  Searching a 2-3 tree is O(log2n)	


•  Number of comparisons required to search a 2-3 tree for a 

given item	


–  Approximately equal to the number of comparisons required to 

search a binary search tree that is as balanced as possible	
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2-3 Trees 

•  Advantage of a 2-3 tree over a balanced binary 
search tree	


–  Maintaining the balance of a binary search tree is 

difficult	


–  Maintaining the balance of a 2-3 tree is relatively easy	
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2-3 Trees: Inserting Into a 2-3 
Tree 

•  Insertion into a 2-node leaf is simple	


•  Insertion into a 3-node causes it to divide	
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2-3 Trees: The Insertion 
Algorithm 
•  To insert an item I into a 2-3 tree	



–  Locate the leaf at which the search for I would terminate	


–  Insert the new item I into the leaf	


–  If the leaf now contains only two items, you are done 	


–  If the leaf now contains three items, split the leaf into two nodes, 

n1 and n2	



Figure 13-12 
Splitting a leaf in a 2-3 tree 
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2-3 Trees: The Insertion 
Algorithm 
•  When an internal node contains three items	



–  Split the node into two nodes	


–  Accommodate the node’s children	



Figure 13-13 
Splitting an internal node 

in a 2-3 tree 
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2-3 Trees: The Insertion 
Algorithm 
•  When the root contains three items	



–  Split the root into two nodes	


–  Create a new root node	



Figure 13-14 
Splitting the root of a 2-3 tree 
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2-3 Trees: Deleting from a 2-3 
Tree 

•  Deletion from a 2-3 tree	


–  Does not affect the balance of the tree	



•  Deletion from a balanced binary search tree	


–  May cause the tree to lose its balance	
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2-3 Trees: The Deletion 
Algorithm 

Figure 13-19a and 
13-19b 
a) Redistributing values; 

b) merging a leaf 
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2-3 Trees: The Deletion 
Algorithm 

Figure 13-19c and 
13-19d 
c) redistributing values 

and children; d) merging 

internal nodes 
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2-3 Trees: The Deletion 
Algorithm 

Figure 13-19e 
e) deleting the root 
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2-3 Trees: The Deletion 
Algorithm 

•  When analyzing the efficiency of the 
insertItem and deleteItem algorithms, it 
is sufficient to consider only the time required to 
locate the item	



•  A 2-3 implementation of a table is O(log2n) for all 
table operations	



•  A 2-3 tree is a compromise	


–  Searching a 2-3 tree is not quite as efficient as 

searching a binary search tree of minimum height	


–  A 2-3 tree is relatively simple to maintain	
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2-3-4 Trees 
•  Rules for placing data items in the nodes of a 2-3-4 tree	



–  A 2-node must contain a single data item whose search keys satisfy 
the relationships pictured in Figure 13-3a	



–  A 3-node must contain two data items whose search keys satisfy 
the relationships pictured in Figure 13-3b	



–  A 4-node must contain three data items whose search keys S, M, 
and L satisfy the relationship pictured in Figure 13-21	



–  A leaf may contain either one, two, or three data items 	



Figure 13-21 
A 4-node in a 2-3-4 tree 
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2-3-4 Trees: Searching and 
Traversing a 2-3-4 Tree 

•  Search and traversal algorithms for a 2-3-4 tree are 
simple extensions of the corresponding algorithms 
for a 2-3 tree	
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2-3-4 Trees: Inserting into a 2-3-4 
Tree 

•  The insertion algorithm for a 2-3-4 tree	


–  Splits a node by moving one of its items up to its parent 

node	


–  Splits 4-nodes as soon as its encounters them on the 

way down the tree from the root to a leaf	


•  Result: when a 4-node is split and an item is moved 

up to the node’s parent, the parent cannot possibly 
be a 4-node and can accommodate another item	
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2-3-4 Trees: Splitting 4-nodes 
During Insertion 
•  A 4-node is split as soon as it is encountered 

during a search from the root to a leaf	


•  The 4-node that is split will	



–  Be the root, or	


–  Have a 2-node parent, or	


–  Have a 3-node parent	



Figure 13-28 
Splitting a 4-node root during 

insertion  
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2-3-4 Trees: Splitting 4-nodes 
During Insertion 

Figure 13-29 
Splitting a 4-node whose 

parent is a 2-node during 

insertion 
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2-3-4 Trees: Splitting 4-nodes 
During Insertion 

Figure 13-30 
Splitting a 4-node whose 

parent is a 3-node during 

insertion 
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2-3-4 Trees: Deleting from a  
2-3-4 Tree 

•  The deletion algorithm for a 2-3-4 tree	


–  Locate the node n that contains the item theItem 
–  Find theItem’s inorder successor and swap it with 
theItem (deletion will always be at a leaf)	



–  If that leaf is a 3-node or a 4-node, remove theItem 
–  To ensure that theItem does not occur in a 2-node	



•  Transform each 2-node encountered into a 3-node or a 4-node	
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2-3-4 Trees: Concluding 
Remarks 

•  Advantage of 2-3 and 2-3-4 trees	


–  Easy-to-maintain balance	



•  Insertion and deletion algorithms for a 2-3-4 tree 
require fewer steps that those for a 2-3 tree	



•  Allowing nodes with more than four children is 
counterproductive	
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Red-Black Trees 

•  A 2-3-4 tree	


–  Advantages	



•  It is balanced	


•  Its insertion and deletion operations use only one pass from 

root to leaf	


–  Disadvantage	



•  Requires more storage than a binary search tree	



•  A red-black tree	


–  A special binary search tree	


–  Used to represent a 2-3-4 tree	


–  Has the advantages of a 2-3-4 tree, without the storage 

overhead	
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Red-Black Trees 

•  Basic idea 	


–  Represent each 3-node and 4-node in a 2-3-4 tree as an 

equivalent binary tree	


•  Red and black children references	



–  Used to distinguish between 2-nodes that appeared in 
the original 2-3-4 tree and 2-nodes that are generated 
from 3-nodes and 4-nodes	



•  Black references are used for child references in the original 	


	

2-3-4 tree	



•  Red references are used to link the 2-nodes that result from the 
split 3-nodes and 4-nodes 	
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Red-Black Trees 
Figure 13-31 
Red-black 

representation of a 4-

node 

Figure 13-32 
Red-black 

representation of a 3-

node 
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Red-Black Trees: Searching and 
Traversing a Red-Black Tree 

•  A red-black tree is a binary search tree	


•  The algorithms for a binary search tree can be 

used to search and traverse a red-black tree	
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Red-Black Trees: Inserting and 
Deleting From a Red-Black Tree 

•  Insertion algorithm	


–  The 2-3-4 insertion algorithm can be adjusted to 

accommodate the red-black representation	


•  The process of splitting 4-nodes that are encountered during a 

search must be reformulated in terms of the red-black 
representation	



–  In a red-black tree, splitting the equivalent of a 4-node requires 
only simple color changes	



–  Rotation: a reference change that results in a shorter tree	



•  Deletion algorithm	


–  Derived from the 2-3-4 deletion algorithm	
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Red-Black Trees: Inserting and 
Deleting From a Red-Black Tree 

Figure 13-34 
Splitting a red-black representation of a 4-node that is the root 
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Red-Black Trees: Inserting and 
Deleting From a Red-Black Tree 

Figure 13-35 
Splitting a red-black 

representation of a 4-node 

whose parent is a 2-node 
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Red-Black Trees: Inserting and 
Deleting From a Red-Black Tree 

Figure 13-36a 
Splitting a red-black 

representation of a 4-node 

whose parent is a 3-node 
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Red-Black Trees: Inserting and 
Deleting From a Red-Black Tree 

Figure 13-36b 
Splitting a red-black 

representation of a 4-node 

whose parent is a 3-node 
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Red-Black Trees: Inserting and 
Deleting From a Red-Black Tree 

Figure 13-36c 
Splitting a red-black 

representation of a 4-node 

whose parent is a 3-node 
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AVL Trees 

•  An AVL tree	


–  A balanced binary search tree	


–  Can be searched almost as efficiently as a minimum-

height binary search tree	


–  Maintains a height close to the minimum	


–  Requires far less work than would be necessary to keep 

the height exactly equal to the minimum	


•  Basic strategy of the AVL method	



–  After each insertion or deletion	


•  Check whether the tree is still balanced	


•  If the tree is unbalanced, restore the balance	
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AVL Trees 
•  Rotations	



–  Restore the balance of a tree	


–  Two types	



•  Single rotation	


•  Double rotation	



Figure 13-38 
a) An unbalanced binary search tree; b) a balanced tree after a single left rotation 
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AVL Trees 

Figure 13-42 
a) Before; b) during; and c) after a double rotation 



© 2011 Pearson Addison-Wesley. All rights reserved 13 B-38 

AVL Trees 

•  Advantage	


–  Height of an AVL tree with n nodes is always very 

close to the theoretical minimum	


•  Disadvantage	



–  An AVL tree implementation of a table is more difficult 
than other implementations	
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Hashing 

•  Hashing	


–  Enables access to table items in time that is relatively 

constant and independent of the items	


•  Hash function	



–  Maps the search key of a table item into a location that 
will contain the item	



•  Hash table	


–  An array that contains the table items, as assigned by a 

hash function	
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Hashing 

•  A perfect hash function	


–  Maps each search key into a unique location of the hash table	


–  Possible if all the search keys are known	



•  Collisions	


–  Occur when the hash function maps more than one item into the 

same array location	


•  Collision-resolution schemes	



–  Assign locations in the hash table to items with different search 
keys when the items are involved in a collision	



•  Requirements for a hash function	


–  Be easy and fast to compute	


–  Place items evenly throughout the hash table	
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Hash Functions 

•  It is sufficient for hash functions to operate on 
integers	



•  Simple hash functions that operate on positive 
integers	


–  Selecting digits	


–  Folding	


–  Module arithmetic	



•  Converting a character string to an integer	


–  If the search key is a character string, it can be 

converted into an integer before the hash function is 
applied	
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Resolving Collisions 

•  Two approaches to collision resolution	


–  Approach 1: Open addressing	



•  A category of collision resolution schemes that probe for an 
empty, or open, location in the hash table	



–  The sequence of locations that are examined is the probe 
sequence	



•  Linear probing	


–  Searches the hash table sequentially, starting from the original 

location specified by the hash function	


–  Possible problem	



»  Primary clustering	
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Resolving Collisions 
•  Approach 1: Open addressing (Continued)	



–  Quadratic probing	


•  Searches the hash table beginning with the original location that the 

hash function specifies and continues at increments of 12, 22, 32, and 
so on	



•  Possible problem	


–  Secondary clustering	



–  Double hashing	


•  Uses two hash functions	


•  Searches the hash table starting from the location that one hash 

function determines and considers every nth location, where n is 
determined from a second hash function	



•  Increasing the size of the hash table	


–  The hash function must be applied to every item in the old hash 

table before the item is placed into the new hash table	
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Resolving Collisions 

•  Approach 2: Restructuring the hash table	


–  Changes the structure of the hash table so that it can 

accommodate more than one item in the same location	


–  Buckets	



•  Each location in the hash table is itself an array 
called a bucket	



–  Separate chaining	


•  Each hash table location is a linked list	
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The Efficiency of Hashing 

•  An analysis of the average-case efficiency of 
hashing involves the load factor 	


–  Load factor α	



•  Ratio of the current number of items in the table to the 
maximum size of the array table   

•  Measures how full a hash table is	


•  Should not exceed 2/3	



–  Hashing efficiency for a particular search also depends 
on whether the search is successful	



•  Unsuccessful searches generally require more time than 
successful searches	
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The Efficiency of Hashing 

•  Linear probing	


–  Successful search: ½[1 + 1(1-α)]	


–  Unsuccessful search: ½[1 + 1(1- α)2]	



•  Quadratic probing and double hashing	


–  Successful search: -loge(1- α)/ α	


–  Unsuccessful search: 1/(1- α)	



•  Separate chaining	


–  Insertion is O(1)	


–  Retrievals and deletions	



•  Successful search: 1 + (α/2)	


•  Unsuccessful search: α	
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The Efficiency of Hashing 

Figure 13-50 
The relative efficiency of four collision-resolution methods 
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What Constitutes a Good Hash 
Function? 
•  A good hash function should	



–  Be easy and fast to compute	


–  Scatter the data evenly throughout the hash table	



•  Issues to consider with regard to how evenly a hash 
function scatters the search keys	


–  How well does the hash function scatter random data?	


–  How well does the hash function scatter nonrandom data?	



•  General requirements of a hash function	


–  The calculation of the hash function should involve the entire 

search key	


–  If a hash function uses module arithmetic, the base should be 

prime	
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Table Traversal: An Inefficient 
Operation Under Hashing 

•  Hashing as an implementation of the ADT table	


–  For many applications, hashing provides the most 

efficient implementation	


–  Hashing is not efficient for	



•  Traversal in sorted order	


•  Finding the item with the smallest or largest value in its search 

key	


•  Range query	



•  In external storage, you can simultaneously use	


–  A hashing implementation of the tableRetrieve 

operation	


–  A search-tree implementation of the ordered operations	
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The JCF Hashtable and 
TreeMap Classes 

•  JFC Hashtable implements a hash table	


–  Maps keys to values	


–  Large collection of methods	



•  JFC TreeMap implements a red-black tree	


–  Guarantees O(log n) time for insert, retrieve, remove, 

and search	


–  Large collection of methods	
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Data With Multiple Organizations 

•  Many applications require a data organization that 
simultaneously supports several different data-
management tasks	


–  Several independent data structures do not support all 

operations efficiently	


–  Interdependent data structures provide a better way to 

support a multiple organization of data	
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Summary 

•  A 2-3 tree and a 2-3-4 tree are variants of a binary search 
tree in which the balanced is easily maintained	



•  The insertion and deletion algorithms for a 2-3-4 tree are 
more efficient than the corresponding algorithms for a 2-3 
tree	



•  A red-black tree is a binary tree representation of a 2-3-4 
tree that requires less storage than a 2-3-4 tree	



•  An AVL tree is a binary search tree that is guaranteed to 
remain balanced	



•  Hashing as a table implementation calculates where the 
data item should be rather than search for it	
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Summary 
•  A hash function should be extremely easy to compute and 

should scatter the search keys evenly throughout the hash 
table	



•  A collision occurs when two different search keys hash 
into the same array location	



•  Hashing does not efficiently support operations that require 
the table items to be ordered	



•  Hashing as a table implementation is simpler and faster 
than balanced search tree implementations when table 
operations such as traversal are not important to a 
particular application	



•  Several independent organizations can be imposed on a 
given set of data 	




