

Chapter 13

Advanced Implementation of Tables

Balanced Search Trees

- The efficiency of the binary search tree implementation of the ADT table is related to the tree's height
 - Height of a binary search tree of n items
 - Maximum: n
 - Minimum: $\lceil \log_2(n+1) \rceil$
- Height of a binary search tree is sensitive to the order of insertions and deletions
- Variations of the binary search tree
 - Can retain their balance despite insertions and deletions

- A 2-3 tree
 - Has 2-nodes and 3-nodes
 - A 2-node
 - A node with one data item and two children
 - A 3-node
 - A node with two data items and three children
 - Is not a binary tree
 - Is never taller than a minimum-height binary tree
 - A 2-3 tree with n nodes never has height greater than $\lceil \log_2(n+1) \rceil$

- Rules for placing data items in the nodes of a 2-3 tree
 - A 2-node must contain a single data item whose search key is
 - Greater than the left child's search key(s)
 - Less than the right child's search(s)
 - A 3-node must contain two data items whose search keys S and L satisfy the following
 - S is
 - Greater than the left child's search key(s)
 - Less than the middle child's search key(s)
 - Lis
 - Greater than the middle child's search key(s)
 - Less than the right child's search key(s)
 - A leaf may contain either one or two data items

Figure 13-3

Nodes in a 2-3 tree a) a 2-node; b) a 3-node

- Traversing a 2-3 tree
 - To traverse a 2-3 tree
 - Perform the analogue of an inorder traversal
- Searching a 2-3 tree
 - Searching a 2-3 tree is as efficient as searching the shortest binary search tree
 - Searching a 2-3 tree is O(log₂n)
 - Number of comparisons required to search a 2-3 tree for a given item
 - Approximately equal to the number of comparisons required to search a binary search tree that is as balanced as possible

- Advantage of a 2-3 tree over a balanced binary search tree
 - Maintaining the balance of a binary search tree is difficult
 - Maintaining the balance of a 2-3 tree is relatively easy

2-3 Trees: Inserting Into a 2-3 Tree

- Insertion into a 2-node leaf is simple
- Insertion into a 3-node causes it to divide

2-3 Trees: The Insertion Algorithm

- To insert an item I into a 2-3 tree
 - Locate the leaf at which the search for I would terminate
 - Insert the new item I into the leaf
 - If the leaf now contains only two items, you are done
 - If the leaf now contains three items, split the leaf into two nodes, n_1 and n_2

Figure 13-12
Splitting a leaf in a 2-3 tree

2-3 Trees: The Insertion Algorithm

- When an internal node contains three items
 - Split the node into two nodes
 - Accommodate the node's children

Figure 13-13
Splitting an internal node in a 2-3 tree

2-3 Trees: The Insertion Algorithm

- When the root contains three items
 - Split the root into two nodes
 - Create a new root node

Figure 13-14

Splitting the root of a 2-3 tree

2-3 Trees: Deleting from a 2-3 Tree

- Deletion from a 2-3 tree
 - Does not affect the balance of the tree
- Deletion from a balanced binary search tree
 - May cause the tree to lose its balance

Figure 13-19a and 13-19b

- a) Redistributing values;
- b) merging a leaf

Figure 13-19c and 13-19d

c) redistributing valuesand children; d) merginginternal nodes

Figure 13-19e

e) deleting the root

- When analyzing the efficiency of the insertItem and deleteItem algorithms, it is sufficient to consider only the time required to locate the item
- A 2-3 implementation of a table is O(log₂n) for all table operations
- A 2-3 tree is a compromise
 - Searching a 2-3 tree is not quite as efficient as searching a binary search tree of minimum height
 - A 2-3 tree is relatively simple to maintain

2-3-4 Trees

- Rules for placing data items in the nodes of a 2-3-4 tree
 - A 2-node must contain a single data item whose search keys satisfy the relationships pictured in Figure 13-3a
 - A 3-node must contain two data items whose search keys satisfy the relationships pictured in Figure 13-3b
 - A 4-node must contain three data items whose search keys S, M,
 and L satisfy the relationship pictured in Figure 13-21
 - A leaf may contain either one, two, or three data items

Figure 13-21

A 4-node in a 2-3-4 tree

2-3-4 Trees: Searching and Traversing a 2-3-4 Tree

• Search and traversal algorithms for a 2-3-4 tree are simple extensions of the corresponding algorithms for a 2-3 tree

2-3-4 Trees: Inserting into a 2-3-4 Tree

- The insertion algorithm for a 2-3-4 tree
 - Splits a node by moving one of its items up to its parent node
 - Splits 4-nodes as soon as its encounters them on the way down the tree from the root to a leaf
 - Result: when a 4-node is split and an item is moved up to the node's parent, the parent cannot possibly be a 4-node and can accommodate another item

2-3-4 Trees: Splitting 4-nodes During Insertion

- A 4-node is split as soon as it is encountered during a search from the root to a leaf
- The 4-node that is split will
 - Be the root, or
 - Have a 2-node parent, or
 - Have a 3-node parent

Figure 13-28
Splitting a 4-node root during insertion

2-3-4 Trees: Splitting 4-nodes During Insertion

Figure 13-29
Splitting a 4-node whose parent is a 2-node during insertion

2-3-4 Trees: Splitting 4-nodes During Insertion

Figure 13-30
Splitting a 4-node whose parent is a 3-node during insertion

2-3-4 Trees: Deleting from a 2-3-4 Tree

- The deletion algorithm for a 2-3-4 tree
 - Locate the node n that contains the item theItem
 - Find the Item's inorder successor and swap it with the Item (deletion will always be at a leaf)
 - If that leaf is a 3-node or a 4-node, remove the Item
 - To ensure that the Item does not occur in a 2-node
 - Transform each 2-node encountered into a 3-node or a 4-node

2-3-4 Trees: Concluding Remarks

- Advantage of 2-3 and 2-3-4 trees
 - Easy-to-maintain balance
- Insertion and deletion algorithms for a 2-3-4 tree require fewer steps that those for a 2-3 tree
- Allowing nodes with more than four children is counterproductive

Red-Black Trees

- A 2-3-4 tree
 - Advantages
 - It is balanced
 - Its insertion and deletion operations use only one pass from root to leaf
 - Disadvantage
 - Requires more storage than a binary search tree
- A red-black tree
 - A special binary search tree
 - Used to represent a 2-3-4 tree
 - Has the advantages of a 2-3-4 tree, without the storage overhead

Red-Black Trees

- Basic idea
 - Represent each 3-node and 4-node in a 2-3-4 tree as an equivalent binary tree
- Red and black children references
 - Used to distinguish between 2-nodes that appeared in the original 2-3-4 tree and 2-nodes that are generated from 3-nodes and 4-nodes
 - Black references are used for child references in the original 2-3-4 tree
 - Red references are used to link the 2-nodes that result from the split 3-nodes and 4-nodes

Red-Black Trees

Figure 13-31

Red-black representation of a 4-node

Figure 13-32

Red-black representation of a 3-node

Red-Black Trees: Searching and Traversing a Red-Black Tree

- A red-black tree is a binary search tree
- The algorithms for a binary search tree can be used to search and traverse a red-black tree

- Insertion algorithm
 - The 2-3-4 insertion algorithm can be adjusted to accommodate the red-black representation
 - The process of splitting 4-nodes that are encountered during a search must be reformulated in terms of the red-black representation
 - In a red-black tree, splitting the equivalent of a 4-node requires only simple color changes
 - Rotation: a reference change that results in a shorter tree
- Deletion algorithm
 - Derived from the 2-3-4 deletion algorithm

Figure 13-34

Splitting a red-black representation of a 4-node that is the root

Figure 13-35
Splitting a red-black
representation of a 4-node
whose parent is a 2-node

Figure 13-36a
Splitting a red-black
representation of a 4-node
whose parent is a 3-node

Figure 13-36b
Splitting a red-black
representation of a 4-node
whose parent is a 3-node

Figure 13-36c
Splitting a red-black
representation of a 4-node
whose parent is a 3-node

AVL Trees

- An AVL tree
 - A balanced binary search tree
 - Can be searched almost as efficiently as a minimumheight binary search tree
 - Maintains a height close to the minimum
 - Requires far less work than would be necessary to keep the height exactly equal to the minimum
- Basic strategy of the AVL method
 - After each insertion or deletion
 - Check whether the tree is still balanced
 - If the tree is unbalanced, restore the balance

AVL Trees

- Rotations
 - Restore the balance of a tree
 - Two types
 - Single rotation
 - Double rotation

Figure 13-38

a) An unbalanced binary search tree; b) a balanced tree after a single left rotation

AVL Trees

Figure 13-42

a) Before; b) during; and c) after a double rotation

AVL Trees

- Advantage
 - Height of an AVL tree with n nodes is always very close to the theoretical minimum
- Disadvantage
 - An AVL tree implementation of a table is more difficult than other implementations

Hashing

Hashing

 Enables access to table items in time that is relatively constant and independent of the items

Hash function

 Maps the search key of a table item into a location that will contain the item

Hash table

 An array that contains the table items, as assigned by a hash function

Hashing

- A perfect hash function
 - Maps each search key into a unique location of the hash table
 - Possible if all the search keys are known
- Collisions
 - Occur when the hash function maps more than one item into the same array location
- Collision-resolution schemes
 - Assign locations in the hash table to items with different search keys when the items are involved in a collision
- Requirements for a hash function
 - Be easy and fast to compute
 - Place items evenly throughout the hash table

Hash Functions

- It is sufficient for hash functions to operate on integers
- Simple hash functions that operate on positive integers
 - Selecting digits
 - Folding
 - Module arithmetic
- Converting a character string to an integer
 - If the search key is a character string, it can be converted into an integer before the hash function is applied

Resolving Collisions

- Two approaches to collision resolution
 - Approach 1: Open addressing
 - A category of collision resolution schemes that probe for an empty, or open, location in the hash table
 - The sequence of locations that are examined is the probe sequence
 - Linear probing
 - Searches the hash table sequentially, starting from the original location specified by the hash function
 - Possible problem
 - » Primary clustering

Resolving Collisions

- Approach 1: Open addressing (Continued)
 - Quadratic probing
 - Searches the hash table beginning with the original location that the hash function specifies and continues at increments of 1^2 , 2^2 , 3^2 , and so on
 - Possible problem
 - Secondary clustering
 - Double hashing
 - Uses two hash functions
 - Searches the hash table starting from the location that one hash function determines and considers every nth location, where n is determined from a second hash function
- Increasing the size of the hash table
 - The hash function must be applied to every item in the old hash table before the item is placed into the new hash table

Resolving Collisions

- Approach 2: Restructuring the hash table
 - Changes the structure of the hash table so that it can accommodate more than one item in the same location
 - Buckets
 - Each location in the hash table is itself an array called a bucket
 - Separate chaining
 - Each hash table location is a linked list

The Efficiency of Hashing

- An analysis of the average-case efficiency of hashing involves the load factor
 - Load factor α
 - Ratio of the current number of items in the table to the maximum size of the array table
 - Measures how full a hash table is
 - Should not exceed 2/3
 - Hashing efficiency for a particular search also depends on whether the search is successful
 - Unsuccessful searches generally require more time than successful searches

The Efficiency of Hashing

- Linear probing
 - Successful search: $\frac{1}{2}[1 + 1(1-\alpha)]$
 - Unsuccessful search: $\frac{1}{2}[1 + 1(1 \alpha)^2]$
- Quadratic probing and double hashing
 - Successful search: $-\log_e(1-\alpha)/\alpha$
 - Unsuccessful search: $1/(1-\alpha)$
- Separate chaining
 - Insertion is O(1)
 - Retrievals and deletions
 - Successful search: $1 + (\alpha/2)$
 - Unsuccessful search: α

The Efficiency of Hashing

Figure 13-50

The relative efficiency of four collision-resolution methods

What Constitutes a Good Hash Function?

- A good hash function should
 - Be easy and fast to compute
 - Scatter the data evenly throughout the hash table
- Issues to consider with regard to how evenly a hash function scatters the search keys
 - How well does the hash function scatter random data?
 - How well does the hash function scatter nonrandom data?
- General requirements of a hash function
 - The calculation of the hash function should involve the entire search key
 - If a hash function uses module arithmetic, the base should be prime

Table Traversal: An Inefficient Operation Under Hashing

- Hashing as an implementation of the ADT table
 - For many applications, hashing provides the most efficient implementation
 - Hashing is not efficient for
 - Traversal in sorted order
 - Finding the item with the smallest or largest value in its search key
 - Range query
- In external storage, you can simultaneously use
 - A hashing implementation of the tableRetrieve operation
 - A search-tree implementation of the ordered operations

The JCF Hashtable and TreeMap Classes

- JFC Hashtable implements a hash table
 - Maps keys to values
 - Large collection of methods
- JFC TreeMap implements a red-black tree
 - Guarantees O(log n) time for insert, retrieve, remove, and search
 - Large collection of methods

Data With Multiple Organizations

- Many applications require a data organization that simultaneously supports several different datamanagement tasks
 - Several independent data structures do not support all operations efficiently
 - Interdependent data structures provide a better way to support a multiple organization of data

Summary

- A 2-3 tree and a 2-3-4 tree are variants of a binary search tree in which the balanced is easily maintained
- The insertion and deletion algorithms for a 2-3-4 tree are more efficient than the corresponding algorithms for a 2-3 tree
- A red-black tree is a binary tree representation of a 2-3-4 tree that requires less storage than a 2-3-4 tree
- An AVL tree is a binary search tree that is guaranteed to remain balanced
- Hashing as a table implementation calculates where the data item should be rather than search for it

Summary

- A hash function should be extremely easy to compute and should scatter the search keys evenly throughout the hash table
- A collision occurs when two different search keys hash into the same array location
- Hashing does not efficiently support operations that require the table items to be ordered
- Hashing as a table implementation is simpler and faster than balanced search tree implementations when table operations such as traversal are not important to a particular application
- Several independent organizations can be imposed on a given set of data