
© 2011 Pearson Addison-Wesley. All rights reserved 13 A-1

 Chapter 13

Advanced Implementation of
Tables	

© 2011 Pearson Addison-Wesley. All rights reserved 13 A-2

Balanced Search Trees

•  The efficiency of the binary search tree
implementation of the ADT table is related to the
tree’s height	

–  Height of a binary search tree of n items 	

•  Maximum: n	

•  Minimum: ⎡log2(n + 1)⎤	

•  Height of a binary search tree is sensitive to the
order of insertions and deletions	

•  Variations of the binary search tree	

–  Can retain their balance despite insertions and deletions	

© 2011 Pearson Addison-Wesley. All rights reserved 13 A-3

2-3 Trees

•  A 2-3 tree 	

–  Has 2-nodes and 3-nodes	

•  A 2-node	

–  A node with one data item and two children	

•  A 3-node	

–  A node with two data items and three children	

–  Is not a binary tree	

–  Is never taller than a minimum-height binary tree	

•  A 2-3 tree with n nodes never has height greater than 	

	
⎡log2(n + 1)⎤	

© 2011 Pearson Addison-Wesley. All rights reserved 13 A-4

2-3 Trees

•  Rules for placing data items in the nodes of a 2-3 tree	

–  A 2-node must contain a single data item whose search key is	

•  Greater than the left child’s search key(s)	

•  Less than the right child’s search(s)	

–  A 3-node must contain two data items whose search keys S and L
satisfy the following	

•  S is	

–  Greater than the left child’s search key(s)	

–  Less than the middle child’s search key(s)	

•  L is	

–  Greater than the middle child’s search key(s)	

–  Less than the right child’s search key(s)	

–  A leaf may contain either one or two data items	

© 2011 Pearson Addison-Wesley. All rights reserved 13 A-5

2-3 Trees

Figure 13-3
Nodes in a 2-3 tree a) a 2-node; b) a 3-node

© 2011 Pearson Addison-Wesley. All rights reserved 13 A-6

2-3 Trees

•  Traversing a 2-3 tree	

–  To traverse a 2-3 tree	

•  Perform the analogue of an inorder traversal	

•  Searching a 2-3 tree	

–  Searching a 2-3 tree is as efficient as searching the

shortest binary search tree	

•  Searching a 2-3 tree is O(log2n)	

•  Number of comparisons required to search a 2-3 tree for a

given item	

–  Approximately equal to the number of comparisons required to

search a binary search tree that is as balanced as possible	

© 2011 Pearson Addison-Wesley. All rights reserved 13 A-7

2-3 Trees

•  Advantage of a 2-3 tree over a balanced binary
search tree	

–  Maintaining the balance of a binary search tree is

difficult	

–  Maintaining the balance of a 2-3 tree is relatively easy	

© 2011 Pearson Addison-Wesley. All rights reserved 13 A-8

2-3 Trees: Inserting Into a 2-3
Tree

•  Insertion into a 2-node leaf is simple	

•  Insertion into a 3-node causes it to divide	

© 2011 Pearson Addison-Wesley. All rights reserved 13 A-9

2-3 Trees: The Insertion
Algorithm
•  To insert an item I into a 2-3 tree	

–  Locate the leaf at which the search for I would terminate	

–  Insert the new item I into the leaf	

–  If the leaf now contains only two items, you are done 	

–  If the leaf now contains three items, split the leaf into two nodes,

n1 and n2	

Figure 13-12
Splitting a leaf in a 2-3 tree

© 2011 Pearson Addison-Wesley. All rights reserved 13 A-10

2-3 Trees: The Insertion
Algorithm
•  When an internal node contains three items	

–  Split the node into two nodes	

–  Accommodate the node’s children	

Figure 13-13
Splitting an internal node

in a 2-3 tree

© 2011 Pearson Addison-Wesley. All rights reserved 13 A-11

2-3 Trees: The Insertion
Algorithm
•  When the root contains three items	

–  Split the root into two nodes	

–  Create a new root node	

Figure 13-14
Splitting the root of a 2-3 tree

© 2011 Pearson Addison-Wesley. All rights reserved 13 A-12

2-3 Trees: Deleting from a 2-3
Tree

•  Deletion from a 2-3 tree	

–  Does not affect the balance of the tree	

•  Deletion from a balanced binary search tree	

–  May cause the tree to lose its balance	

© 2011 Pearson Addison-Wesley. All rights reserved 13 A-13

2-3 Trees: The Deletion
Algorithm

Figure 13-19a and
13-19b
a) Redistributing values;

b) merging a leaf

© 2011 Pearson Addison-Wesley. All rights reserved 13 A-14

2-3 Trees: The Deletion
Algorithm

Figure 13-19c and
13-19d
c) redistributing values

and children; d) merging

internal nodes

© 2011 Pearson Addison-Wesley. All rights reserved 13 A-15

2-3 Trees: The Deletion
Algorithm

Figure 13-19e
e) deleting the root

© 2011 Pearson Addison-Wesley. All rights reserved 13 A-16

2-3 Trees: The Deletion
Algorithm

•  When analyzing the efficiency of the
insertItem and deleteItem algorithms, it
is sufficient to consider only the time required to
locate the item	

•  A 2-3 implementation of a table is O(log2n) for all
table operations	

•  A 2-3 tree is a compromise	

–  Searching a 2-3 tree is not quite as efficient as

searching a binary search tree of minimum height	

–  A 2-3 tree is relatively simple to maintain	

© 2011 Pearson Addison-Wesley. All rights reserved 13 A-17

2-3-4 Trees
•  Rules for placing data items in the nodes of a 2-3-4 tree	

–  A 2-node must contain a single data item whose search keys satisfy
the relationships pictured in Figure 13-3a	

–  A 3-node must contain two data items whose search keys satisfy
the relationships pictured in Figure 13-3b	

–  A 4-node must contain three data items whose search keys S, M,
and L satisfy the relationship pictured in Figure 13-21	

–  A leaf may contain either one, two, or three data items 	

Figure 13-21
A 4-node in a 2-3-4 tree

© 2011 Pearson Addison-Wesley. All rights reserved 13 A-18

2-3-4 Trees: Searching and
Traversing a 2-3-4 Tree

•  Search and traversal algorithms for a 2-3-4 tree are
simple extensions of the corresponding algorithms
for a 2-3 tree	

© 2011 Pearson Addison-Wesley. All rights reserved 13 A-19

2-3-4 Trees: Inserting into a 2-3-4
Tree

•  The insertion algorithm for a 2-3-4 tree	

–  Splits a node by moving one of its items up to its parent

node	

–  Splits 4-nodes as soon as its encounters them on the

way down the tree from the root to a leaf	

•  Result: when a 4-node is split and an item is moved

up to the node’s parent, the parent cannot possibly
be a 4-node and can accommodate another item	

© 2011 Pearson Addison-Wesley. All rights reserved 13 A-20

2-3-4 Trees: Splitting 4-nodes
During Insertion
•  A 4-node is split as soon as it is encountered

during a search from the root to a leaf	

•  The 4-node that is split will	

–  Be the root, or	

–  Have a 2-node parent, or	

–  Have a 3-node parent	

Figure 13-28
Splitting a 4-node root during

insertion

© 2011 Pearson Addison-Wesley. All rights reserved 13 A-21

2-3-4 Trees: Splitting 4-nodes
During Insertion

Figure 13-29
Splitting a 4-node whose

parent is a 2-node during

insertion

© 2011 Pearson Addison-Wesley. All rights reserved 13 A-22

2-3-4 Trees: Splitting 4-nodes
During Insertion

Figure 13-30
Splitting a 4-node whose

parent is a 3-node during

insertion

© 2011 Pearson Addison-Wesley. All rights reserved 13 A-23

2-3-4 Trees: Deleting from a
2-3-4 Tree

•  The deletion algorithm for a 2-3-4 tree	

–  Locate the node n that contains the item theItem
–  Find theItem’s inorder successor and swap it with
theItem (deletion will always be at a leaf)	

–  If that leaf is a 3-node or a 4-node, remove theItem
–  To ensure that theItem does not occur in a 2-node	

•  Transform each 2-node encountered into a 3-node or a 4-node	

© 2011 Pearson Addison-Wesley. All rights reserved 13 A-24

2-3-4 Trees: Concluding
Remarks

•  Advantage of 2-3 and 2-3-4 trees	

–  Easy-to-maintain balance	

•  Insertion and deletion algorithms for a 2-3-4 tree
require fewer steps that those for a 2-3 tree	

•  Allowing nodes with more than four children is
counterproductive	

© 2011 Pearson Addison-Wesley. All rights reserved 13 B-25

Red-Black Trees

•  A 2-3-4 tree	

–  Advantages	

•  It is balanced	

•  Its insertion and deletion operations use only one pass from

root to leaf	

–  Disadvantage	

•  Requires more storage than a binary search tree	

•  A red-black tree	

–  A special binary search tree	

–  Used to represent a 2-3-4 tree	

–  Has the advantages of a 2-3-4 tree, without the storage

overhead	

© 2011 Pearson Addison-Wesley. All rights reserved 13 B-26

Red-Black Trees

•  Basic idea 	

–  Represent each 3-node and 4-node in a 2-3-4 tree as an

equivalent binary tree	

•  Red and black children references	

–  Used to distinguish between 2-nodes that appeared in
the original 2-3-4 tree and 2-nodes that are generated
from 3-nodes and 4-nodes	

•  Black references are used for child references in the original 	

	
2-3-4 tree	

•  Red references are used to link the 2-nodes that result from the
split 3-nodes and 4-nodes 	

© 2011 Pearson Addison-Wesley. All rights reserved 13 B-27

Red-Black Trees
Figure 13-31
Red-black

representation of a 4-

node

Figure 13-32
Red-black

representation of a 3-

node

© 2011 Pearson Addison-Wesley. All rights reserved 13 B-28

Red-Black Trees: Searching and
Traversing a Red-Black Tree

•  A red-black tree is a binary search tree	

•  The algorithms for a binary search tree can be

used to search and traverse a red-black tree	

© 2011 Pearson Addison-Wesley. All rights reserved 13 B-29

Red-Black Trees: Inserting and
Deleting From a Red-Black Tree

•  Insertion algorithm	

–  The 2-3-4 insertion algorithm can be adjusted to

accommodate the red-black representation	

•  The process of splitting 4-nodes that are encountered during a

search must be reformulated in terms of the red-black
representation	

–  In a red-black tree, splitting the equivalent of a 4-node requires
only simple color changes	

–  Rotation: a reference change that results in a shorter tree	

•  Deletion algorithm	

–  Derived from the 2-3-4 deletion algorithm	

© 2011 Pearson Addison-Wesley. All rights reserved 13 B-30

Red-Black Trees: Inserting and
Deleting From a Red-Black Tree

Figure 13-34
Splitting a red-black representation of a 4-node that is the root

© 2011 Pearson Addison-Wesley. All rights reserved 13 B-31

Red-Black Trees: Inserting and
Deleting From a Red-Black Tree

Figure 13-35
Splitting a red-black

representation of a 4-node

whose parent is a 2-node

© 2011 Pearson Addison-Wesley. All rights reserved 13 B-32

Red-Black Trees: Inserting and
Deleting From a Red-Black Tree

Figure 13-36a
Splitting a red-black

representation of a 4-node

whose parent is a 3-node

© 2011 Pearson Addison-Wesley. All rights reserved 13 B-33

Red-Black Trees: Inserting and
Deleting From a Red-Black Tree

Figure 13-36b
Splitting a red-black

representation of a 4-node

whose parent is a 3-node

© 2011 Pearson Addison-Wesley. All rights reserved 13 B-34

Red-Black Trees: Inserting and
Deleting From a Red-Black Tree

Figure 13-36c
Splitting a red-black

representation of a 4-node

whose parent is a 3-node

© 2011 Pearson Addison-Wesley. All rights reserved 13 B-35

AVL Trees

•  An AVL tree	

–  A balanced binary search tree	

–  Can be searched almost as efficiently as a minimum-

height binary search tree	

–  Maintains a height close to the minimum	

–  Requires far less work than would be necessary to keep

the height exactly equal to the minimum	

•  Basic strategy of the AVL method	

–  After each insertion or deletion	

•  Check whether the tree is still balanced	

•  If the tree is unbalanced, restore the balance	

© 2011 Pearson Addison-Wesley. All rights reserved 13 B-36

AVL Trees
•  Rotations	

–  Restore the balance of a tree	

–  Two types	

•  Single rotation	

•  Double rotation	

Figure 13-38
a) An unbalanced binary search tree; b) a balanced tree after a single left rotation

© 2011 Pearson Addison-Wesley. All rights reserved 13 B-37

AVL Trees

Figure 13-42
a) Before; b) during; and c) after a double rotation

© 2011 Pearson Addison-Wesley. All rights reserved 13 B-38

AVL Trees

•  Advantage	

–  Height of an AVL tree with n nodes is always very

close to the theoretical minimum	

•  Disadvantage	

–  An AVL tree implementation of a table is more difficult
than other implementations	

© 2011 Pearson Addison-Wesley. All rights reserved 13 B-39

Hashing

•  Hashing	

–  Enables access to table items in time that is relatively

constant and independent of the items	

•  Hash function	

–  Maps the search key of a table item into a location that
will contain the item	

•  Hash table	

–  An array that contains the table items, as assigned by a

hash function	

© 2011 Pearson Addison-Wesley. All rights reserved 13 B-40

Hashing

•  A perfect hash function	

–  Maps each search key into a unique location of the hash table	

–  Possible if all the search keys are known	

•  Collisions	

–  Occur when the hash function maps more than one item into the

same array location	

•  Collision-resolution schemes	

–  Assign locations in the hash table to items with different search
keys when the items are involved in a collision	

•  Requirements for a hash function	

–  Be easy and fast to compute	

–  Place items evenly throughout the hash table	

© 2011 Pearson Addison-Wesley. All rights reserved 13 B-41

Hash Functions

•  It is sufficient for hash functions to operate on
integers	

•  Simple hash functions that operate on positive
integers	

–  Selecting digits	

–  Folding	

–  Module arithmetic	

•  Converting a character string to an integer	

–  If the search key is a character string, it can be

converted into an integer before the hash function is
applied	

© 2011 Pearson Addison-Wesley. All rights reserved 13 B-42

Resolving Collisions

•  Two approaches to collision resolution	

–  Approach 1: Open addressing	

•  A category of collision resolution schemes that probe for an
empty, or open, location in the hash table	

–  The sequence of locations that are examined is the probe
sequence	

•  Linear probing	

–  Searches the hash table sequentially, starting from the original

location specified by the hash function	

–  Possible problem	

»  Primary clustering	

© 2011 Pearson Addison-Wesley. All rights reserved 13 B-43

Resolving Collisions
•  Approach 1: Open addressing (Continued)	

–  Quadratic probing	

•  Searches the hash table beginning with the original location that the

hash function specifies and continues at increments of 12, 22, 32, and
so on	

•  Possible problem	

–  Secondary clustering	

–  Double hashing	

•  Uses two hash functions	

•  Searches the hash table starting from the location that one hash

function determines and considers every nth location, where n is
determined from a second hash function	

•  Increasing the size of the hash table	

–  The hash function must be applied to every item in the old hash

table before the item is placed into the new hash table	

© 2011 Pearson Addison-Wesley. All rights reserved 13 B-44

Resolving Collisions

•  Approach 2: Restructuring the hash table	

–  Changes the structure of the hash table so that it can

accommodate more than one item in the same location	

–  Buckets	

•  Each location in the hash table is itself an array
called a bucket	

–  Separate chaining	

•  Each hash table location is a linked list	

© 2011 Pearson Addison-Wesley. All rights reserved 13 B-45

The Efficiency of Hashing

•  An analysis of the average-case efficiency of
hashing involves the load factor 	

–  Load factor α	

•  Ratio of the current number of items in the table to the
maximum size of the array table

•  Measures how full a hash table is	

•  Should not exceed 2/3	

–  Hashing efficiency for a particular search also depends
on whether the search is successful	

•  Unsuccessful searches generally require more time than
successful searches	

© 2011 Pearson Addison-Wesley. All rights reserved 13 B-46

The Efficiency of Hashing

•  Linear probing	

–  Successful search: ½[1 + 1(1-α)]	

–  Unsuccessful search: ½[1 + 1(1- α)2]	

•  Quadratic probing and double hashing	

–  Successful search: -loge(1- α)/ α	

–  Unsuccessful search: 1/(1- α)	

•  Separate chaining	

–  Insertion is O(1)	

–  Retrievals and deletions	

•  Successful search: 1 + (α/2)	

•  Unsuccessful search: α	

© 2011 Pearson Addison-Wesley. All rights reserved 13 B-47

The Efficiency of Hashing

Figure 13-50
The relative efficiency of four collision-resolution methods

© 2011 Pearson Addison-Wesley. All rights reserved 13 B-48

What Constitutes a Good Hash
Function?
•  A good hash function should	

–  Be easy and fast to compute	

–  Scatter the data evenly throughout the hash table	

•  Issues to consider with regard to how evenly a hash
function scatters the search keys	

–  How well does the hash function scatter random data?	

–  How well does the hash function scatter nonrandom data?	

•  General requirements of a hash function	

–  The calculation of the hash function should involve the entire

search key	

–  If a hash function uses module arithmetic, the base should be

prime	

© 2011 Pearson Addison-Wesley. All rights reserved 13 B-49

Table Traversal: An Inefficient
Operation Under Hashing

•  Hashing as an implementation of the ADT table	

–  For many applications, hashing provides the most

efficient implementation	

–  Hashing is not efficient for	

•  Traversal in sorted order	

•  Finding the item with the smallest or largest value in its search

key	

•  Range query	

•  In external storage, you can simultaneously use	

–  A hashing implementation of the tableRetrieve

operation	

–  A search-tree implementation of the ordered operations	

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-50

The JCF Hashtable and
TreeMap Classes

•  JFC Hashtable implements a hash table	

–  Maps keys to values	

–  Large collection of methods	

•  JFC TreeMap implements a red-black tree	

–  Guarantees O(log n) time for insert, retrieve, remove,

and search	

–  Large collection of methods	

© 2011 Pearson Addison-Wesley. All rights reserved 13 B-51

Data With Multiple Organizations

•  Many applications require a data organization that
simultaneously supports several different data-
management tasks	

–  Several independent data structures do not support all

operations efficiently	

–  Interdependent data structures provide a better way to

support a multiple organization of data	

© 2011 Pearson Addison-Wesley. All rights reserved 13 B-52

Summary

•  A 2-3 tree and a 2-3-4 tree are variants of a binary search
tree in which the balanced is easily maintained	

•  The insertion and deletion algorithms for a 2-3-4 tree are
more efficient than the corresponding algorithms for a 2-3
tree	

•  A red-black tree is a binary tree representation of a 2-3-4
tree that requires less storage than a 2-3-4 tree	

•  An AVL tree is a binary search tree that is guaranteed to
remain balanced	

•  Hashing as a table implementation calculates where the
data item should be rather than search for it	

© 2011 Pearson Addison-Wesley. All rights reserved 13 B-53

Summary
•  A hash function should be extremely easy to compute and

should scatter the search keys evenly throughout the hash
table	

•  A collision occurs when two different search keys hash
into the same array location	

•  Hashing does not efficiently support operations that require
the table items to be ordered	

•  Hashing as a table implementation is simpler and faster
than balanced search tree implementations when table
operations such as traversal are not important to a
particular application	

•  Several independent organizations can be imposed on a
given set of data 	

