Chapter 12

cccccccccc
PPPPPPP

IIIII

Tables and Priority Queues

© 2011 Pearson Addison-Wesley. All rights reserved

12 A-1

The ADT Table

e The ADT table, or dictionary

— Uses a search key to identify its items

— Its items are records that contain several pieces of data

City Country Population
Athens Greece 2,500,000
Barcelona ~ Spain 1,800,000
Cairo Egypt 9,500,000
London England 9,400,000
New York U.S.A. 7,300,000
Paris France 2,200,000
Rome Italy 2,800,000
Toronto Canada 3,200,000
Venice Italy 300,000

© 2011 Pearson Addison-Wesley. All rights reserved

Figure 12-1

An ordinary table of cities

12 A-2

The ADT Table

e Operations of the ADT table
— Create an empty table
— Determine whether a table 1s empty
— Determine the number of items in a table
— Insert a new item into a table
— Delete the item with a given search key from a table
— Retrieve the item with a given search key from a table
— Traverse the items 1n a table 1n sorted search-key order

© 2011 Pearson Addison-Wesley. All rights reserved 12 A-3

The ADT Table

e Pseudocode for the operations of the ADT table
createTable ()
// Creates an empty table.

tableIsEmpty ()
// Determines whether a table is empty.

tablelLength ()
// Determines the number of items in a table.

tableInsert (newlItem) throws TableException

// Inserts newltem into a table whose items have
// distinct search keys that differ from newItem s
// search key. Throws TableException if the

// insertion is not successful

© 2011 Pearson Addison-Wesley. All rights reserved 12 A-4

The ADT Table

e Pseudocode for the operations of the ADT table
(Continued)

tableDelete (searchKey)

// Deletes from a table the item whose search key
// equals searchKey. Returns false if no such item
// exists. Returns true 1f the deletion was

// successful.

tableRetrieve (searchKey)

// Returns the item in a table whose search key
// equals searchKey. Returns null if no such item
// exists.

tableTraverse ()
// Traverses a table in sorted search-key order.

© 2011 Pearson Addison-Wesley. All rights reserved 12 A-5

The ADT Table

e Value of the search key for an 1item must remain
the same as long as the item 1is stored in the table
« KeyedItem class

— Contains an item’ s search key and a method for
accessing the search-key data field

— Prevents the search-key value from being modified
once an item 1s created

e TableInterface interface

— Defines the table operations

© 2011 Pearson Addison-Wesley. All rights reserved 12 A-6

Selecting an Implementation

e (Categories of linear implementations
— Unsorted, array based
— Unsorted, referenced based
— Sorted (by search key), array based
— Sorted (by search key), reference based

size items
(@) 9 Athens e e Barcelona e e o oo Venice e o o
0 1 size—1 MAX TABLE - 1
size head
(b) 9 ——>»| Athenseee . Barcelona eee | «4+—3» eee ——»| Venice oo

Figure 12-3
The data fields for two sorted linear implementations of the ADT table for the data in

Figure 12-1: a) array based; b) reference based
© 2011 Pearson Addison-Wesley. All rights reserved 12 A-7

Selecting an Implementation

e A binary search implementation
— A nonlinear implementation

Figure 12-4

The data fields for a binary
search tree implementation of
the ADT table for the data in
Figure 12-1

© 2011 Pearson Addison-Wesley. All rights reserved 12 A-8

Selecting an Implementation

e The binary search tree implementation offers
several advantages over linear implementations

e The requirements of a particular application
influence the selection of an implementation

— Questions to be considered about an application before
choosing an implementation

* What operations are needed?
e How often 1s each operation required?

© 2011 Pearson Addison-Wesley. All rights reserved 12 A-9

Scenario A: Insertion and
Traversal in No Particular Order

e An unsorted order in efficient

— Both array based and reference based tableInsert
operation 1s O(1)

* Array based versus reference based

— If a good estimate of the maximum possible size of the
table 1s not available
e Reference based implementation is preferred

— If a good estimate of the maximum possible size of the
table 1s available
e The choice 1s mostly a matter of style

© 2011 Pearson Addison-Wesley. All rights reserved 12 A-10

Scenario A: Insertion and

Traversal in No Particular Order

MAX TABLE - 1

size items
@ |k+1 Data | Data Data New ? ?
item
0 1 k-1 k k+1
size head
—»| Data *—

Old value
O [k+1] | ="~ | Data
New value /

New /

item

Figure 12-5

Data M

Insertion for unsorted linear implementations: a) array based; b) reference based

© 2011 Pearson Addison-Wesley. All rights reserved

12 A-11

Scenario A: Insertion and
Traversal in No Particular Order

* A binary search tree implementation 1s not
appropriate
— It does more work than the application requires
e It orders the table items

— The insertion operation is O(log n) in the average case

© 2011 Pearson Addison-Wesley. All rights reserved 12 A-12

Scenario B: Retrieval

* Binary search

— An array-based implementation
e Binary search can be used if the array is sorted

— A reference-based implementation

* Binary search can be performed, but is too inefficient to be
practical

* A binary search of an array 1s more efficient than a
sequential search of a linked list

— Binary search of an array
* Worst case: O(log,n)

— Sequential search of a linked list
e O(n)

© 2011 Pearson Addison-Wesley. All rights reserved 12 A-13

Scenario B: Retrieval

e For frequent retrievals
— If the table’ s maximum size is known
e A sorted array-based implementation is appropriate
— If the table’ s maximum size is not known

e A binary search tree implementation is appropriate

© 2011 Pearson Addison-Wesley. All rights reserved 12 A-14

Scenario C: Insertion, Deletion,
Retrieval, and Traversal in Sorted
Order

e Steps performed by both insertion and deletion
— Step 1: Find the appropriate position in the table
— Step 2: Insert 1nto (or delete from) this position

e Step 1

— An array-based implementation is superior than a
reference-based implementation

e Step 2
— A reference-based implementation 1s superior than an

array-based implementation

e A sorted array-based implementation shifts data during

insertions and deletions
© 2011 Pearson Addison-Wesley. All rights reserved 12 A-15

Scenario C: Insertion, Deletion,
Retrieval, and Traversal in Sorted
Order

items

_
(a) Data | Data | « « « « | Data New Data | » » « « | Data ? co e ?
Item
0 1 =1 i i+ 1 k k+1 MAX TABLE - 1
head

Old value
(b) ot —>»|Data| e——> -+ Data N »| Data| e—}—> ++ | Data

Figure 12-6

Insertion for sorted linear implementations: a) array based; b) reference based

© 2011 Pearson Addison-Wesley. All rights reserved 12 A-16

Scenario C: Insertion, Deletion,
Retrieval, and Traversal in Sorted
Order

e Insertion and deletion operations

— Both sorted linear implementations are comparable, but
neither 1s suitable

« tableInsert and tableDelete operations
— Sorted array-based implementation is O(n)
— Sorted reference-based implementation is O(n)
— Binary search tree implementation is suitable

e [t combines the best features of the two linear
implementations

© 2011 Pearson Addison-Wesley. All rights reserved 12 A-17

A Sorted Array-Based
Implementation of the ADT Table

* Linear implementations

— Useful for many applications despite certain difficulties

e A binary search tree implementation

— In general, can be a better choice than a linear
implementation

* A balanced binary search tree implementation

— Increases the efficiency of the ADT table operations

© 2011 Pearson Addison-Wesley. All rights reserved 12 A-18

A Sorted Array-Based

Implementation of the ADT Table

Insertion Deletion Retrieval Traversal
Unsorted array based o(1) O(n) o(n) O(n)
Unsorted pointer based O(1) O(n) O(n) o(n)
Sorted array based O(n) O(n) O(log n) O(n)
Sorted pointer based o(n) O(n) o(n) O(n)
Binary search tree O(logn) O(ogn) O(ogn) O(n)
Figure 12-7
The average-case order of the operations of the ADT table for various
implementations
© 2011 Pearson Addison-Wesley. All rights reserved 12 A-19

A Sorted Array-Based
Implementation of the ADT Table

e Reasons for studying linear implementations
— Perspective
— Efficiency
— Motivation

e TableArrayBased class

— Provides an array-based implementation of the ADT
table

— Implements TableInterface

© 2011 Pearson Addison-Wesley. All rights reserved 12 A-20

A Binary Search Tree
Implementation of the ADT Table

e TableBSTBased class

— Represents a nonlinear reference-based implementation
of the ADT table

— Uses a binary search tree to represent the items in the
ADT table

e Reuses the class BinarySearchTree

© 2011 Pearson Addison-Wesley. All rights reserved 12 A-21

The ADT Priority Queue:
A Variation of the ADT Table

e The ADT priority queue
— Orders its 1items by a priority value
— The first item removed is the one having the highest
priority value
e QOperations of the ADT priority queue
— Create an empty priority queue
— Determine whether a priority queue 1s empty
— Insert a new item into a priority queue

— Retrieve and then delete the item in a priority queue
with the highest priority value

© 2011 Pearson Addison-Wesley. All rights reserved 12 B-22

The ADT Priority Queue:
A Variation of the ADT Table

e Pseudocode for the operations of the ADT priority
queue

createPQueue ()

// Creates an empty priority queue.
pglskEmpty ()

// Determines whether a priority queue 1is

// empty.

© 2011 Pearson Addison-Wesley. All rights reserve d 12 B-23

The ADT Priority Queue:
A Variation of the ADT Table

* Pseudocode for the operations of the ADT priority
queue (Continued)
pglnsert (newltem) throws PQueuekException
// Inserts newltem into a priority queue.

// Throws PQueuekxception if priority queue is
// full.

pgDelete ()
// Retrieves and then deletes the item 1in a

// priority queue with the highest priority
// value.

© 2011 Pearson Addison-Wesley. All rights reserved 12 B-24

The ADT Priority Queue:
A Variation of the ADT Table

e Possible implementations
— Sorted linear implementations

e Appropriate if the number of items 1n the priority
queue 1s small

e Array-based implementation

— Maintains the items sorted in ascending order of priority
value

e Reference-based implementation

— Maintains the items sorted in descending order of priority
value

© 2011 Pearson Addison-Wesley. All rights reserved 12 B-25

The ADT Priority Queue:
A Variation of the ADT Table

size items
@ | 30 3 20 |eee] 95 | 958 | 96 |100.2
0 1 29 MAX QUEUE -1
pgHead

b) | «—»1002] o> 96 | o> 958 —f»| 95 | > e —»| 20 | > 3 M

Figure 12-9a and 12-9b

Some implementations of the ADT priority queue: a) array based; b) reference based

© 2011 Pearson Addison-Wesley. All rights reserved 12 B-26

The ADT Priority Queue:
A Variation of the ADT Table

e Possible implementations (Continued)
— Binary search tree implementation
» Appropriate for any priority queue

Figure 12-9c

Some implementations of the ADT priority queue: ¢) binary search tree

© 2011 Pearson Addison-Wesley. All rights reserve d 12 B-27

Heaps

* A heap 1s a complete binary tree
— That 1s empty

or

— Whose root contains a search key greater than or equal
to the search key in each of its children, and

— Whose root has heaps as its subtrees

© 2011 Pearson Addison-Wesley. All rights reserved 12 B-28

Heaps

 Maxheap

— A heap 1n which the root contains the item with the
largest search key

e Minheap

— A heap 1n which the root contains the item with the
smallest search key

© 2011 Pearson Addison-Wesley. All rights reserved 12 B-29

Heaps

e Pseudocode for the operations of the ADT heap

createHeap ()
// Creates an empty heap.

heapIsEmpty ()
// Determines whether a heap is empty.

heapInsert (newltem) throws HeapException
// Inserts newltem into a heap. Throws
// HeapException if heap is full.

heapDelete ()

// Retrieves and then deletes a heap s root
// item. This item has the largest search key.

© 2011 Pearson Addison-Wesley. All rights reserved 12 B-30

Heaps: An Array-based
Implementation of a Heap

e Data fields

— items: an array of heap items

— size: an integer equal to the number of items in the heap

@ 0 10
Figure 12-11 | :
n © () N —

A heap with its array 3 3
representation = 2
5 5

© 2011 Pearson Addison-Wesley. All rights reserve d 12 B-31

Heaps: heapDelete

e Step 1: Return the item in the root
— Results in disjoint heaps

g A W N — O
U NN W OO

Figure 12-12a
a) Disjoint heaps

© 2011 Pearson Addison-Wesley. All rights reserved 12 B-32

Heaps: heapDelete

e Step 2: Copy the item from the last node into the root

— Results in a semiheap

A W N -~ O
N WO JO L,

(b)
Figure 12-12b

b) a semiheap

© 2011 Pearson Addison-Wesley. All rights reserved 12 B-33

Heaps: heapDelete

e Step 3: Transform the semiheap back into a heap
— Performed by the recursive algorithm heapRebuild

First semiheap passed to heapRebuild Second semiheap passed to heapRebuild

Figure 12-14

Recursive calls to heapRebuild

© 2011 Pearson Addison-Wesley. All rights reserved 12 B-34

Heaps: heapDelete

e Efficiency
— heapDelete 1s O(log n)

a e 9 Place last node e
Delete 10 |n root Trlckle down
—_—

Heap Disjoint heaps Semiheap Heap

Figure 12-13

Deletion from a heap

© 2011 Pearson Addison-Wesley. All rights reserved 12 B-35

Heaps: heapInsert

e Strategy
— Insert newItem into the bottom of the tree
— Trickle new item up to appropriate spot in the tree

e Efficiency: O(log n)
 Heap class
— Represents an array-based implementation of the ADT heap

Insert Trickle Trickle
(s) OO () w () (5w () (o)

— > —_—> e

Figure 12-15

Insertion into a heap

© 2011 Pearson Addison-Wesley. All rights reserved 12 B-36

A Heap Implementation of the
ADT Priority Queue

* Priority-queue operations and heap operations are
analogous

— The priority value 1n a priority-queue corresponds to a
heap item’ s search key

e PriorityQueue class

— Has an instance of the Heap class as its data field

© 2011 Pearson Addison-Wesley. All rights reserved 12 B-37

A Heap Implementation of the
ADT Priority Queue

e A heap implementation of a priority queue

— Disadvantage
e Requires the knowledge of the priority queue’ s maximum size

— Advantage
* A heap is always balanced
e Finite, distinct priority values
— A heap of queues

e Useful when a finite number of distinct priority values are
used, which can result in many items having the same priority
value

© 2011 Pearson Addison-Wesley. All rights reserved 12 B-38

Heapsort

e Strategy
— Transforms the array into a heap

— Removes the heap's root (the largest element) by
exchanging it with the heap’ s last element

— Transforms the resulting semiheap back into a heap

e Efficiency

— Compared to mergesort

* Both heapsort and mergesort are O(n * log n) in both the worst
and average cases

* Advantage over mergesort
— Heapsort does not require a second array

— Compared to quicksort
* Quicksort is the preferred sorting method

© 2011 Pearson Addison-Wesley. All rights reserved 12 B-39

Heapsort

Figure 12-16 (a) @nArray (b) ()

_ 6 | 3|59 2]n10
a) The initial contents of e a
o 1 2 3 4 5

anArray; b)anArray’s

corresponding binary tree e e @

. Heap Sorted (largest elements in array)
Figure 12-18 N A
4 Y4 A
Heapsort partitions an e ceee
array Into two [CISL 0 1 ce e e last lasttl e e e n-1
12 B-40

© 2011 Pearson Addison-Wesley. All rights reserved

Tables and Priority Queues in
JFC: The JFC Map Interface

e Map interface

— Provides the basis for numerous other implementations
of different kinds of maps

- public interface Map<k,Vv> methods
— void clear ()
— boolean containsKey (Object key)
— boolean containsValue (Object wvalue)
— Set<Map.Entry<K,V>> entrySet ()
—V get (Object key);

© 2011 Pearson Addison-Wesley. All rights reserved 12 B-41

Tables and Priority Queues in
JFC: The JFC Map Interface

« public interface Map<K, V> methods

(continued)

— boolean isEmpty ()

— Set<K> keySet ()

- V put (K key, V value)
— V remove (Object key)

— Collection<V> wvalues ()

© 2011 Pearson Addison-Wesley. All rights reserve d 12 B-42

The JFC set Interface

e Set interface
— Ordered collection
— Stores single value entries
— Does not allow for duplicate elements

« public interface Set<T> methods
— boolean add (T o)
— boolean addAll (Collection<? extends T> c)
— void clear ()
— boolean contains (Object o)
— boolean 1sEmpty ()

© 2011 Pearson Addison-Wesley. All rights reserved 12 B-43

The JFC set Interface

« public interface Set<T> methods
(continued)

— Iterator<T> iterator ()

— boolean remove (Object o)

— boolean removeAll (Collection<?> c)
— boolean retainAll (Collection<?> c)

— 1int size ()

© 2011 Pearson Addison-Wesley. All rights reserved

12 B-44

The JFC PriorityQueue Class

« PriorityQueue class
— Has a single data-type parameter with ordered elements

— Relies on the natural ordering of the elements

* As provided by the Comparable interface or a Comparator
object
— Elements in queue are ordered in ascending order

e public Class PriorityQueue<T>

methods
— PriorityQueue (int i1nitialCapacity)

— PriorityQueue (int 1nitialCapacity,
Comparator<? super T> comparator)

— boolean add (T o)
— void clear ()
— boolean contains (Object o)

© 2011 Pearson Addison-Wesley. All rights reserved 12 B-45

The JFC PriorityQueue Class

e public Class PriorityQueue<T>
methods (continued)

— Comparator<? super T> comparator ()
— T element ()

— Tterator<T> iterator ()

— boolean offer (T o)

— T peek()

— T poll()

— boolean remove (Object o)

— int size ()

© 2011 Pearson Addison-Wesley. All rights reserved 12 B-46

Summary

e The ADT table supports value-oriented operations

e The linear implementations (array based and
reference based) of a table are adequate only in
limited situations or for certain operations

e A nonlinear reference-based (binary search tree)
implementation of the ADT table provides the best
aspects of the two linear implementations

* A priority queue, a variation of the ADT table, has
operations which allow you to retrieve and remove
the 1item with the largest priority value

© 2011 Pearson Addison-Wesley. All rights reserved 12 B-47

Summary

* A heap that uses an array-based representation of a
complete binary tree 1s a good implementation of a
priority queue when you know the maximum
number of items that will be stored at any one time

e Efficiency

— Heapsort, like mergesort, has good worst-case and
average-case behaviors, but neither algorithms is as
good 1n the average case as quicksort

— Heapsort has an advantage over mergesort in that it
does not require a second array

© 2011 Pearson Addison-Wesley. All rights reserved 12 B-48

Summary

e Tables and priority queues in JFC
— Map interface
— Set interface

— PriorityQueue class

© 2011 Pearson Addison-Wesley. All rights reserved 12 B-49

