
© 2011 Pearson Addison-Wesley. All rights reserved 12 A-1

 Chapter 12

	

Tables and Priority Queues	

© 2011 Pearson Addison-Wesley. All rights reserved 12 A-2

The ADT Table
•  The ADT table, or dictionary	

–  Uses a search key to identify its items	

–  Its items are records that contain several pieces of data	

Figure 12-1
An ordinary table of cities

© 2011 Pearson Addison-Wesley. All rights reserved 12 A-3

The ADT Table

•  Operations of the ADT table	

–  Create an empty table	

–  Determine whether a table is empty	

–  Determine the number of items in a table	

–  Insert a new item into a table	

–  Delete the item with a given search key from a table	

–  Retrieve the item with a given search key from a table	

–  Traverse the items in a table in sorted search-key order	

© 2011 Pearson Addison-Wesley. All rights reserved 12 A-4

The ADT Table
•  Pseudocode for the operations of the ADT table	

createTable()
// Creates an empty table.

tableIsEmpty()
// Determines whether a table is empty.

tableLength()
// Determines the number of items in a table.

tableInsert(newItem) throws TableException
// Inserts newItem into a table whose items have
// distinct search keys that differ from newItem’s
// search key. Throws TableException if the
// insertion is not successful

© 2011 Pearson Addison-Wesley. All rights reserved 12 A-5

The ADT Table
•  Pseudocode for the operations of the ADT table

(Continued)	

tableDelete(searchKey)
// Deletes from a table the item whose search key
// equals searchKey. Returns false if no such item
// exists. Returns true if the deletion was
// successful.

tableRetrieve(searchKey)
// Returns the item in a table whose search key
// equals searchKey. Returns null if no such item
// exists.

tableTraverse()
// Traverses a table in sorted search-key order.

© 2011 Pearson Addison-Wesley. All rights reserved 12 A-6

The ADT Table

•  Value of the search key for an item must remain
the same as long as the item is stored in the table	

•  KeyedItem class	

–  Contains an item’s search key and a method for

accessing the search-key data field	

–  Prevents the search-key value from being modified

once an item is created	

•  TableInterface interface	

–  Defines the table operations	

© 2011 Pearson Addison-Wesley. All rights reserved 12 A-7

Selecting an Implementation
•  Categories of linear implementations	

–  Unsorted, array based	

–  Unsorted, referenced based	

–  Sorted (by search key), array based	

–  Sorted (by search key), reference based	

Figure 12-3
The data fields for two sorted linear implementations of the ADT table for the data in
Figure 12-1: a) array based; b) reference based

© 2011 Pearson Addison-Wesley. All rights reserved 12 A-8

Selecting an Implementation

•  A binary search implementation 	

	

–  A nonlinear implementation	

Figure 12-4
The data fields for a binary
search tree implementation of
the ADT table for the data in
Figure 12-1

© 2011 Pearson Addison-Wesley. All rights reserved 12 A-9

Selecting an Implementation

•  The binary search tree implementation offers
several advantages over linear implementations	

•  The requirements of a particular application
influence the selection of an implementation	

–  Questions to be considered about an application before

choosing an implementation	

•  What operations are needed?	

•  How often is each operation required?	

© 2011 Pearson Addison-Wesley. All rights reserved 12 A-10

Scenario A: Insertion and
Traversal in No Particular Order

•  An unsorted order in efficient	

–  Both array based and reference based tableInsert

operation is O(1)	

•  Array based versus reference based	

–  If a good estimate of the maximum possible size of the
table is not available	

•  Reference based implementation is preferred	

–  If a good estimate of the maximum possible size of the

table is available	

•  The choice is mostly a matter of style	

© 2011 Pearson Addison-Wesley. All rights reserved 12 A-11

Scenario A: Insertion and
Traversal in No Particular Order

Figure 12-5
Insertion for unsorted linear implementations: a) array based; b) reference based

© 2011 Pearson Addison-Wesley. All rights reserved 12 A-12

Scenario A: Insertion and
Traversal in No Particular Order

•  A binary search tree implementation is not
appropriate	

–  It does more work than the application requires	

•  It orders the table items	

–  The insertion operation is O(log n) in the average case 	

	

© 2011 Pearson Addison-Wesley. All rights reserved 12 A-13

Scenario B: Retrieval

•  Binary search	

–  An array-based implementation	

•  Binary search can be used if the array is sorted	

–  A reference-based implementation	

•  Binary search can be performed, but is too inefficient to be
practical	

•  A binary search of an array is more efficient than a
sequential search of a linked list	

–  Binary search of an array	

•  Worst case: O(log2n)	

–  Sequential search of a linked list	

•  O(n)	

© 2011 Pearson Addison-Wesley. All rights reserved 12 A-14

Scenario B: Retrieval

•  For frequent retrievals	

–  If the table’s maximum size is known	

•  A sorted array-based implementation is appropriate	

–  If the table’s maximum size is not known	

•  A binary search tree implementation is appropriate	

© 2011 Pearson Addison-Wesley. All rights reserved 12 A-15

Scenario C: Insertion, Deletion,
Retrieval, and Traversal in Sorted
Order
•  Steps performed by both insertion and deletion	

–  Step 1: Find the appropriate position in the table	

–  Step 2: Insert into (or delete from) this position	

•  Step 1	

–  An array-based implementation is superior than a

reference-based implementation	

•  Step 2	

–  A reference-based implementation is superior than an
array-based implementation	

•  A sorted array-based implementation shifts data during
insertions and deletions 	

© 2011 Pearson Addison-Wesley. All rights reserved 12 A-16

Scenario C: Insertion, Deletion,
Retrieval, and Traversal in Sorted
Order

Figure 12-6
Insertion for sorted linear implementations: a) array based; b) reference based

© 2011 Pearson Addison-Wesley. All rights reserved 12 A-17

Scenario C: Insertion, Deletion,
Retrieval, and Traversal in Sorted
Order
•  Insertion and deletion operations	

–  Both sorted linear implementations are comparable, but
neither is suitable	

• tableInsert and tableDelete operations	

– Sorted array-based implementation is O(n)	

– Sorted reference-based implementation is O(n)	

–  Binary search tree implementation is suitable	

•  It combines the best features of the two linear

implementations	

© 2011 Pearson Addison-Wesley. All rights reserved 12 A-18

A Sorted Array-Based
Implementation of the ADT Table

•  Linear implementations	

–  Useful for many applications despite certain difficulties	

•  A binary search tree implementation	

–  In general, can be a better choice than a linear

implementation	

•  A balanced binary search tree implementation	

–  Increases the efficiency of the ADT table operations	

© 2011 Pearson Addison-Wesley. All rights reserved 12 A-19

A Sorted Array-Based
Implementation of the ADT Table

Figure 12-7
The average-case order of the operations of the ADT table for various
implementations

© 2011 Pearson Addison-Wesley. All rights reserved 12 A-20

A Sorted Array-Based
Implementation of the ADT Table

•  Reasons for studying linear implementations	

–  Perspective	

–  Efficiency	

–  Motivation	

•  TableArrayBased class
–  Provides an array-based implementation of the ADT

table	

–  Implements TableInterface	

© 2011 Pearson Addison-Wesley. All rights reserved 12 A-21

A Binary Search Tree
Implementation of the ADT Table

•  TableBSTBased class	

–  Represents a nonlinear reference-based implementation

of the ADT table	

–  Uses a binary search tree to represent the items in the

ADT table	

•  Reuses the class BinarySearchTree

© 2011 Pearson Addison-Wesley. All rights reserved 12 B-22

The ADT Priority Queue:
A Variation of the ADT Table

•  The ADT priority queue	

–  Orders its items by a priority value	

–  The first item removed is the one having the highest

priority value	

•  Operations of the ADT priority queue	

–  Create an empty priority queue	

–  Determine whether a priority queue is empty	

–  Insert a new item into a priority queue	

–  Retrieve and then delete the item in a priority queue

with the highest priority value	

© 2011 Pearson Addison-Wesley. All rights reserved 12 B-23

The ADT Priority Queue:
A Variation of the ADT Table

•  Pseudocode for the operations of the ADT priority
queue	

createPQueue()

// Creates an empty priority queue.

pqIsEmpty()

// Determines whether a priority queue is

// empty.

© 2011 Pearson Addison-Wesley. All rights reserved 12 B-24

The ADT Priority Queue:
A Variation of the ADT Table

•  Pseudocode for the operations of the ADT priority
queue (Continued)	

pqInsert(newItem) throws PQueueException
// Inserts newItem into a priority queue.
// Throws PQueueException if priority queue is
// full.

pqDelete()
// Retrieves and then deletes the item in a
// priority queue with the highest priority
// value.

© 2011 Pearson Addison-Wesley. All rights reserved 12 B-25

The ADT Priority Queue:
A Variation of the ADT Table

•  Possible implementations	

–  Sorted linear implementations	

•  Appropriate if the number of items in the priority
queue is small	

•  Array-based implementation	

–  Maintains the items sorted in ascending order of priority

value	

•  Reference-based implementation	

–  Maintains the items sorted in descending order of priority
value	

© 2011 Pearson Addison-Wesley. All rights reserved 12 B-26

The ADT Priority Queue:
A Variation of the ADT Table

Figure 12-9a and 12-9b
Some implementations of the ADT priority queue: a) array based; b) reference based

© 2011 Pearson Addison-Wesley. All rights reserved 12 B-27

The ADT Priority Queue:
A Variation of the ADT Table
•  Possible implementations (Continued)	

–  Binary search tree implementation	

•  Appropriate for any priority queue	

Figure 12-9c
Some implementations of the ADT priority queue: c) binary search tree

© 2011 Pearson Addison-Wesley. All rights reserved 12 B-28

Heaps

•  A heap is a complete binary tree	

–  That is empty	

	

or	

–  Whose root contains a search key greater than or equal

to the search key in each of its children, and	

–  Whose root has heaps as its subtrees	

© 2011 Pearson Addison-Wesley. All rights reserved 12 B-29

Heaps

•  Maxheap	

–  A heap in which the root contains the item with the

largest search key	

•  Minheap	

–  A heap in which the root contains the item with the
smallest search key	

© 2011 Pearson Addison-Wesley. All rights reserved 12 B-30

Heaps
•  Pseudocode for the operations of the ADT heap	

createHeap()
// Creates an empty heap.

heapIsEmpty()
// Determines whether a heap is empty.

heapInsert(newItem) throws HeapException
// Inserts newItem into a heap. Throws
// HeapException if heap is full.

heapDelete()
// Retrieves and then deletes a heap’s root
// item. This item has the largest search key.

© 2011 Pearson Addison-Wesley. All rights reserved 12 B-31

Heaps: An Array-based
Implementation of a Heap
•  Data fields	

–  items: an array of heap items	

–  size: an integer equal to the number of items in the heap	

Figure 12-11
A heap with its array

representation

© 2011 Pearson Addison-Wesley. All rights reserved 12 B-32

Heaps: heapDelete

•  Step 1: Return the item in the root	

–  Results in disjoint heaps	

Figure 12-12a
a) Disjoint heaps

© 2011 Pearson Addison-Wesley. All rights reserved 12 B-33

Heaps: heapDelete

•  Step 2: Copy the item from the last node into the root	

–  Results in a semiheap	

Figure 12-12b
b) a semiheap

© 2011 Pearson Addison-Wesley. All rights reserved 12 B-34

Heaps: heapDelete

•  Step 3: Transform the semiheap back into a heap	

–  Performed by the recursive algorithm heapRebuild

Figure 12-14
Recursive calls to heapRebuild

© 2011 Pearson Addison-Wesley. All rights reserved 12 B-35

Heaps: heapDelete

•  Efficiency	

–  heapDelete is O(log n)	

Figure 12-13
Deletion from a heap

© 2011 Pearson Addison-Wesley. All rights reserved 12 B-36

Heaps: heapInsert
•  Strategy	

–  Insert newItem into the bottom of the tree	

–  Trickle new item up to appropriate spot in the tree	

•  Efficiency: O(log n)	

•  Heap class	

–  Represents an array-based implementation of the ADT heap	

Figure 12-15
Insertion into a heap

© 2011 Pearson Addison-Wesley. All rights reserved 12 B-37

A Heap Implementation of the
ADT Priority Queue

•  Priority-queue operations and heap operations are
analogous	

–  The priority value in a priority-queue corresponds to a

heap item’s search key	

•  PriorityQueue class	

–  Has an instance of the Heap class as its data field	

© 2011 Pearson Addison-Wesley. All rights reserved 12 B-38

A Heap Implementation of the
ADT Priority Queue

•  A heap implementation of a priority queue	

–  Disadvantage	

•  Requires the knowledge of the priority queue’s maximum size	

–  Advantage	

•  A heap is always balanced	

•  Finite, distinct priority values	

–  A heap of queues	

•  Useful when a finite number of distinct priority values are
used, which can result in many items having the same priority
value	

© 2011 Pearson Addison-Wesley. All rights reserved 12 B-39

Heapsort
•  Strategy	

–  Transforms the array into a heap	

–  Removes the heap's root (the largest element) by

exchanging it with the heap’s last element	

–  Transforms the resulting semiheap back into a heap	

•  Efficiency	

–  Compared to mergesort	

•  Both heapsort and mergesort are O(n * log n) in both the worst
and average cases	

•  Advantage over mergesort	

–  Heapsort does not require a second array	

–  Compared to quicksort	

•  Quicksort is the preferred sorting method	

© 2011 Pearson Addison-Wesley. All rights reserved 12 B-40

Heapsort

Figure 12-16
a) The initial contents of

anArray; b) anArray’s

corresponding binary tree

Figure 12-18
Heapsort partitions an

array into two regions

© 2011 Pearson Addison-Wesley. All rights reserved 12 B-41

Tables and Priority Queues in
JFC: The JFC Map Interface

•  Map interface	

–  Provides the basis for numerous other implementations

of different kinds of maps	

•  public interface Map<K,V> methods	

–  void clear()
–  boolean containsKey(Object key)
–  boolean containsValue(Object value)
–  Set<Map.Entry<K,V>> entrySet()
–  V get(Object key);

© 2011 Pearson Addison-Wesley. All rights reserved 12 B-42

Tables and Priority Queues in
JFC: The JFC Map Interface

•  public interface Map<K,V> methods
(continued)	

–  boolean isEmpty()
–  Set<K> keySet()
–  V put(K key, V value)
–  V remove(Object key)
–  Collection<V> values()

© 2011 Pearson Addison-Wesley. All rights reserved 12 B-43

The JFC Set Interface

•  Set interface	

–  Ordered collection	

–  Stores single value entries	

–  Does not allow for duplicate elements	

•  public interface Set<T> methods	

–  boolean add(T o)
–  boolean addAll(Collection<? extends T> c)
–  void clear()
–  boolean contains(Object o)
–  boolean isEmpty()

© 2011 Pearson Addison-Wesley. All rights reserved 12 B-44

The JFC Set Interface

•  public interface Set<T> methods
(continued)	

–  Iterator<T> iterator()
–  boolean remove(Object o)
–  boolean removeAll(Collection<?> c)
–  boolean retainAll(Collection<?> c)
–  int size()

© 2011 Pearson Addison-Wesley. All rights reserved 12 B-45

The JFC PriorityQueue Class
•  PriorityQueue class	

–  Has a single data-type parameter with ordered elements	

–  Relies on the natural ordering of the elements	

•  As provided by the Comparable interface or a Comparator
object	

–  Elements in queue are ordered in ascending order	

•  public Class PriorityQueue<T>

methods	

–  PriorityQueue(int initialCapacity)
–  PriorityQueue(int initialCapacity,
Comparator<? super T> comparator)

–  boolean add(T o)
–  void clear()
–  boolean contains(Object o)

© 2011 Pearson Addison-Wesley. All rights reserved 12 B-46

The JFC PriorityQueue Class

•  public Class PriorityQueue<T>
methods (continued)	

–  Comparator<? super T> comparator()
–  T element()
–  Iterator<T> iterator()
–  boolean offer(T o)
–  T peek()
–  T poll()
–  boolean remove(Object o)
–  int size()

© 2011 Pearson Addison-Wesley. All rights reserved 12 B-47

Summary

•  The ADT table supports value-oriented operations	

•  The linear implementations (array based and

reference based) of a table are adequate only in
limited situations or for certain operations	

•  A nonlinear reference-based (binary search tree)
implementation of the ADT table provides the best
aspects of the two linear implementations	

•  A priority queue, a variation of the ADT table, has
operations which allow you to retrieve and remove
the item with the largest priority value	

© 2011 Pearson Addison-Wesley. All rights reserved 12 B-48

Summary

•  A heap that uses an array-based representation of a
complete binary tree is a good implementation of a
priority queue when you know the maximum
number of items that will be stored at any one time	

•  Efficiency	

–  Heapsort, like mergesort, has good worst-case and

average-case behaviors, but neither algorithms is as
good in the average case as quicksort	

–  Heapsort has an advantage over mergesort in that it
does not require a second array	

© 2011 Pearson Addison-Wesley. All rights reserved 12 B-49

Summary

•  Tables and priority queues in JFC	

–  Map interface	

–  Set interface	

–  PriorityQueue class	

