
© 2011 Pearson Addison-Wesley. All rights reserved 11 A-1

 Chapter 11

	
 	
 	
 	
Trees	

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-2

Terminology

•  Definition of a general tree	

–  A general tree T is a set of one or more nodes such that

T is partitioned into disjoint subsets:	

•  A single node r, the root	

•  Sets that are general trees, called subtrees of r	

•  Definition of a binary tree	

–  A binary tree is a set T of nodes such that either	

•  T is empty, or 	

•  T is partitioned into three disjoint subsets:	

–  A single node r, the root	

–  Two possibly empty sets that are binary trees, called left and

right subtrees of r	

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-3

Terminology

Figure 11-4
Binary trees that represent algebraic expressions

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-4

Terminology
•  A binary search tree	

–  A binary tree that has the following properties for each node n	

•  n’s value is greater than all values in its left subtree TL	

•  n’s value is less than all values in its right subtree TR	

•  Both TL and TR are binary search trees	

Figure 11-5
A binary search tree of names

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-5

Terminology

•  The height of trees	

–  Level of a node n in a tree T	

•  If n is the root of T, it is at level 1	

•  If n is not the root of T, its level is 1 greater than the level of its

parent	

–  Height of a tree T defined in terms of the levels of its

nodes	

•  If T is empty, its height is 0	

•  If T is not empty, its height is equal to the maximum level of

its nodes	

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-6

Terminology

Figure 11-6
Binary trees with the same nodes but different heights

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-7

Terminology

•  Full, complete, and balanced binary trees	

–  Recursive definition of a full binary tree	

•  If T is empty, T is a full binary tree of height 0	

•  If T is not empty and has height h > 0, T is a full binary tree if

its root’s subtrees are both full binary trees of height h – 1	

Figure 11-7
A full binary tree of height 3

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-8

Terminology
•  Complete binary trees	

–  A binary tree T of height h is complete if	

•  All nodes at level h – 2 and above have two children each, and	

•  When a node at level h – 1 has children, all nodes to its left at the

same level have two children each, and	

•  When a node at level h – 1 has one child, it is a left child	

Figure 11-8
A complete binary tree

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-9

Terminology

•  Balanced binary trees	

–  A binary tree is balanced if the height of any node’s

right subtree differs from the height of the node’s left
subtree by no more than 1	

•  Full binary trees are complete	

•  Complete binary trees are balanced	

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-10

Terminology

•  Summary of tree terminology	

–  General tree	

•  A set of one or more nodes, partitioned into a root node and
subsets that are general subtrees of the root	

–  Parent of node n	

•  The node directly above node n in the tree	

–  Child of node n	

•  A node directly below node n in the tree	

–  Root	

•  The only node in the tree with no parent	

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-11

Terminology

•  Summary of tree terminology (Continued)	

–  Leaf	

•  A node with no children	

–  Siblings	

•  Nodes with a common parent	

–  Ancestor of node n	

•  A node on the path from the root to n	

–  Descendant of node n	

•  A node on a path from n to a leaf	

–  Subtree of node n	

•  A tree that consists of a child (if any) of n and the child’s
descendants	

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-12

Terminology

•  Summary of tree terminology (Continued)	

–  Height	

•  The number of nodes on the longest path from the root to a leaf	

–  Binary tree	

•  A set of nodes that is either empty or partitioned into a root
node and one or two subsets that are binary subtrees of the root	

•  Each node has at most two children, the left child and the right
child	

–  Left (right) child of node n	

•  A node directly below and to the left (right) of node n in a

binary tree	

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-13

Terminology

•  Summary of tree terminology (Continued)	

–  Left (right) subtree of node n	

•  In a binary tree, the left (right) child (if any) of node n plus its
descendants	

–  Binary search tree	

•  A binary tree where the value in any node n is greater than the

value in every node in n’s left subtree, but less than the value
of every node in n’s right subtree	

–  Empty binary tree	

•  A binary tree with no nodes	

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-14

Terminology

•  Summary of tree terminology (Continued)	

–  Full binary tree	

•  A binary tree of height h with no missing nodes	

•  All leaves are at level h and all other nodes each have two

children	

–  Complete binary tree	

•  A binary tree of height h that is full to level h – 1 and has level
h filled in from left to right	

–  Balanced binary tree	

•  A binary tree in which the left and right subtrees of any node

have heights that differ by at most 1	

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-15

The ADT Binary Tree: Basic
Operations of the ADT Binary
Tree
•  The operations available for a particular ADT

binary tree depend on the type of binary tree being
implemented	

•  Basic operations of the ADT binary tree	

–  createBinaryTree()
–  createBinaryTree(rootItem)
–  makeEmpty()
–  isEmpty()
–  getRootItem() throws TreeException

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-16

General Operations of the ADT
Binary Tree
•  General operations of the ADT binary tree	

–  createBinaryTree (rootItem, leftTree,
rightTree)

–  setRootItem(newItem)
–  attachLeft(newItem) throws TreeException
–  attachRight(newItem) throws TreeException
–  attachLeftSubtree(leftTree) throws
TreeException

–  attachRightSubtree(rightTree) throws
TreeException

–  detachLeftSubtree() throws TreeException
–  detachRightSubtree() throws TreeException

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-17

Traversals of a Binary Tree

•  A traversal algorithm for a binary tree visits each
node in the tree	

•  Recursive traversal algorithms	

–  Preorder traversal	

–  Inorder traversal	

–  Postorder traversal	

•  Traversal is O(n)	

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-18

Traversal of a Binary Tree

Figure 11-10
Traversals of a binary tree: a) preorder; b) inorder; c) postorder

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-19

Possible Representations of a
Binary Tree

•  An array-based representation	

–  A Java class is used to define a node in the tree	

–  A binary tree is represented by using an array of tree

nodes	

–  Each tree node contains a data portion and two indexes

(one for each of the node’s children)	

–  Requires the creation of a free list which keeps track of

available nodes	

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-20

Possible Representations of a
Binary Tree

Figure 11-11b
b) its array-based implementations

Figure 11-11a
a) A binary tree of names

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-21

Possible Representations of a
Binary Tree

•  An array-based representation of a complete tree	

–  If the binary tree is complete and remains complete	

•  A memory-efficient array-based implementation can
be used	

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-22

Possible Representations of a
Binary Tree

Figure 11-13
An array-based implementation of the

complete binary tree in Figure 10-12

Figure 11-12
Level-by-level numbering of a complete

binary tree

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-23

Possible Representations of a
Binary Tree
•  A reference-based representation	

–  Java references can be used to link the nodes in the tree	

Figure 11-14
A reference-based

implementation of a binary

tree

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-24

A Reference-Based
Implementation of the ADT Binary
Tree
•  Classes that provide a reference-based

implementation for the ADT binary tree	

–  TreeNode

•  Represents a node in a binary tree	

–  TreeException

•  An exception class	

–  BinaryTreeBasis

•  An abstract class of basic tree operation	

–  BinaryTree

•  Provides the general operations of a binary tree	

•  Extends BinaryTreeBasis

© 2011 Pearson Addison-Wesley. All rights reserved 11 B-25

Tree Traversals Using an Iterator

•  TreeIterator
–  Implements the Java Iterator interface	

–  Provides methods to set the iterator to the type of

traversal desired	

–  Uses a queue to maintain the current traversal of the

nodes in the tree	

•  Nonrecursive traversal (optional)	

–  An iterative method and an explicit stack can be used to
mimic actions at a return from a recursive call to
inorder	

© 2011 Pearson Addison-Wesley. All rights reserved 11 B-26

The ADT Binary Search Tree

•  A deficiency of the ADT binary tree which is
corrected by the ADT binary search tree	

–  Searching for a particular item	

•  Each node n in a binary search tree satisfies the
following properties	

–  n’s value is greater than all values in its left subtree TL	

–  n’s value is less than all values in its right subtree TR	

–  Both TL and TR are binary search trees	

© 2011 Pearson Addison-Wesley. All rights reserved 11 B-27

The ADT Binary Search Tree
•  Record	

–  A group of related items, called fields, that are not necessarily of
the same data type	

•  Field	

–  A data element within a record	

•  A data item in a binary search tree has a specially
designated search key	

–  A search key is the part of a record that identifies it within a

collection of records	

•  KeyedItem class

–  Contains the search key as a data field and a method for accessing
the search key	

–  Must be extended by classes for items that are in a binary search
tree	

© 2011 Pearson Addison-Wesley. All rights reserved 11 B-28

The ADT Binary Search Tree
•  Operations of the ADT binary search tree	

–  Insert a new item into a binary search tree	

–  Delete the item with a given search key from a binary search tree	

–  Retrieve the item with a given search key from a binary search tree	

–  Traverse the items in a binary search tree in preorder, inorder, or

postorder	

Figure 11-19
A binary search tree

© 2011 Pearson Addison-Wesley. All rights reserved 11 B-29

Algorithms for the Operations of
the ADT Binary Search Tree

•  Since the binary search tree is recursive in nature,
it is natural to formulate recursive algorithms for
its operations	

•  A search algorithm	

–  search(bst, searchKey)

•  Searches the binary search tree bst for the item
whose search key is searchKey	

© 2011 Pearson Addison-Wesley. All rights reserved 11 B-30

Algorithms for the Operations of
the ADT Binary Search Tree:
Insertion
•  insertItem(treeNode, newItem)

–  Inserts newItem into the binary search tree of which treeNode
is the root	

Figure 11-23a and 11-23b
a) Insertion into an empty tree; b) search terminates at a leaf

© 2011 Pearson Addison-Wesley. All rights reserved 11 B-31

Algorithms for the Operations of
the ADT Binary Search Tree:
Insertion

Figure 11-23c
c) insertion at a leaf

© 2011 Pearson Addison-Wesley. All rights reserved 11 B-32

Algorithms for the Operations of
the ADT Binary Search Tree:
Deletion
•  Steps for deletion	

–  Use the search algorithm to locate the item with the
specified key	

–  If the item is found, remove the item from the tree	

•  Three possible cases for node N containing the

item to be deleted	

–  N is a leaf	

–  N has only one child	

–  N has two children	

© 2011 Pearson Addison-Wesley. All rights reserved 11 B-33

Algorithms for the Operations of
the ADT Binary Search Tree:
Deletion
•  Strategies for deleting node N	

–  If N is a leaf	

•  Set the reference in N’s parent to null

–  If N has only one child	

•  Let N’s parent adopt N’s child	

–  If N has two children	

•  Locate another node M that is easier to remove from the tree

than the node N	

•  Copy the item that is in M to N	

•  Remove the node M from the tree	

© 2011 Pearson Addison-Wesley. All rights reserved 11 B-34

Algorithms for the Operations of
the ADT Binary Search Tree:
Retrieval
•  Retrieval operation can be implemented by

refining the search algorithm	

–  Return the item with the desired search key if it exists	

–  Otherwise, return a null reference	

© 2011 Pearson Addison-Wesley. All rights reserved 11 B-35

Algorithms for the Operations of
the ADT Binary Search Tree:
Traversal
•  Traversals for a binary search tree are the same as

the traversals for a binary tree	

•  Theorem 11-1	

	
The inorder traversal of a binary search tree T will visit
its nodes in sorted search-key order	

© 2011 Pearson Addison-Wesley. All rights reserved 11 B-36

A Reference-Based
Implementation of the ADT
Binary Search Tree
•  BinarySearchTree

–  Extends BinaryTreeBasis
–  Inherits the following from BinaryTreeBasis

• isEmpty()
• makeEmpty()
• getRootItem()
•  The use of the constructors	

•  TreeIterator
–  Can be used with BinarySearchTree

© 2011 Pearson Addison-Wesley. All rights reserved 11 B-37

The Efficiency of Binary Search
Tree Operations

•  The maximum number
of comparisons for a
retrieval, insertion, or
deletion is the height of
the tree	

•  The maximum and
minimum heights of a
binary search tree	

–  n is the maximum height

of a binary tree with n
nodes	

Figure 11-30
A maximum-height binary tree

with seven nodes

© 2011 Pearson Addison-Wesley. All rights reserved 11 B-38

The Efficiency of Binary Search
Tree Operations

•  Theorem 11-2	

	
A full binary tree of height h ≥ 0 has 2h – 1 nodes	

•  Theorem 11-3	

	
The maximum number of nodes that a binary tree of height h can have is 2h – 1	

Figure 11-32
Counting the nodes in a full

binary tree of height h

© 2011 Pearson Addison-Wesley. All rights reserved 11 B-39

The Efficiency of Binary Search
Tree Operations
•  Theorem 11-4	

	
The minimum height of a binary tree with n nodes is ⎡log2(n+1)⎤	

•  The height of a particular binary search tree depends on

the order in which insertion and deletion operations are
performed	

Figure 11-34
The order of the retrieval,
insertion, deletion, and
traversal operations for the
reference-based
implementation of the ADT
binary search tree

© 2011 Pearson Addison-Wesley. All rights reserved 11 B-40

Treesort

•  Treesort	

–  Uses the ADT binary search tree to sort an array of

records into search-key order	

–  Efficiency	

•  Average case: O(n * log n)	

•  Worst case: O(n2)	

© 2011 Pearson Addison-Wesley. All rights reserved 11 B-41

Saving a Binary Search Tree in a
File

•  Two algorithms for saving and restoring a binary
search tree	

–  Saving a binary search tree and then restoring it to its

original shape	

•  Uses preorder traversal to save the tree to a file	

–  Saving a binary tree and then restoring it to a balanced
shape	

•  Uses inorder traversal to save the tree to a file	

•  Can be accomplished if	

–  The data is sorted	

–  The number of nodes in the tree is known	

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-42

The JCF Binary Search Algorithm

•  JCF has two binary search methods	

–  Based on the natural ordering of elements:	

static <T> int 	

binarySearch (List<? extends Comparable<? super T>> list, T key)	

–  Based on a specified Comparator:	

static <T> int binarySearch (List<? extends T> list, T key, 	

	
 	
 	
 	
 	
Comparator<? super T> c)	

	

© 2011 Pearson Addison-Wesley. All rights reserved 11 B-43

General Trees

•  An n-ary tree	

–  A generalization of a binary tree whose nodes each can

have no more than n children	

Figure 11-38
A general tree

Figure 11-41
An implementation of the n-ary tree in Figure 11-38

© 2011 Pearson Addison-Wesley. All rights reserved 11 B-44

Summary

•  Binary trees provide a hierarchical organization of
data	

•  Implementation of binary trees	

–  The implementation of a binary tree is usually

referenced-based	

–  If the binary tree is complete, an efficient array-based

implementation is possible	

•  Traversing a tree is a useful operation	

•  The binary search tree allows you to use a binary

search-like algorithm to search for an item with a
specified value	

© 2011 Pearson Addison-Wesley. All rights reserved 11 B-45

Summary

•  Binary search trees come in many shapes	

–  The height of a binary search tree with n nodes can

range from a minimum of ⎡log2(n + 1)⎤ to a maximum
of n	

–  The shape of a binary search tree determines the
efficiency of its operations	

•  An inorder traversal of a binary search tree visits
the tree’s nodes in sorted search-key order	

•  The treesort algorithm efficiently sorts an array by
using the binary search tree’s insertion and
traversal operations	

© 2011 Pearson Addison-Wesley. All rights reserved 11 B-46

Summary

•  Saving a binary search tree to a file	

– To restore the tree as a binary search tree of

minimum height	

•  Perform inorder traversal while saving the tree to a

file	

– To restore the tree to its original form	

•  Perform preorder traversal while saving the tree to a
file	

