

Terminology

e Definition of a general tree

— A general tree T is a set of one or more nodes such that
T 1s partitioned into disjoint subsets:

e A single node r, the root
» Sets that are general trees, called subtrees of r

e Definition of a binary tree

— A binary tree 1s a set T of nodes such that either
e T is empty, or
e T is partitioned into three disjoint subsets:

— A single node r, the root

— Two possibly empty sets that are binary trees, called left and
right subtrees of r

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-2

Terminology

*
) © @ O) ©

D O O
(b) (0

Figure 11-4
Binary trees that represent algebraic expressions

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-3

Terminology

* A binary search tree
— A binary tree that has the following properties for each node n

e n’s value is greater than all values in its left subtree T,
e n’ s value is less than all values in its right subtree Ty

* Both T, and Ty are binary search trees

DERG

© 2011 Pearson Addison-Wesley. All rights reserved 11 A4

Figure 11-5

A binary search tree of names

Terminology

e The height of trees

— Levelofanodeninatree T

e [fnis the root of T,it1s atlevel 1
e If n is not the root of T, its level is 1 greater than the level of its
parent
— Height of a tree T defined in terms of the levels of its
nodes
e If T is empty, its height is O

e If T is not empty, its height is equal to the maximum level of
its nodes

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-5

Terminology

A
A
B
B C C
D
E
D E F G
F
G
(@) (b) (@

Figure 11-6
Binary trees with the same nodes but different heights

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-6

Terminology

e Full, complete, and balanced binary trees

— Recursive definition of a full binary tree
e If T is empty, T is a full binary tree of height O

e If T is not empty and has height h > 0, T 1s a full binary tree if
its root’ s subtrees are both full binary trees of height h — 1

Figure 11-7
A full binary tree of height 3

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-7

Terminology

e Complete binary trees
— A binary tree T of height h is complete if
e All nodes at level h — 2 and above have two children each, and

e When a node at level h — 1 has children, all nodes to its left at the
same level have two children each, and

e When a node at level h — 1 has one child, it is a left child

Figure 11-8

A complete binary tree

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-8

Terminology

e Balanced binary trees

— A binary tree is balanced if the height of any node’ s
right subtree differs from the height of the node’ s left
subtree by no more than 1

e Full binary trees are complete

e Complete binary trees are balanced

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-9

Terminology

e Summary of tree terminology

— General tree

* A set of one or more nodes, partitioned into a root node and
subsets that are general subtrees of the root

— Parent of node n

e The node directly above node n in the tree

— Child of node n

* A node directly below node n in the tree

— Root

e The only node in the tree with no parent

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-10

Terminology

e Summary of tree terminology (Continued)
— Leaf

* A node with no children
— Siblings
e Nodes with a common parent
— Ancestor of node n
* A node on the path from the root to n

— Descendant of node n
e A node on a path from n to a leaf

— Subtree of node n

* A tree that consists of a child (if any) of n and the child’ s
descendants

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-11

Terminology

e Summary of tree terminology (Continued)
— Height
e The number of nodes on the longest path from the root to a leaf

— Binary tree

* A set of nodes that is either empty or partitioned into a root
node and one or two subsets that are binary subtrees of the root

e Each node has at most two children, the left child and the right
child

— Left (right) child of node n

* A node directly below and to the left (right) of node n in a
binary tree

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-12

Terminology

e Summary of tree terminology (Continued)

— Left (right) subtree of node n

* In a binary tree, the left (right) child (if any) of node n plus its
descendants

— Binary search tree

e A binary tree where the value in any node n is greater than the
value in every node in n’ s left subtree, but less than the value
of every node in n’ s right subtree

— Empty binary tree
* A binary tree with no nodes

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-13

Terminology

e Summary of tree terminology (Continued)

— Full binary tree
e A binary tree of height h with no missing nodes

e All leaves are at level h and all other nodes each have two
children

— Complete binary tree

* A binary tree of height h that is full to level h — 1 and has level
h filled in from left to right

— Balanced binary tree

e A binary tree in which the left and right subtrees of any node
have heights that differ by at most 1

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-14

The ADT Binary Tree: Basic
Operations of the ADT Binary
Tree

e The operations available for a particular ADT
binary tree depend on the type of binary tree being
implemented

e Basic operations of the ADT binary tree
— createBinaryTree ()
— createBinaryTree (rootItem)
— makeEmpty ()
— 1sEmpty ()
— getRootItem() throws TreeException

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-15

General Operations of the ADT
Binary Tree

* General operations of the ADT binary tree

createBinaryTree (rootlItem, leftTree,
rightTree)

setRootItem (newltem)
attachLeft (newltem) throws TreeException
attachRight (newlItem) throws TreeException

attachlLeftSubtree(leftTree) throws
TreeException

attachRightSubtree (rightTree) throws
TreeException

detachLeftSubtree () throws TreeException
detachRightSubtree () throws TreeException

© 2011 Pearson Addison-Wesley. All rights reserved

11 A-16

Traversals of a Binary Tree

* A traversal algorithm for a binary tree visits each
node in the tree

e Recursive traversal algorithms
— Preorder traversal
— Inorder traversal
— Postorder traversal

e Traversal 1s O(n)

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-17

Traversal of a Binary Tree

(a) Preorder: 60, 20, 10, 40, 30, 50, 70 (b) Inorder: 10, 20, 30, 40, 50, 60, 70 (c) Postorder: 10, 30, 50, 40, 20, 70, 60

(Numbers beside nodes indicate traversal order.)

Figure 11-10
Traversals of a binary tree: a) preorder; b) inorder; c) postorder

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-18

Possible Representations of a
Binary Tree

* An array-based representation
— A Java class 1s used to define a node in the tree

— A binary tree 1s represented by using an array of tree
nodes

— Each tree node contains a data portion and two indexes
(one for each of the node’ s children)

— Requires the creation of a free list which keeps track of
available nodes

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-19

Possible Representations of a
Binary Tree

item leftChild rightChild root
0 | Jane 1 2 0
1 | Bob 3 4 free
(a> 2 | Tom 5 -1 6
@ 3 | Alan -1 -1
4 | Ellen -1 -1
5 | Nancy -1 -1
6 ? -1 7
8 ! -1 9 > Free list
Figure 11-11a

a) A binary tree of names
Figure 11-11b

© 2011 Pearson Addison-Wesley. All rights reserved b) its array-based implementations 11 A-20

Possible Representations of a
Binary Tree

* An array-based representation of a complete tree
— If the binary tree 1s complete and remains complete

* A memory-efficient array-based implementation can
be used

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-21

Possible Representations of a
Binary Tree

0 Jane
1 Bob
2 Tom
3 Alan
4 Ellen
5 Nancy
6

7

Figure 11-12 Figure 11-13

Level-by-level numbering of a complete An array-based implementation of the

binary tree complete binary tree in Figure 10-12
© 2011 Pearson Addison-Wesley. All rights reserved 11 A-22

Possible Representations of a
Binary Tree

* A reference-based representation
— Java references can be used to link the nodes in the tree

root

?

Figure 11-14 l
item
A reference-based leftChild |rightChild
implementation of a binary
tree
Yl BN il BN

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-23

A Reference-Based
Implementation of the ADT Binary
Tree

e (Classes that provide a reference-based
implementation for the ADT binary tree

— TreeNode
* Represents a node in a binary tree
— TreeException
* An exception class
— BinaryTreeBasis
* An abstract class of basic tree operation
— BinaryTree

* Provides the general operations of a binary tree

e Extends BinaryTreeBasis
© 2011 Pearson Addison-Wesley. All rights reserved 11 A-24

Tree Traversals Using an lterator

* Treelterator
— Implements the Java Tterator interface

— Provides methods to set the iterator to the type of
traversal desired

— Uses a queue to maintain the current traversal of the
nodes 1n the tree

e Nonrecursive traversal (optional)

— An iterative method and an explicit stack can be used to
mimic actions at a return from a recursive call to
inorder

© 2011 Pearson Addison-Wesley. All rights reserved 11 B-25

The ADT Binary Search Tree

* A deficiency of the ADT binary tree which 1s
corrected by the ADT binary search tree

— Searching for a particular item
 Each node n in a binary search tree satisfies the
following properties
— n’ s value is greater than all values in its left subtree T,

— n’ s value is less than all values in its right subtree Ty
— Both T, and Ty are binary search trees

© 2011 Pearson Addison-Wesley. All rights reserved 11 B-26

The ADT Binary Search Tree

e Record

— A group of related items, called fields, that are not necessarily of
the same data type

e Field

— A data element within a record

e A dataitem in a binary search tree has a specially
designated search key
— A search key 1s the part of a record that identifies it within a
collection of records
« KeyedItem class

— Contains the search key as a data field and a method for accessing
the search key

— Must be extended by classes for items that are in a binary search
tree

© 2011 Pearson Addison-Wesley. All rights reserved 11 B-27

The ADT Binary Search Tree

e Operations of the ADT binary search tree

— Insert a new item into a binary search tree

— Delete the item with a given search key from a binary search tree
— Retrieve the item with a given search key from a binary search tree

— Traverse the items in a binary search tree in preorder, inorder, or

postorder

Figure 11-19

A binary search tree

© 2011 Pearson Addison-Wesley. All rights reserved

Algorithms for the Operations of
the ADT Binary Search Tree

e Since the binary search tree is recursive 1n nature,
it 1s natural to formulate recursive algorithms for

1ts operations
e A search algorithm

— search (bst, searchKey)

e Searches the binary search tree bst for the item
whose search key 1s searchKey

© 2011 Pearson Addison-Wesley. All rights reserved 11 B-29

Algorithms for the Operations of
the ADT Binary Search Tree:
Insertion

e IinsertlItem(treeNode, newltem)
— Inserts newItem into the binary search tree of which treeNode

1s the root
//
/
/
/
/
¥
treeNode / Bob \ .
I? / \ treeNode IS null
Frank Alan Ellen
(@ (b)

Figure 11-23a and 11-23b

a) Insertion into an empty tree; b) search terminates at a leaf

© 2011 Pearson Addison-Wesley. All rights reserved 11 B-30

Algorithms for the Operations of
the ADT Binary Search Tree:
Insertion

Figure 11-23c il Bl IhN treeNode

c) insertion at a leaf / \ I
Alan |/ Ellen \

© 2011 Pearson Addison-Wesley. All rights reserved 11 B-31

Algorithms for the Operations of
the ADT Binary Search Tree:
Deletion

e Steps for deletion

— Use the search algorithm to locate the item with the
specified key

— If the 1item 1s found, remove the item from the tree
e Three possible cases for node N containing the
item to be deleted

— N s a leaf
— N has only one child
— N has two children

© 2011 Pearson Addison-Wesley. All rights reserved 11 B-32

Algorithms for the Operations of
the ADT Binary Search Tree:
Deletion

e Strategies for deleting node N
— If N is a leaf

o Set the reference in N’ s parent to null
— If N has only one child
e Let N’ s parent adopt N’ s child

— If N has two children

e Locate another node M that is easier to remove from the tree
than the node N

e Copy the item that 1s in M to N

e Remove the node M from the tree

© 2011 Pearson Addison-Wesley. All rights reserved 11 B-33

Algorithms for the Operations of
the ADT Binary Search Tree:
Retrieval

e Retrieval operation can be implemented by
refining the search algorithm

— Return the item with the desired search key if it exists
— Otherwise, return a null reference

© 2011 Pearson Addison-Wesley. All rights reserve d 11 B-34

Algorithms for the Operations of
the ADT Binary Search Tree:
Traversal

r

e Traversals for a binary search tree are the same as
the traversals for a binary tree

e Theorem 11-1

The inorder traversal of a binary search tree T will visit
its nodes 1n sorted search-key order

© 2011 Pearson Addison-Wesley. All rights reserve d 11 B-35

A Reference-Based
Implementation of the ADT
Binary Search Tree

e BinarySearchTree
— Extends BinaryTreeBasis

— Inherits the following from BinaryTreeBasis
e isEmpty ()
e makeEmpty ()
* getRootItem ()
e The use of the constructors

e Treelterator

— Can be used with BinarySearchTree

© 2011 Pearson Addison-Wesley. All rights reserved 11 B-36

The Efficiency of Binary Search
Tree Operations

e The maximum number
of comparisons for a
retrieval, insertion, or

deletion 1s the height of

the tree

e The maximum and
minimum heights of a
binary search tree

— n 1s the maximum height
of a binary tree with n Figure 11-30
nodes A maximum-height binary tree

with seven nodes
© 2011 Pearson Addison-Wesley. All rights reserved 11 B-37

The Efficiency of Binary Search

Tree Operations

e Theorem 11-2

A full binary tree of height h = 0 has 2" — 1 nodes

e Theorem 11-3

The maximum number of nodes that a binary tree of height h can have is 2" — 1

Figure 11-32

Counting the nodes in a full

binary tree of height h

© 2011 Pearson Addison-Wesley. All rights reserved

Level

1

2

3

4

Number of nodes

Number of nodes at at this and

this level

previous levels

1=2°

2=2"

4=2?

8=2°

11 B-38

The Efficiency of Binary Search
Tree Operations

e Theorem 11-4

The minimum height of a binary tree with n nodes is [log,(n+1)]

e The height of a particular binary search tree depends on
the order in which insertion and deletion operations are
performed

Operation Average case \Worst case Figyre 11-34

Retrieval O(|Og n) O(n) The o.rder of th.e retrieval,
insertion, deletion, and

Insertion O(log n) O(n) traversal operations for the
' reference-based
Delet|on O(Iog n) O(n) implementation of the ADT
bi ht
Traversal O(n) O(n) Ary SEAren Tee

© 2011 Pearson Addison-Wesley. All rights reserved 11 B-39

Treesort

e Treesort

— Uses the ADT binary search tree to sort an array of
records into search-key order

— Efficiency
e Average case: O(n * log n)
* Worst case: O(n?)

© 2011 Pearson Addison-Wesley. All rights reserved 11 B-40

Saving a Binary Search Tree in a
File

 Two algorithms for saving and restoring a binary
search tree

— Saving a binary search tree and then restoring it to its
original shape
e Uses preorder traversal to save the tree to a file

— Saving a binary tree and then restoring it to a balanced
shape
» Uses inorder traversal to save the tree to a file

e Can be accomplished if
— The data 1s sorted
— The number of nodes in the tree 1s known

© 2011 Pearson Addison-Wesley. All rights reserved 11 B-41

The JCF Binary Search Algorithm

e JCF has two binary search methods

— Based on the natural ordering of elements:
static <T> int
binarySearch (List<? extends Comparable<? super T>> list, T key)

— Based on a specified Comparator:
static <T> int binarySearch (List<? extends T> list, T key,
Comparator<? super T> ¢)

© 2011 Pearson Addison-Wesley. All rights reserved 5B-42

General Trees

* An n-ary tree

— A generalization of a binary tree whose nodes each can
have no more than n children

B D B C D
K3 KN r L7 o
C
/ v \ V/ \v
F G H E F G H |
Figure 11-38 Figure 11-41
A general tree An implementation of the n-ary tree in Figure 11-38

© 2011 Pearson Addison-Wesley. All rights reserved 11 B-43

Summary

e Binary trees provide a hierarchical organization of
data

 Implementation of binary trees

— The implementation of a binary tree is usually
referenced-based

— If the binary tree is complete, an efficient array-based
implementation 1s possible

* Traversing a tree 1s a useful operation

* The binary search tree allows you to use a binary
search-like algorithm to search for an item with a
specified value

© 2011 Pearson Addison-Wesley. All rights reserved 11 B-44

Summary

* Binary search trees come in many shapes

— The height of a binary search tree with n nodes can
range from a minimum of [log,(n + 1)] to a maximum
of n

— The shape of a binary search tree determines the
efficiency of its operations

* An inorder traversal of a binary search tree visits
the tree’ s nodes in sorted search-key order

e The treesort algorithm efficiently sorts an array by
using the binary search tree’ s insertion and
traversal operations

© 2011 Pearson Addison-Wesley. All rights reserved 11 B-45

Summary

e Saving a binary search tree to a file

— To restore the tree as a binary search tree of
minimum height

e Perform inorder traversal while saving the tree to a
file

— To restore the tree to its original form

e Perform preorder traversal while saving the tree to a
file

© 2011 Pearson Addison-Wesley. All rights reserved 11 B-46

