
© 2011 Pearson Addison-Wesley. All rights reserved 10 A-1

 Chapter 10

	

	
Algorithm Efficiency and
Sorting	

© 2011 Pearson Addison-Wesley. All rights reserved 10 A-2

Measuring the Efficiency of
Algorithms

•  Analysis of algorithms	

–  Provides tools for contrasting the efficiency of different

methods of solution	

•  A comparison of algorithms	

–  Should focus of significant differences in efficiency	

–  Should not consider reductions in computing costs due

to clever coding tricks	

© 2011 Pearson Addison-Wesley. All rights reserved 10 A-3

Measuring the Efficiency of
Algorithms

•  Three difficulties with comparing programs
instead of algorithms 	
	

–  How are the algorithms coded?	

–  What computer should you use?	

–  What data should the programs use?	

•  Algorithm analysis should be independent of 	

–  Specific implementations	

–  Computers	

–  Data	

© 2011 Pearson Addison-Wesley. All rights reserved 10 A-4

The Execution Time of
Algorithms

•  Counting an algorithm's operations is a way to
access its efficiency	

–  An algorithm’s execution time is related to the number

of operations it requires	

–  Examples	

•  Traversal of a linked list	

•  The Towers of Hanoi	

•  Nested Loops	

© 2011 Pearson Addison-Wesley. All rights reserved 10 A-5

Algorithm Growth Rates

•  An algorithm’s time requirements can be
measured as a function of the problem size	

•  An algorithm’s growth rate	

–  Enables the comparison of one algorithm with another	

–  Examples	

Algorithm A requires time proportional to n2	

Algorithm B requires time proportional to n	

•  Algorithm efficiency is typically a concern for
large problems only	

© 2011 Pearson Addison-Wesley. All rights reserved 10 A-6

Algorithm Growth Rates

Figure 10-1
Time requirements as a function of the problem size n

© 2011 Pearson Addison-Wesley. All rights reserved 10 A-7

Order-of-Magnitude Analysis and
Big O Notation

•  Definition of the order of an algorithm	

	
Algorithm A is order f(n) – denoted O(f(n)) – if
constants k and n0 exist such that A requires no more
than k * f(n) time units to solve a problem of size n ≥ n0	

•  Growth-rate function	

–  A mathematical function used to specify an algorithm’s

order in terms of the size of the problem	

•  Big O notation	

–  A notation that uses the capital letter O to specify an
algorithm’s order	

–  Example: O(f(n))	

© 2011 Pearson Addison-Wesley. All rights reserved 10 A-8

Order-of-Magnitude Analysis and
Big O Notation

Figure 10-3a
A comparison of growth-rate functions: a) in tabular form

© 2011 Pearson Addison-Wesley. All rights reserved 10 A-9

Order-of-Magnitude Analysis and
Big O Notation

Figure 10-3b
A comparison of growth-rate functions: b) in graphical form

© 2011 Pearson Addison-Wesley. All rights reserved 10 A-10

Order-of-Magnitude Analysis and
Big O Notation

•  Order of growth of some common functions	

O(1) < O(log2n) < O(n) < O(n * log2n) < O(n2) < O(n3) < O(2n)	

•  Properties of growth-rate functions	

–  You can ignore low-order terms	

–  You can ignore a multiplicative constant in the high-

order term	

–  O(f(n)) + O(g(n)) = O(f(n) + g(n))	

© 2011 Pearson Addison-Wesley. All rights reserved 10 A-11

Order-of-Magnitude Analysis and
Big O Notation

•  Worst-case and average-case analyses	

–  An algorithm can require different times to solve

different problems of the same size	

•  Worst-case analysis	

–  A determination of the maximum amount of time that an
algorithm requires to solve problems of size n	

•  Average-case analysis	

–  A determination of the average amount of time that an

algorithm requires to solve problems of size n	

© 2011 Pearson Addison-Wesley. All rights reserved 10 A-12

Keeping Your Perspective

•  Throughout the course of an analysis, keep in
mind that you are interested only in significant
differences in efficiency	

•  When choosing an ADT’s implementation,
consider how frequently particular ADT
operations occur in a given application	

•  Some seldom-used but critical operations must be
efficient	

© 2011 Pearson Addison-Wesley. All rights reserved 10 A-13

Keeping Your Perspective

•  If the problem size is always small, you can
probably ignore an algorithm’s efficiency	

•  Weigh the trade-offs between an algorithm’s time
requirements and its memory requirements	

•  Compare algorithms for both style and efficiency	

•  Order-of-magnitude analysis focuses on large

problems	

© 2011 Pearson Addison-Wesley. All rights reserved 10 A-14

The Efficiency of Searching
Algorithms

•  Sequential search	

–  Strategy	

•  Look at each item in the data collection in turn,
beginning with the first one	

•  Stop when	

–  You find the desired item	

–  You reach the end of the data collection	

© 2011 Pearson Addison-Wesley. All rights reserved 10 A-15

The Efficiency of Searching
Algorithms

•  Sequential search	

–  Efficiency	

•  Worst case: O(n)	

•  Average case: O(n)	

•  Best case: O(1)	

© 2011 Pearson Addison-Wesley. All rights reserved 10 A-16

The Efficiency of Searching
Algorithms

•  Binary search	

–  Strategy	

•  To search a sorted array for a particular item	

–  Repeatedly divide the array in half	

–  Determine which half the item must be in, if it is indeed present,

and discard the other half	

–  Efficiency	

•  Worst case: O(log2n)	

•  For large arrays, the binary search has an
enormous advantage over a sequential search	

© 2011 Pearson Addison-Wesley. All rights reserved 10 A-17

Sorting Algorithms and Their
Efficiency

•  Sorting	

–  A process that organizes a collection of data into either

ascending or descending order	

•  Categories of sorting algorithms	

–  An internal sort	

•  Requires that the collection of data fit entirely in the

computer’s main memory	

–  An external sort	

•  The collection of data will not fit in the computer’s main
memory all at once but must reside in secondary storage	

© 2011 Pearson Addison-Wesley. All rights reserved 10 A-18

Sorting Algorithms and Their
Efficiency

•  Data items to be sorted can be	

–  Integers	

–  Character strings	

–  Objects	

•  Sort key	

–  The part of a record that determines the sorted order of

the entire record within a collection of records	

© 2011 Pearson Addison-Wesley. All rights reserved 10 A-19

Selection Sort
•  Selection sort	

–  Strategy	

•  Select the largest item and put it in its correct place	

•  Select the next largest item and put it in its correct place, etc.	

Figure 10-4
A selection sort of an array of

five integers

© 2011 Pearson Addison-Wesley. All rights reserved 10 A-20

Selection Sort

•  Analysis	

–  Selection sort is O(n2)	

•  Advantage of selection sort	

–  It does not depend on the initial arrangement of the data	

•  Disadvantage of selection sort	

–  It is only appropriate for small n	

© 2011 Pearson Addison-Wesley. All rights reserved 10 B-21

Bubble Sort

•  Bubble sort	

–  Strategy	

•  Compare adjacent elements and exchange them if
they are out of order	

–  Comparing the first two elements, the second and third
elements, and so on, will move the largest (or smallest)
elements to the end of the array	

–  Repeating this process will eventually sort the array into
ascending (or descending) order	

© 2011 Pearson Addison-Wesley. All rights reserved 10 B-22

Bubble Sort

Figure 10-5
The first two passes of a bubble sort of an array of five integers: a) pass 1;
b) pass 2

© 2011 Pearson Addison-Wesley. All rights reserved 10 B-23

Bubble Sort

•  Analysis	

–  Worst case: O(n2)	

–  Best case: O(n)	

© 2011 Pearson Addison-Wesley. All rights reserved 10 B-24

Insertion Sort
•  Insertion sort	

–  Strategy	

•  Partition the array into two regions: sorted and unsorted	

•  Take each item from the unsorted region and insert it into its

correct order in the sorted region	

Figure 10-6
An insertion sort partitions the array into two regions

© 2011 Pearson Addison-Wesley. All rights reserved 10 B-25

Insertion Sort

Figure 10-7
An insertion sort of an array of five integers.

© 2011 Pearson Addison-Wesley. All rights reserved 10 B-26

Insertion Sort

•  Analysis	

–  Worst case: O(n2)	

–  For small arrays 	

•  Insertion sort is appropriate due to its simplicity	

–  For large arrays	

•  Insertion sort is prohibitively inefficient	

© 2011 Pearson Addison-Wesley. All rights reserved 10 B-27

Mergesort

•  Important divide-and-conquer sorting algorithms	

–  Mergesort	

–  Quicksort	

•  Mergesort	

–  A recursive sorting algorithm	

–  Gives the same performance, regardless of the initial

order of the array items	

–  Strategy	

•  Divide an array into halves	

•  Sort each half	

•  Merge the sorted halves into one sorted array	

© 2011 Pearson Addison-Wesley. All rights reserved 10 B-28

Mergesort

Figure 10-8
A mergesort with an auxiliary temporary array

© 2011 Pearson Addison-Wesley. All rights reserved 10 B-29

Mergesort

Figure 10-9
A mergesort of an array of six integers

© 2011 Pearson Addison-Wesley. All rights reserved 10 B-30

Mergesort

•  Analysis	

–  Worst case: O(n * log2n)	

–  Average case: O(n * log2n)	

–  Advantage	

•  It is an extremely efficient algorithm with respect to
time	

–  Drawback	

•  It requires a second array as large as the original

array	

© 2011 Pearson Addison-Wesley. All rights reserved 10 B-31

Quicksort
•  Quicksort	

–  A divide-and-conquer algorithm	

–  Strategy	

•  Partition an array into items that are less than the pivot and those that
are greater than or equal to the pivot	

•  Sort the left section	

•  Sort the right section	

Figure 10-12
A partition about a pivot

© 2011 Pearson Addison-Wesley. All rights reserved 10 B-32

Quicksort
•  Using an invariant to develop a partition algorithm	

–  Invariant for the partition algorithm	

	
The items in region S1 are all less than the pivot, and those in
S2 are all greater than or equal to the pivot	

Figure 10-14
Invariant for the partition algorithm

© 2011 Pearson Addison-Wesley. All rights reserved 10 B-33

Quicksort
•  Analysis	

–  Worst case	

•  quicksort is O(n2) when the array is already sorted and the

smallest item is chosen as the pivot	

Figure 10-19
A worst-case partitioning

with quicksort

© 2011 Pearson Addison-Wesley. All rights reserved 10 B-34

Quicksort
•  Analysis	

–  Average case	

•  quicksort is O(n * log2n) when S1 and S2 contain the same – or

nearly the same – number of items arranged at random	

Figure 10-20
A average-case partitioning with

quicksort

© 2011 Pearson Addison-Wesley. All rights reserved 10 B-35

Quicksort

•  Analysis	

–  quicksort is usually extremely fast in practice	

–  Even if the worst case occurs, quicksort’s

performance is acceptable for moderately large arrays	

© 2011 Pearson Addison-Wesley. All rights reserved 10 B-36

Radix Sort

•  Radix sort	

–  Treats each data element as a character string	

–  Strategy	

•  Repeatedly organize the data into groups according
to the ith character in each element	

•  Analysis	

–  Radix sort is O(n)	

© 2011 Pearson Addison-Wesley. All rights reserved 10 B-37

Radix Sort

Figure 10-21
A radix sort of eight integers

© 2011 Pearson Addison-Wesley. All rights reserved 10 B-38

A Comparison of Sorting
Algorithms

Figure 10-22
Approximate growth rates of time required for eight sorting algorithms

© 2011 Pearson Addison-Wesley. All rights reserved 10 B-39

Summary

•  Order-of-magnitude analysis and Big O notation
measure an algorithm’s time requirement as a
function of the problem size by using a growth-
rate function	

•  To compare the inherit efficiency of algorithms	

–  Examine their growth-rate functions when the problems

are large	

–  Consider only significant differences in growth-rate

functions	

© 2011 Pearson Addison-Wesley. All rights reserved 10 B-40

Summary
•  Worst-case and average-case analyses	

–  Worst-case analysis considers the maximum amount of
work an algorithm requires on a problem of a given size	

–  Average-case analysis considers the expected amount
of work an algorithm requires on a problem of a given
size	

•  Order-of-magnitude analysis can be used to
choose an implementation for an abstract data type	

•  Selection sort, bubble sort, and insertion sort are
all O(n2) algorithms	

•  Quicksort and mergesort are two very efficient
sorting algorithms	

