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 Chapter 10 

	


	
Algorithm Efficiency and 
Sorting	
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Measuring the Efficiency of 
Algorithms 

•  Analysis of algorithms	

–  Provides tools for contrasting the efficiency of different 

methods of solution	

•  A comparison of algorithms	


–  Should focus of significant differences in efficiency	

–  Should not consider reductions in computing costs due 

to clever coding tricks	
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Measuring the Efficiency of 
Algorithms 

•  Three difficulties with comparing programs 
instead of algorithms 	
	

–  How are the algorithms coded?	

–  What computer should you use?	

–  What data should the programs use?	


•  Algorithm analysis should be independent of 	

–  Specific implementations	

–  Computers	

–  Data	
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The Execution Time of 
Algorithms 

•  Counting an algorithm's operations is a way to 
access its efficiency	

–  An algorithm’s execution time is related to the number 

of operations it requires	

–  Examples	


•  Traversal of a linked list	

•  The Towers of Hanoi	

•  Nested Loops	




© 2011 Pearson Addison-Wesley. All rights reserved 10 A-5 

Algorithm Growth Rates 

•  An algorithm’s time requirements can be 
measured as a function of the problem size	


•  An algorithm’s growth rate	

–  Enables the comparison of one algorithm with another	

–  Examples	


Algorithm A requires time proportional to n2	


Algorithm B requires time proportional to n	


•  Algorithm efficiency is typically a concern for 
large problems only	




© 2011 Pearson Addison-Wesley. All rights reserved 10 A-6 

Algorithm Growth Rates 

Figure 10-1 
Time requirements as a function of the problem size n 
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Order-of-Magnitude Analysis and 
Big O Notation 

•  Definition of the order of an algorithm	

	
Algorithm A is order f(n) – denoted O(f(n)) – if 
constants k and n0 exist such that A requires no more 
than k * f(n) time units to solve a problem of size n ≥ n0	


•  Growth-rate function	

–  A mathematical function used to specify an algorithm’s 

order in terms of the size of the problem	

•  Big O notation	


–  A notation that uses the capital letter O to specify an 
algorithm’s order	


–  Example: O(f(n))	
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Order-of-Magnitude Analysis and 
Big O Notation 

Figure 10-3a 
A comparison of growth-rate functions: a) in tabular form 
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Order-of-Magnitude Analysis and 
Big O Notation 

Figure 10-3b 
A comparison of growth-rate functions: b) in graphical form 
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Order-of-Magnitude Analysis and 
Big O Notation 

•  Order of growth of some common functions	

O(1) < O(log2n) < O(n) < O(n * log2n) < O(n2) < O(n3) < O(2n)	


•  Properties of growth-rate functions	

–  You can ignore low-order terms	

–  You can ignore a multiplicative constant in the high-

order term	

–  O(f(n)) + O(g(n)) = O(f(n) + g(n))	
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Order-of-Magnitude Analysis and 
Big O Notation 

•  Worst-case and average-case analyses	

–  An algorithm can require different times to solve 

different problems of the same size	

•  Worst-case analysis	


–  A determination of the maximum amount of time that an 
algorithm requires to solve problems of size n	


•  Average-case analysis	

–  A determination of the average amount of time that an 

algorithm requires to solve problems of size n	
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Keeping Your Perspective 

•  Throughout the course of an analysis, keep in 
mind that you are interested only in significant 
differences in efficiency	


•  When choosing an ADT’s implementation, 
consider how frequently particular ADT 
operations occur in a given application	


•  Some seldom-used but critical operations must be 
efficient	
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Keeping Your Perspective 

•  If the problem size is always small, you can 
probably ignore an algorithm’s efficiency	


•  Weigh the trade-offs between an algorithm’s time 
requirements and its memory requirements	


•  Compare algorithms for both style and efficiency	

•  Order-of-magnitude analysis focuses on large 

problems	
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The Efficiency of Searching 
Algorithms 

•  Sequential search	

–  Strategy	


•  Look at each item in the data collection in turn, 
beginning with the first one	


•  Stop when	

–  You find the desired item	

–  You reach the end of the data collection	




© 2011 Pearson Addison-Wesley. All rights reserved 10 A-15 

The Efficiency of Searching 
Algorithms 

•  Sequential search	

–  Efficiency	


•  Worst case: O(n)	

•  Average case: O(n)	

•  Best case: O(1)	
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The Efficiency of Searching 
Algorithms 

•  Binary search	

–  Strategy	


•  To search a sorted array for a particular item	

–  Repeatedly divide the array in half	

–  Determine which half the item must be in, if it is indeed present, 

and discard the other half	


–  Efficiency	

•  Worst case: O(log2n)	


•  For large arrays, the binary search has an 
enormous advantage over a sequential search	
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Sorting Algorithms and Their 
Efficiency 

•  Sorting	

–  A process that organizes a collection of data into either 

ascending or descending order	

•  Categories of sorting algorithms	


–  An internal sort	

•  Requires that the collection of data fit entirely in the 

computer’s main memory	

–  An external sort	


•  The collection of data will not fit in the computer’s main 
memory all at once but must reside in secondary storage	
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Sorting Algorithms and Their 
Efficiency 

•  Data items to be sorted can be	

–  Integers	

–  Character strings	

–  Objects	


•  Sort key	

–  The part of a record that determines the sorted order of 

the entire record within a collection of records	
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Selection Sort 
•  Selection sort	


–  Strategy	

•  Select the largest item and put it in its correct place	

•  Select the next largest item and put it in its correct place, etc.	


Figure 10-4 
A selection sort of an array of 

five integers 
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Selection Sort 

•  Analysis	

–  Selection sort is O(n2)	


•  Advantage of selection sort	

–  It does not depend on the initial arrangement of the data	


•  Disadvantage of selection sort	

–  It is only appropriate for small n	
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Bubble Sort 

•  Bubble sort	

–  Strategy	


•  Compare adjacent elements and exchange them if 
they are out of order	


–  Comparing the first two elements, the second and third 
elements, and so on, will move the largest (or smallest) 
elements to the end of the array	


–  Repeating this process will eventually sort the array into 
ascending (or descending) order	
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Bubble Sort 

Figure 10-5 
The first two passes of a bubble sort of an array of five integers: a) pass 1;  
b) pass 2 
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Bubble Sort 

•  Analysis	

–  Worst case: O(n2)	

–  Best case:  O(n)	
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Insertion Sort 
•  Insertion sort	


–  Strategy	

•  Partition the array into two regions: sorted and unsorted	

•  Take each item from the unsorted region and insert it into its 

correct order in the sorted region	


Figure 10-6 
An insertion sort partitions the array into two regions 
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Insertion Sort 

Figure 10-7 
An insertion sort of an array of five integers. 
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Insertion Sort 

•  Analysis	

–  Worst case: O(n2)	

–  For small arrays 	


•  Insertion sort is appropriate due to its simplicity	

–  For large arrays	


•  Insertion sort is prohibitively inefficient	
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Mergesort 

•  Important divide-and-conquer sorting algorithms	

–  Mergesort	

–  Quicksort	


•  Mergesort	

–  A recursive sorting algorithm	

–  Gives the same performance, regardless of the initial 

order of the array items	

–  Strategy	


•  Divide an array into halves	

•  Sort each half	

•  Merge the sorted halves into one sorted array	
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Mergesort 

Figure 10-8 
A mergesort with an auxiliary temporary array 
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Mergesort 

Figure 10-9 
A mergesort of an array of six integers 
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Mergesort 

•  Analysis	

–  Worst case: O(n * log2n)	

–  Average case: O(n * log2n)	

–  Advantage	


•  It is an extremely efficient algorithm with respect to 
time	


–  Drawback	

•  It requires a second array as large as the original 

array	
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Quicksort 
•  Quicksort	


–  A divide-and-conquer algorithm	

–  Strategy	


•  Partition an array into items that are less than the pivot and those that 
are greater than or equal to the pivot	


•  Sort the left section	

•  Sort the right section	


Figure 10-12 
A partition about a pivot 
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Quicksort 
•  Using an invariant to develop a partition algorithm	


–  Invariant for the partition algorithm	

	
The items in region S1 are all less than the pivot, and those in 
S2 are all greater than or equal to the pivot	


Figure 10-14 
Invariant for the partition algorithm 
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Quicksort 
•  Analysis	


–  Worst case	

•  quicksort is O(n2) when the array is already sorted and the 

smallest item is chosen as the pivot	


Figure 10-19 
A worst-case partitioning 

with quicksort 
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Quicksort 
•  Analysis	


–  Average case	

•  quicksort is O(n * log2n) when S1 and S2 contain the same – or 

nearly the same – number of items arranged at random	


Figure 10-20 
A average-case partitioning with 

quicksort 
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Quicksort 

•  Analysis	

–  quicksort is usually extremely fast in practice	

–  Even if the worst case occurs, quicksort’s 

performance is acceptable for moderately large arrays	
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Radix Sort 

•  Radix sort	

–  Treats each data element as a character string	

–  Strategy	


•  Repeatedly organize the data into groups according 
to the ith character in each element	


•  Analysis	

–  Radix sort is O(n)	
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Radix Sort 

Figure 10-21 
A radix sort of eight integers 
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A Comparison of Sorting 
Algorithms 

Figure 10-22 
Approximate growth rates of time required for eight sorting algorithms 
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Summary 

•  Order-of-magnitude analysis and Big O notation 
measure an algorithm’s time requirement as a 
function of the problem size by using a growth-
rate function	


•  To compare the inherit efficiency of algorithms	

–  Examine their growth-rate functions when the problems 

are large	

–  Consider only significant differences in growth-rate 

functions	
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Summary 
•  Worst-case and average-case analyses	


–  Worst-case analysis considers the maximum amount of 
work an algorithm requires on a problem of a given size	


–  Average-case analysis considers the expected amount 
of work an algorithm requires on a problem of a given 
size	


•  Order-of-magnitude analysis can be used to 
choose an implementation for an abstract data type	


•  Selection sort, bubble sort, and insertion sort are 
all O(n2) algorithms	


•  Quicksort and mergesort are two very efficient 
sorting algorithms	



