
© 2011 Pearson Addison-Wesley. All rights reserved 9 A-1

 Chapter 9

	

	

 	

Advanced Java Topics	

© 2011 Pearson Addison-Wesley. All rights reserved 9 A-2

Inheritance Revisited

•  Inheritance	

–  Allows a class to derive the behavior and structure of

an existing class	

© 2011 Pearson Addison-Wesley. All rights reserved 9 A-3

Inheritance Revisited

Figure 9-1
Inheritance: Relationships among timepieces

© 2011 Pearson Addison-Wesley. All rights reserved 9 A-4

Inheritance Revisited

•  Superclass or base class	

–  A class from which another class is derived	

•  Subclass, derived class, or descendant class	

–  A class that inherits the members of another class	

•  Benefits of inheritance	

–  It enables the reuse of existing classes	

–  It reduces the effort necessary to add features to an

existing object	

© 2011 Pearson Addison-Wesley. All rights reserved 9 A-5

Inheritance Revisited

•  A subclass 	

–  Can add new members to those it inherits	

–  Can override an inherited method of its superclass	

•  A method in a subclass overrides a method in the
superclass if the two methods have the same
declarations	

© 2011 Pearson Addison-Wesley. All rights reserved 9 A-6

Inheritance Revisited

Figure 9-2
The subclass Ball inherits members of the superclass Sphere and overrides and
adds methods

© 2011 Pearson Addison-Wesley. All rights reserved 9 A-7

Inheritance Revisited

•  A subclass inherits private members from the
superclass, but cannot access them directly	

•  Methods of a subclass can call the superclass’s
public methods	

•  Clients of a subclass can invoke the superclass’s
public methods	

•  An overridden method	

–  Instances of the subclass will use the new method	

–  Instances of the superclass will use the original method	

© 2011 Pearson Addison-Wesley. All rights reserved 9 A-8

Inheritance Revisited

Figure 9-3
An object invokes the correct version of a method

© 2011 Pearson Addison-Wesley. All rights reserved 9 A-9

Java Access Modifiers

Figure 9-4
Access to public, protected, package access, and private members of a class by a
client and a subclass

© 2011 Pearson Addison-Wesley. All rights reserved 9 A-10

Java Access Modifiers

•  Membership categories of a class	

–  Public members can be used by anyone	

–  Members declared without an access modifier (the

default) are available to	

•  Methods of the class	

•  Methods of other classes in the same package	

–  Private members can be used only by methods of the
class	

–  Protected members can be used only by	

•  Methods of the class	

•  Methods of other classes in the same package	

•  Methods of the subclass	

© 2011 Pearson Addison-Wesley. All rights reserved 9 A-11

Is-a and Has-a Relationships

•  Two basic kinds of relationships	

–  Is-a relationship	

–  Has-a relationship	

© 2011 Pearson Addison-Wesley. All rights reserved 9 A-12

Is-a Relationship

•  Inheritance should
imply an is-a
relationship between
the superclass and the
subclass	

•  Example:	

–  If the class Ball is

derived from the class
Sphere	

•  A ball is a sphere	

 Figure 9-5
A ball “is a” sphere

© 2011 Pearson Addison-Wesley. All rights reserved 9 A-13

Is-a Relationship

•  Object type compatibility	

–  An instance of a subclass can be used instead of an

instance of the superclass, but not the other way around	

© 2011 Pearson Addison-Wesley. All rights reserved 9 A-14

Has-a Relationships

Figure 9-6
A pen “has a” or

“contains a” ball

© 2011 Pearson Addison-Wesley. All rights reserved 9 A-15

Has-a Relationships

•  Has-a relationship	

–  Also called containment	

–  Cannot be implemented using inheritance	

•  Example: To implement the has-a relationship
between a pen and a ball	

– Define a data field point – whose type is Ball
– within the class Pen

© 2011 Pearson Addison-Wesley. All rights reserved 9 A-16

Dynamic Binding and Abstract
Classes

•  A polymorphic method	

–  A method that has multiple meanings	

–  Created when a subclass overrides a method of the

superclass	

•  Late binding or dynamic binding	

–  The appropriate version of a polymorphic method is
decided at execution time	

© 2011 Pearson Addison-Wesley. All rights reserved 9 A-17

Dynamic Binding and Abstract
Classes

Figure 9-7a
area is overridden: a)
mySphere.DisplayStatistics()
calls area in Sphere

© 2011 Pearson Addison-Wesley. All rights reserved 9 A-18

Dynamic Binding and Abstract
Classes

Figure 9-7b
area is overridden: b) myBall.displayStatistics() calls area in Ball

© 2011 Pearson Addison-Wesley. All rights reserved 9 A-19

Dynamic Binding and Abstract
Classes

•  Controlling whether a subclass can override a
superclass method	

–  Field modifier final

•  Prevents a method from being overridden by a subclass	

–  Field modifier abstract

•  Requires the subclass to override the method	

•  Early binding or static binding	

–  The appropriate version of a method is decided at

compilation time	

–  Used by methods that are final or static

© 2011 Pearson Addison-Wesley. All rights reserved 9 A-20

Dynamic Binding and Abstract
Classes

•  Overloading methods	

–  To overload a method is to define another method with

the same name but with a different set of parameters	

–  The arguments in each version of an overloaded

method determine which version of the method will be
used	

© 2011 Pearson Addison-Wesley. All rights reserved 9 B-21

Abstract Classes

•  Example	

–  CD player and DVD player	

•  Both involve an optical disk	

•  Operations	

–  Insert, remove, play, record, and stop such discs	

© 2011 Pearson Addison-Wesley. All rights reserved 9 B-22

Abstract Classes

Figure 9-8
CDP and DVDP have an abstract base class GDP

© 2011 Pearson Addison-Wesley. All rights reserved 9 B-23

Abstract Classes

•  Abstract classes	

–  An abstract class is used only as the basis for subclasses	

•  It defines a minimum set of methods and data fields for its
subclasses	

–  An abstract class has no instances	

–  An abstract class should, in general, omit

implementations except for the methods that	

•  Provide access to private data fields	

•  Express functionality common to all of the subclasses	

© 2011 Pearson Addison-Wesley. All rights reserved 9 B-24

Abstract Classes

•  Abstract classes (Continued)	

–  A class that contains at least one abstract method must

be declared as an abstract class	

–  A subclass of an abstract class must be declared

abstract if it does not provide implementations for all
abstract methods in the superclass	

© 2011 Pearson Addison-Wesley. All rights reserved 9 B-25

Java Interfaces Revisited

•  A Java interface	

–  Specifies the common behavior of a set of classes	

–  Common uses	

•  Facilitate moving from one implementation of a
class to another	

– A client can reference a class’s interface instead
of the class itself	

•  Specify behaviors that are common to a group of
classes	

© 2011 Pearson Addison-Wesley. All rights reserved 9 B-26

Java Interfaces Revisited

•  Inheritance can be used to define a subinterface	

•  The Java API provides many interfaces and

subinterfaces	

–  Example: java.util.Iterable

•  An iterator is a class that provides access to another
class that contains many objects	

© 2011 Pearson Addison-Wesley. All rights reserved 9 B-27

The ADTs List and Sorted List
Revisited

•  BasicADTInterface
–  Can be used to organize the commonalities between the

ADT list and the ADT sorted list	

–  ListInterface

•  A new interface based on BasicADTInterface

© 2011 Pearson Addison-Wesley. All rights reserved 9 B-28

Implementation of the ADT
Sorted List That Used the ADT
List
•  Operations	

–  createSortedList()
–  isEmpty():boolean {query}
–  size():integer {query}
–  sortedAdd(in newItem:ListItemType) throw
ListException

–  sortedRemove(in anItem:ListItemType) throw
ListException

–  removeAll()
–  get(in index:integer) throw
ListIndexOutOfBoundsException

–  locateIndex(in anItem:ListItemType):integer
{query}

© 2011 Pearson Addison-Wesley. All rights reserved 9 B-29

Implementations of the ADT
Sorted List That Use the ADT List

•  A sorted list is a list	

–  With an additional operation, locateIndex

•  A sorted list has a list as a member

© 2011 Pearson Addison-Wesley. All rights reserved 9 B-30

Java Generics: Generic Classes

•  ADT developed in this text relied upon the use of
Object class	

•  Problems with this approach	

–  Items of any type could be added to same ADT instance	

–  ADT instance returns objects	

•  Cast operations are needed	

•  May lead to class-cast exceptions	

•  Avoid this issues by using Java generics	

–  To specify a class in terms of a data-type parameter	

© 2011 Pearson Addison-Wesley. All rights reserved 9 B-31

Generic Wildcards

•  Generic classes are not necessary related	

•  Generic ? wildcard	

–  Stands for unknown data type	

•  Example	

public void process(NewClass<?> temp) {
 System.out.println("getData() => " +
 temp.getData());

} // end process

© 2011 Pearson Addison-Wesley. All rights reserved 9 B-32

Generic Classes and Inheritance

•  You can use inheritance with a generic class or
interface	

•  Method overriding rules	

–  Declare a method with the same parameters in the

subclass	

–  Return type is a subtype of all the methods it overrides	

•  It is sometimes useful to constrain the data-type
parameter to a class or one of its subclasses or an
implementation of a particular interface	

–  To do so, use the keyword extends

© 2011 Pearson Addison-Wesley. All rights reserved 9 B-33

Abstract Classes

Figure 9-10
Sample class hierarchy

© 2011 Pearson Addison-Wesley. All rights reserved 9 B-34

Generic Methods

•  Method declarations can also be generic	

–  Methods can use data-type parameters	

•  Generic methods are invoked like regular non-
generic methods	

•  Example	

public static <T extends Comparable<? super
T>>

void sort(ArrayList<T> list) {
 // implementation of sort appears here
} // end sort	

© 2011 Pearson Addison-Wesley. All rights reserved 9 B-35

Iterators

•  Iterator	

–  Object that can access a collection of objects one object

at a time	

–  Traverses the collection of objects	

•  JCF defines generic interface
java.util.Iterator

–  And a subinterface ListIterator

© 2011 Pearson Addison-Wesley. All rights reserved 9 B-36

Iterators

•  Defining our own Iterator class	

•  Implement an iterator interface	

–  At a minimum, include methods for next(), hasNext()
and remove().	

–  If you don’t want to remove(), you may leave method
body empty.	

•  MyListIterator example	

–  Maintain lastItemIndex to keep track of where iterator

is between calls to iterator methods. 	

–  Initialize in constructor; increment inside next().	

© 2011 Pearson Addison-Wesley. All rights reserved 9 B-37

Summary

•  A subclass inherits all members of its previously
defined superclass, but can access only the public
and protected members	

•  Subclasses and superclasses	

–  A subclass is type-compatible with its superclass	

–  The relationship between superclasses and subclasses is

an is-a relationship	

•  A method in a subclass overrides a method in the

superclass if they have the same parameter
declarations	

© 2011 Pearson Addison-Wesley. All rights reserved 9 B-38

Summary

•  An abstract method in a class is a method that you
can override in a subclass	

•  A subclass inherits	

–  The interface of each method that is in its superclass	

–  The implementation of each nonabstract method that is

in its superclass	

•  An abstract class	

–  Specifies only the essential members necessary for its
subclasses	

–  Can serve as the superclass for a family of classes	

© 2011 Pearson Addison-Wesley. All rights reserved 9 B-39

Summary

•  Early (static) binding: compiler determines at
compilation time the correct method to invoke	

•  Late (dynamic) binding: system determines at
execution time the correct method to invoke	

•  When a method that is not declared final is
invoked, the type of object is the determining
factor under late binding	

•  Generic classes enable you to parameterize the
type of a class’s data	

•  Iterators provide an alternative way to cycle
through a collection of items	

