
© 2011 Pearson Addison-Wesley. All rights reserved 8 A-1

 Chapter 8

	

	
 	
 	
Queues	

© 2011 Pearson Addison-Wesley. All rights reserved 8 A-2

The Abstract Data Type Queue

•  A queue	

–  New items enter at the back, or rear, of the queue	

–  Items leave from the front of the queue	

–  First-in, first-out (FIFO) property	

•  The first item inserted into a queue is the first item
to leave	

© 2011 Pearson Addison-Wesley. All rights reserved 8 A-3

The Abstract Data Type Queue

•  ADT queue operations	

–  Create an empty queue	

–  Determine whether a queue is empty	

–  Add a new item to the queue	

–  Remove from the queue the item that was added earliest	

–  Remove all the items from the queue	

–  Retrieve from the queue the item that was added

earliest	

© 2011 Pearson Addison-Wesley. All rights reserved 8 A-4

The Abstract Data Type Queue

•  Queues	

– Are appropriate for many real-world situations	

•  Example: A line to buy a movie ticket	

–  Have applications in computer science	

•  Example: A request to print a document	

•  A simulation	

–  A study to see how to reduce the wait involved in an
application	

© 2011 Pearson Addison-Wesley. All rights reserved 8 A-5

The Abstract Data Type Queue

•  Pseudocode for the ADT queue operations	

createQueue()
// Creates an empty queue.

isEmpty()
// Determines whether a queue is empty

enqueue(newItem) throws QueueException
// Adds newItem at the back of a queue. Throws
// QueueException if the operation is not
// successful

© 2011 Pearson Addison-Wesley. All rights reserved 8 A-6

The Abstract Data Type Queue

•  Pseudocode for the ADT queue operations
(Continued)	

dequeue() throws QueueException
// Retrieves and removes the front of a queue.
// Throws QueueException if the operation is
// not successful.

dequeueAll()
// Removes all items from a queue

peek() throws QueueException
// Retrieves the front of a queue. Throws
// QueueException if the retrieval is not
// successful

© 2011 Pearson Addison-Wesley. All rights reserved 8 A-7

The Abstract Data Type Queue

Figure 8-2
Some queue operations

© 2011 Pearson Addison-Wesley. All rights reserved 8 A-8

Simple Applications of the ADT
Queue: Reading a String of
Characters
•  A queue can retain characters in the order in

which they are typed	

queue.createQueue()

while (not end of line) {

 Read a new character ch
 queue.enqueue(ch)

} 	

•  Once the characters are in a queue, the system can

process them as necessary 	
 	
 	
	

© 2011 Pearson Addison-Wesley. All rights reserved 8 A-9

Recognizing Palindromes

•  A palindrome	

–  A string of characters that reads the same from left to

right as its does from right to left	

•  To recognize a palindrome, a queue can be used in

conjunction with a stack	

–  A stack can be used to reverse the order of occurrences	

–  A queue can be used to preserve the order of

occurrences	

© 2011 Pearson Addison-Wesley. All rights reserved 8 A-10

Recognizing Palindromes

•  A nonrecursive
recognition algorithm for
palindromes	

–  As you traverse the

character string from left to
right, insert each character
into both a queue and a
stack	

–  Compare the characters at
the front of the queue and
the top of the stack	

Figure 8-3
The results of inserting a string

into both a queue and a stack

© 2011 Pearson Addison-Wesley. All rights reserved 8 A-11

Implementations of the ADT
Queue

•  A queue can have either	

–  An array-based implementation	

–  A reference-based implementation	

© 2011 Pearson Addison-Wesley. All rights reserved 8 A-12

A Reference-Based
Implementation
•  Possible implementations of a queue 	

–  A linear linked list with two external references	

•  A reference to the front	

•  A reference to the back	

Figure 8-4a
A reference-based implementation of a queue: a) a linear linked list with two
external references

© 2011 Pearson Addison-Wesley. All rights reserved 8 A-13

A Reference-Based
Implementation
•  Possible implementations of a queue (Continued)	

–  A circular linked list with one external reference	

•  A reference to the back	

Figure 8-4b
A reference-based implementation of a queue: b) a circular linear linked list with one
external reference

© 2011 Pearson Addison-Wesley. All rights reserved 8 A-14

A Reference-Based
Implementation

Figure 8-5
Inserting an item into a nonempty queue

1. newNode.next = lastNode.next;
2. lastNode.next = newNode;
3. lastNode = newNode;

© 2011 Pearson Addison-Wesley. All rights reserved 8 A-15

A Reference-Based
Implementation

Figure 8-6
Inserting an item into an empty queue: a) before insertion; b) after insertion

newNode.next = newNode;
lastNode = newNode;

© 2011 Pearson Addison-Wesley. All rights reserved 8 A-16

A Reference-Based
Implementation

Figure 8-7
Deleting an item from a queue of more than one item

1. firstNode = lastNode.next;
2. lastNode.next = firstNode.next;

© 2011 Pearson Addison-Wesley. All rights reserved 8 A-17

An Array-Based Implementation

Figure 8-8
a) A naive array-based implementation of a queue; b) rightward drift can cause the
queue to appear full

© 2011 Pearson Addison-Wesley. All rights reserved 8 A-18

An Array-Based Implementation

•  A circular array
eliminates the
problem of
rightward drift	

Figure 8-9
A circular implementation of a queue

© 2011 Pearson Addison-Wesley. All rights reserved 8 A-19

An Array-Based Implementation

Figure 8-10
The effect of some operations of the queue in Figure 8-8

© 2011 Pearson Addison-Wesley. All rights reserved 8 A-20

An Array-Based Implementation

•  A problem with the circular array implementation	

–  front and back cannot be used to distinguish

between queue-full and queue-empty conditions	

© 2011 Pearson Addison-Wesley. All rights reserved 8 A-21

An Array-Based Implementation

Figure 8-11a
a) front passes back when the queue becomes empty

© 2011 Pearson Addison-Wesley. All rights reserved 8 A-22

An Array-Based Implementation

Figure 8-11b
b) back catches up to front when the queue becomes full

© 2011 Pearson Addison-Wesley. All rights reserved 8 A-23

An Array-Based Implementation

•  To detect queue-full and queue-empty conditions	

–  Keep a count of the queue items	

•  To initialize the queue, set	

–  front to 0	

–  back to MAX_QUEUE – 1
–  count to 0	

© 2011 Pearson Addison-Wesley. All rights reserved 8 A-24

An Array-Based Implementation

•  Inserting into a queue	

back = (back+1) % MAX_QUEUE;

items[back] = newItem;
++count;

•  Deleting from a queue	

front = (front+1) % MAX_QUEUE;

--count;	

© 2011 Pearson Addison-Wesley. All rights reserved 8 A-25

An Array-Based Implementation

•  Variations of the array-based implementation	

–  Use a flag full to distinguish between the full and

empty conditions	

–  Declare MAX_QUEUE + 1 locations for the array

items, but use only MAX_QUEUE of them for queue
items	

© 2011 Pearson Addison-Wesley. All rights reserved 8 A-26

An Array-Based Implementation

Figure 8-12
A more efficient circular

implementation: a) a full

queue; b) an empty queue

© 2011 Pearson Addison-Wesley. All rights reserved 8 B-27

An Implementation That Uses the
ADT List

•  If the item in position 1 of a list list
represents the front of the queue, the
following implementations can be used	

– dequeue()

list.remove(1)

– peek()
list.get(1)

© 2011 Pearson Addison-Wesley. All rights reserved 8 B-28

An Implementation That Uses the
ADT List
•  If the item at the end of the list represents the back

of the queue, the following implementations can
be used	

–  enqueue(newItem)

list.add(list.size()+1, newItem)

Figure 8-13
An implementation that uses the ADT list

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-29

The Java Collections Framework
Interface Queue

•  JCF has a queue interface called Queue
•  Derived from interface Collection	

•  Adds methods: 	

–  element: retrieves, but does not remove head
–  offer: inserts element into queue
–  peek: retrieves, but does not remove head
–  poll: retrieves and removes head
–  remove: retrieves and removes head

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-30

The Java Collections Framework
Interface Deque

•  Deque = double-ended queue 	

–  (pronounced “deck”)	

•  Allows us to insert and delete from either end	

–  Useful methods: addFirst, addLast, peekFirst,

peekLast, getFirst, getLast, removeFirst, removeLast	

•  Thus, may function as both a stack and a queue	

•  Example: text editor	

–  Input characters using “stack” functionality: backspace event
causes a pop. Output characters using “queue” functionality.	

© 2011 Pearson Addison-Wesley. All rights reserved 8 B-31

Comparing Implementations

•  All of the implementations of the ADT queue
mentioned are ultimately either	

–  Array based	

–  Reference based	

•  Fixed size versus dynamic size	

–  A statically allocated array	

•  Prevents the enqueue operation from adding an item to the
queue if the array is full	

–  A resizable array or a reference-based implementation	

•  Does not impose this restriction on the enqueue operation 	

© 2011 Pearson Addison-Wesley. All rights reserved 8 B-32

Comparing Implementations

•  Reference-based implementations	

– A linked list implementation	

•  More efficient	

– The ADT list implementation	

•  Simpler to write	

© 2011 Pearson Addison-Wesley. All rights reserved 8 B-33

A Summary of Position-Oriented
ADTs

•  Position-oriented ADTs	

– List	

– Stack	

– Queue	

•  Stacks and queues	

– Only the end positions can be accessed	

•  Lists	

– All positions can be accessed	

© 2011 Pearson Addison-Wesley. All rights reserved 8 B-34

A Summary of Position-Oriented
ADTs

•  Stacks and queues are very similar	

– Operations of stacks and queues can be paired

off as	

• createStack and createQueue
•  Stack isEmpty and queue isEmpty
• push and enqueue
• pop and dequeue
•  Stack peek and queue peek

© 2011 Pearson Addison-Wesley. All rights reserved 8 B-35

A Summary of Position-Oriented
ADTs

•  ADT list operations generalize stack and
queue operations	

– length
– add
– remove
– get

© 2011 Pearson Addison-Wesley. All rights reserved 8 B-36

Application: Simulation

•  Simulation	

– A technique for modeling the behavior of both

natural and human-made systems	

– Goal	

•  Generate statistics that summarize the performance
of an existing system	

•  Predict the performance of a proposed system	

– Example	

•  A simulation of the behavior of a bank	

© 2011 Pearson Addison-Wesley. All rights reserved 8 B-37

Application: Simulation

Figure 8-14a and 8-14b
A blank line at at time a) 0; b) 12

© 2011 Pearson Addison-Wesley. All rights reserved 8 B-38

Application: Simulation

Figure 8-14c and 8-14d
A blank line at at time c) 20; d) 38

© 2011 Pearson Addison-Wesley. All rights reserved 8 B-39

Application: Simulation

•  An event-driven simulation	

–  Simulated time is advanced to the time of the next

event	

–  Events are generated by a mathematical model that is

based on statistics and probability	

•  A time-driven simulation	

–  Simulated time is advanced by a single time unit	

–  The time of an event, such as an arrival or departure, is

determined randomly and compared with a simulated
clock	

© 2011 Pearson Addison-Wesley. All rights reserved 8 B-40

Application: Simulation

•  The bank simulation is concerned with	

–  Arrival events	

•  Indicate the arrival at the bank of a new customer	

•  External events: the input file specifies the times at which the

arrival events occur	

–  Departure events	

•  Indicate the departure from the bank of a customer who has
completed a transaction	

•  Internal events: the simulation determines the times at which
the departure events occur	

© 2011 Pearson Addison-Wesley. All rights reserved 8 B-41

Application: Simulation

•  An event list is needed to implement an event-driven
simulation	

–  An event list	

•  Keeps track of arrival and departure events that will occur but have
not occurred yet	

•  Contains at most one arrival event and one departure event	

Figure 8-15
A typical instance of

the event list

© 2011 Pearson Addison-Wesley. All rights reserved 8 B-42

Summary

•  The definition of the queue operations gives the
ADT queue first-in, first-out (FIFO) behavior	

•  A reference-based implementation of a queue uses
either	

–  A circular linked list	

–  A linear linked list with a head reference and a tail

reference	

•  An array-based implementation of a queue is

prone to rightward drift	

–  A circular array eliminates the problem of rightward

drift	

© 2011 Pearson Addison-Wesley. All rights reserved 8 B-43

Summary

•  To distinguish between the queue-full and queue-
empty conditions in a queue implementation that
uses a circular array, you can	

–  Count the number of items in the queue	

–  Use a full flag	

–  Leave one array location empty	

•  Models of real-world systems often use queues	

–  The event-driven simulation in this chapter uses a

queue to model a line of customers in a bank	

© 2011 Pearson Addison-Wesley. All rights reserved 8 B-44

Summary

•  Simulations	

–  Central to a simulation is the notion of simulated time	

•  In a time-driven simulation	

–  Simulated time is advanced by a single time unit	

•  In an event-driven simulation	

–  Simulated time is advanced to the time of the next event	

–  To implement an event-driven simulation, you maintain
an event list that contains events that have not yet
occurred	

