
© 2011 Pearson Addison-Wesley. All rights reserved 7A-1

 Chapter 7

Stacks	

© 2011 Pearson Addison-Wesley. All rights reserved 7A-2

The Abstract Data Type:
Developing an ADT During the
Design of a Solution
•  Specifications of an abstract data type for a

particular problem	

–  Can emerge during the design of the problem’s

solution	

–  Examples	

• readAndCorrect algorithm	

• displayBackward algorithm	

© 2011 Pearson Addison-Wesley. All rights reserved 7A-3

Developing an ADT During the
Design of a Solution

•  ADT stack operations	

–  Create an empty stack	

–  Determine whether a stack is empty	

–  Add a new item to the stack	

–  Remove from the stack the item that was added most

recently	

–  Remove all the items from the stack	

–  Retrieve from the stack the item that was added most

recently	

© 2011 Pearson Addison-Wesley. All rights reserved 7A-4

Developing an ADT During the
Design of a Solution

•  A stack	

–  Last-in, first-out

(LIFO) property	

•  The last item placed on

the stack will be the
first item removed	

–  Analogy	

•  A stack of dishes in a

cafeteria	

Figure 7-1
Stack of cafeteria dishes

© 2011 Pearson Addison-Wesley. All rights reserved 7A-5

Developing an ADT During the
Design of a Solution

•  A queue	

–  First in, first out (FIFO) property	

•  The first item added is the first item to be removed	

© 2011 Pearson Addison-Wesley. All rights reserved 7A-6

Refining the Definition of the ADT
Stack

•  Pseudocode for the ADT stack operations	

createStack()
// Creates an empty stack.

isEmpty()
// Determines whether a stack is empty.

push(newItem) throws StackException
// Adds newItem to the top of the stack.
// Throws StackException if the insertion is
// not successful.

© 2011 Pearson Addison-Wesley. All rights reserved 7A-7

Refining the Definition of the ADT
Stack

•  Pseudocode for the ADT stack operations
(Continued)	

pop() throws StackException
// Retrieves and then removes the top of the stack.
// Throws StackException if the deletion is not
// successful.

popAll()
// Removes all items from the stack.

peek() throws StackException
// Retrieves the top of the stack. Throws
// StackException if the retrieval is not successful

© 2011 Pearson Addison-Wesley. All rights reserved 7A-8

Using the ADT Stack in a
Solution

•  displayBackward and readAndCorrect
algorithms can be refined by using stack
operations	

•  A program can use a stack independently of the
stack’s implementation	

© 2011 Pearson Addison-Wesley. All rights reserved 7A-9

Axioms (Optional)

•  Axioms are used to define an ADT formally	

–  Example	

•  Axiom to specify that the last item inserted into
stack is the first item to be removed	

(stack.push(newItem)).pop() = stack

	

© 2011 Pearson Addison-Wesley. All rights reserved 7A-10

Simple Applications of the ADT
Stack: Checking for Balanced
Braces
•  A stack can be used to verify whether a program

contains balanced braces	

–  An example of balanced braces	

abc{defg{ijk}{l{mn}}op}qr

–  An example of unbalanced braces	

abc{def}}{ghij{kl}m

© 2011 Pearson Addison-Wesley. All rights reserved 7A-11

Checking for Balanced Braces

•  Requirements for balanced braces	

–  Each time you encounter a “}”, it matches an already

encountered “{”	

–  When you reach the end of the string, you have

matched each “{”	

© 2011 Pearson Addison-Wesley. All rights reserved 7A-12

Checking for Balanced Braces

Figure 7-3
Traces of the algorithm that checks for balanced braces

© 2011 Pearson Addison-Wesley. All rights reserved 7A-13

Checking for Balanced Braces

•  The exception StackException	

–  A Java method that implements the balanced-braces

algorithm should do one of the following	

•  Take precautions to avoid an exception	

•  Provide try and catch blocks to handle a possible

exception	

© 2011 Pearson Addison-Wesley. All rights reserved 7A-14

Recognizing Strings in a
Language

•  Language L	

L = {w$w’ : w is a possible empty string of characters other than $,	

 w’ = reverse(w) }	

–  A stack can be used to determine whether a given string
is in L	

•  Traverse the first half of the string, pushing each character onto
a stack	

•  Once you reach the $, for each character in the second half of
the string, pop a character off the stack	

–  Match the popped character with the current character in the
string	

© 2011 Pearson Addison-Wesley. All rights reserved 7A-15

Implementations of the ADT
Stack

•  The ADT stack can be implemented using 	

–  An array	

–  A linked list	

–  The ADT list	

•  StackInterface
–  Provides a common specification for the three

implementations	

•  StackException
–  Used by StackInterface
–  Extends java.lang.RuntimeException

© 2011 Pearson Addison-Wesley. All rights reserved 7A-16

Implementations of the ADT
Stack

Figure 7-4
Implementation of the

ADT stack that use a)

an array; b) a linked list;
c) an ADT list

© 2011 Pearson Addison-Wesley. All rights reserved 7A-17

An Array-Based Implementation
of the ADT Stack
•  StackArrayBased class	

–  Implements StackInterface	

–  Instances	

•  Stacks	

–  Private data fields	

•  An array of Objects called items
•  The index top

Figure 7-5
An array-based implementation

© 2011 Pearson Addison-Wesley. All rights reserved 7A-18

A Reference-Based
Implementation of the ADT Stack

•  A reference-based implementation	

–  Required when the stack needs to grow and shrink

dynamically	

•  StackReferenceBased

–  Implements StackInterface
–  top is a reference to the head of a linked list of items	

© 2011 Pearson Addison-Wesley. All rights reserved 7A-19

A Reference-Based
Implementation of the ADT Stack

Figure 7-6
A reference-based
implementation

© 2011 Pearson Addison-Wesley. All rights reserved 7A-20

An Implementation That Uses the
ADT List

•  The ADT list can be used to represent the items in
a stack	

•  If the item in position 1 of a list represents the top
of the stack	

–  push(newItem) operation is implemented as	

add(1, newItem)

–  pop() operation is implemented as	

get(1)
remove(1)

–  peek() operation is implemented as	

get(1)

© 2011 Pearson Addison-Wesley. All rights reserved 7A-21

An Implementation That Uses the
ADT List

Figure 7-7
An implementation that uses

the ADT list

© 2011 Pearson Addison-Wesley. All rights reserved 7 B-22

Comparing Implementations

•  All of the three implementations are
ultimately array based or reference based	

•  Fixed size versus dynamic size	

– An array-based implementation	

•  Uses fixed-sized arrays	

–  Prevents the push operation from adding an item to the

stack if the stack’s size limit has been reached	

– A reference-based implementation	

•  Does not put a limit on the size of the stack	

© 2011 Pearson Addison-Wesley. All rights reserved 7 B-23

Comparing Implementations

•  An implementation that uses a linked list
versus one that uses a reference-based
implementation of the ADT list	

– Linked list approach	

•  More efficient	

– ADT list approach	

•  Reuses an already implemented class	

–  Much simpler to write	

–  Saves time	

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-24

The Java Collections Framework
Class Stack

•  JCF contains an implementation of a stack
class called Stack (generic)

•  Derived from Vector
•  Includes methods: peek, pop, push,
and search

• search returns the 1-based position of an
object on the stack

© 2011 Pearson Addison-Wesley. All rights reserved 7 B-25

Application:
Algebraic Expressions

•  When the ADT stack is used to solve a
problem, the use of the ADT’s operations
should not depend on its implementation	

•  To evaluate an infix expressions	

– Convert the infix expression to postfix form	

– Evaluate the postfix expression	

© 2011 Pearson Addison-Wesley. All rights reserved 7 B-26

Evaluating Postfix Expressions

•  A postfix calculator	

– Requires you to enter postfix expressions	

•  Example: 2, 3, 4, +, *	

– When an operand is entered, the calculator	

•  Pushes it onto a stack	

– When an operator is entered, the calculator	

•  Applies it to the top two operands of the stack	

•  Pops the operands from the stack	

•  Pushes the result of the operation on the stack	

© 2011 Pearson Addison-Wesley. All rights reserved 7 B-27

Evaluating Postfix Expressions

Figure 7-8
The action of a postfix calculator when evaluating the expression 2 * (3 + 4)

© 2011 Pearson Addison-Wesley. All rights reserved 7 B-28

Evaluating Postfix Expressions

•  To evaluate a postfix expression which is
entered as a string of characters	

– Simplifying assumptions	

•  The string is a syntactically correct postfix
expression	

•  No unary operators are present	

•  No exponentiation operators are present	

•  Operands are single lowercase letters that represent

integer values	

© 2011 Pearson Addison-Wesley. All rights reserved 7 B-29

Converting Infix Expressions to
Equivalent Postfix Expressions

•  An infix expression can be evaluated by first being
converted into an equivalent postfix expression	

•  Facts about converting from infix to postfix	

–  Operands always stay in the same order with respect to

one another	

–  An operator will move only “to the right” with respect

to the operands	

–  All parentheses are removed	

© 2011 Pearson Addison-Wesley. All rights reserved 7 B-30

Converting Infix Expressions to
Equivalent Postfix Expressions

Figure 7-9
A trace of the algorithm that converts the infix expression a - (b + c * d)/e to postfix form

© 2011 Pearson Addison-Wesley. All rights reserved 7 B-31

Application: A Search Problem

•  High Planes Airline Company (HPAir)	

– Problem	

•  For each customer request, indicate whether a
sequence of HPAir flights exists from the origin city
to the destination city	

© 2011 Pearson Addison-Wesley. All rights reserved 7 B-32

Representing the Flight Data

•  The flight map for
HPAir is a graph	

–  Adjacent vertices	

•  Two vertices that are
joined by an edge	

–  Directed path	

•  A sequence of directed

edges	

Figure 7-10
Flight map for HPAir

© 2011 Pearson Addison-Wesley. All rights reserved 7 B-33

A Nonrecursive Solution that
Uses a Stack

•  The solution performs an exhaustive search	

–  Beginning at the origin city, the solution will try every

possible sequence of flights until either	

•  It finds a sequence that gets to the destination city	

•  It determines that no such sequence exists	

•  The ADT stack is useful in organizing an
exhaustive search	

•  Backtracking can be used to recover from a wrong
choice of a city	

© 2011 Pearson Addison-Wesley. All rights reserved 7 B-34

A Nonrecursive Solution that
Uses a Stack

Figure 7-11
The stack of cities as you travel a) from P; b) to R; c) to X; d) back to R; e) back to
P; f) to W

© 2011 Pearson Addison-Wesley. All rights reserved 7 B-35

A Nonrecursive Solution that
Uses a Stack

Figure 7-13
A trace of the search algorithm, given the flight map in Figure 6-9

© 2011 Pearson Addison-Wesley. All rights reserved 7 B-36

A Recursive Solution

•  Possible outcomes of the recursive search
strategy	

– You eventually reach the destination city and

can conclude that it is possible to fly from the
origin to the destination	

– You reach a city C from which there are no
departing flights	

– You go around in circles	

© 2011 Pearson Addison-Wesley. All rights reserved 7 B-37

A Recursive Solution

•  A refined recursive search strategy	

searchR(originCity, destinationCity)

 Mark originCity as visited

 if (originCity is destinationCity) {

 Terminate -- the destination is reached

 }

 else {

 for (each unvisited city C adjacent to originCity) {

 searchR(C, destinationCity)
 }

 }

© 2011 Pearson Addison-Wesley. All rights reserved 7 B-38

The Relationship Between
Stacks and Recursion

•  The ADT stack has a hidden presence in the
concept of recursion	

•  Typically, stacks are used by compilers to
implement recursive methods	

–  During execution, each recursive call generates an

activation record that is pushed onto a stack	

•  Stacks can be used to implement a nonrecursive

version of a recursive algorithm	

© 2011 Pearson Addison-Wesley. All rights reserved 7 B-39

Summary

•  ADT stack operations have a last-in, first-out
(LIFO) behavior	

•  Algorithms that operate on algebraic expressions
are an important application of stacks	

•  A stack can be used to determine whether a
sequence of flights exists between two cities	

•  A strong relationship exists between recursion and
stacks	

