

The Abstract Data Type:
Developing an ADT During the
Design of a Solution

e Specifications of an abstract data type for a
particular problem

— Can emerge during the design of the problem’ s
solution

— Examples
 readAndCorrect algorithm
e displayBackward algorithm

© 2011 Pearson Addison-Wesley. All rights reserve d 7A-2

Developing an ADT During the
Design of a Solution

e ADT stack operations
— Create an empty stack
— Determine whether a stack 1s empty
— Add a new item to the stack

— Remove from the stack the item that was added most
recently

— Remove all the items from the stack

— Retrieve from the stack the item that was added most
recently

© 2011 Pearson Addison-Wesley. All rights reserved 7A-3

Developing an ADT During the
Design of a Solution

e A stack B

— Last-in, first-out
(LIFO) property

e The last item placed on
the stack will be the
first item removed

414444
NANNNN

— Analogy

e A stack of dishes in a
cafeteria

Figure 7-1

Stack of cafeteria dishes

© 2011 Pearson Addison-Wesley. All rights reserved 7A-4

Developing an ADT During the
Design of a Solution

* A queue
— First 1n, first out (FIFO) property
e The first item added is the first item to be removed

© 2011 Pearson Addison-Wesley. All rights reserve d 7A-5

Refining the Definition of the ADT
Stack

e Pseudocode for the ADT stack operations

createStack ()
// Creates an empty stack.

1sEmpty ()
// Determines whether a stack 1is empty.

push (newltem) throws StackException

// Adds newlItem to the top of the stack.

// Throws StackException if the insertion is
// not successful.

© 2011 Pearson Addison-Wesley. All rights reserved 7A-6

Refining the Definition of the ADT
Stack

e Pseudocode for the ADT stack operations
(Continued)

pop () throws StackException

// Retrieves and then removes the top of the stack.
// Throws StackException if the deletion is not

// successful.

popAll ()
// Removes all items from the stack.

peek () throws StackException
// Retrieves the top of the stack. Throws
// StackException if the retrieval is not successful

© 2011 Pearson Addison-Wesley. All rights reserved TA-7

Using the ADT Stack in a
Solution

« displayBackward and readAndCorrect
algorithms can be refined by using stack

operations
e A program can use a stack independently of the
stack’ s implementation

© 2011 Pearson Addison-Wesley. All rights reserved 7A-8

Axioms (Optional)

e Axioms are used to define an ADT formally
— Example

e Axiom to specity that the last item inserted into
stack is the first item to be removed

(stack.push (newlItem)) .pop() = stack

© 2011 Pearson Addison-Wesley. All rights reserved 7A-9

Simple Applications of the ADT
Stack: Checking for Balanced
Braces

* A stack can be used to verity whether a program
contains balanced braces
— An example of balanced braces
abc{defg{ijk}{l{mn}}oplgr
— An example of unbalanced braces
abc{def}}{ghi1j{kl}im

© 2011 Pearson Addison-Wesley. All rights reserve d 7A-10

Checking for Balanced Braces

* Requirements for balanced braces

— Each time you encounter a “ }, it matches an already
encountered “{~

— When you reach the end of the string, you have
matched each “{”

© 2011 Pearson Addison-Wesley. All rights reserved 7A-11

Checking for Balanced Braces

Input string Stack as algorithm executes
1. 2. 3. 4.
{a{b}c}
{
{ { {
{a{bc}
{
{ { {
{ab}c}
{
Figure 7-3

1. push " {"

2. push "{"

3. pop

4. pop

Stack empty =—> balanced

1. push " {"

2. push "{"

3. pop

Stack not empty —> not balanced

1. push " {"

2. pop
Stack empty when last "} " encountered = not balanced

Traces of the algorithm that checks for balanced braces

© 2011 Pearson Addison-Wesley. All rights reserved

7A-12

Checking for Balanced Braces

* The exception StackException

— A Java method that implements the balanced-braces
algorithm should do one of the following

» Take precautions to avoid an exception

e Provide try and catch blocks to handle a possible
exception

© 2011 Pearson Addison-Wesley. All rights reserved 7A-13

Recognizing Strings in a
Language

 [anguage L
L ={w$w’ :w is a possible empty string of characters other than $,

w =reverse(w) }

— A stack can be used to determine whether a given string
1s1n L
» Traverse the first half of the string, pushing each character onto
a stack

e Once you reach the $, for each character in the second half of
the string, pop a character off the stack

— Match the popped character with the current character in the
string

© 2011 Pearson Addison-Wesley. All rights reserved 7A-14

Implementations of the ADT
Stack

e The ADT stack can be implemented using

— An array
— A linked list
— The ADT list

e StackInterface

— Provides a common specification for the three
implementations

e StackException
— Used by StackInterface

— Extends java.lang.RuntimeException

© 2011 Pearson Addison-Wesley. All rights reserved 7A-15

Implementations of the ADT

Stack

(a)

30

20

10

Array

<— top

30 | «— top

T
!

20

!
!

/|

Linked list

© 2011 Pearson Addison-Wesley. All rights reserved

(©)

30

20

10

ADT list

< top

Figure 7-4
Implementation of the
ADT stack that use a)

an array; b) a linked list;
c) an ADT list

7A-16

An Array-Based Implementation

of the ADT Stack

e StackArrayBased class
— Implements StackInterface

— Instances
o Stacks

— Private data fields
e An array of Objects called items

e The index top

top items
K 5 13 7 10
0 1 2 k
Figure 7-5

An array-based implementation

© 2011 Pearson Addison-Wesley. All rights reserved

MAX STACK-1 <«— Array indexes

7TA-17

A Reference-Based
Implementation of the ADT Stack

* A reference-based implementation

— Required when the stack needs to grow and shrink
dynamically

e StackReferenceBased

— Implements StackInterface

— top 1s a reference to the head of a linked list of items

© 2011 Pearson Addison-Wesley. All rights reserved 7A-18

A Reference-Based
Implementation of the ADT Stack

. » 10
Figure 7-6
A reference-based Y
implementation 80

© 2011 Pearson Addison-Wesley. All rights reserved 7A-19

An Implementation That Uses the
ADT List

e The ADT list can be used to represent the items in
a stack

e If the item 1n position 1 of a list represents the top
of the stack
— push (newItem) operation 1s implemented as
add(l, newltem)

— pop () operation is implemented as
get (1)
remove (1)

— peek () operation 1s implemented as
get (1)

© 2011 Pearson Addison-Wesley. All rights reserved 7A-20

An Implementation That Uses the
ADT List

Figure 7-7 List position
An implementation that uses i
the ADT list 1 10 |<—— Top of stack
2 80
3 60
list.size() 5

© 2011 Pearson Addison-Wesley. All rights reserve d 7A-21

Comparing Implementations

o All of the three implementations are
ultimately array based or reference based

e Fixed size versus dynamic size

— An array-based implementation

e Uses fixed-sized arrays

— Prevents the push operation from adding an item to the
stack if the stack s size limit has been reached

— A reference-based implementation
e Does not put a limit on the size of the stack

© 2011 Pearson Addison-Wesley. All rights reserved 7 B-22

Comparing Implementations

 An implementation that uses a linked list
versus one that uses a reference-based
implementation of the ADT list
— Linked list approach

e More efficient

— ADT list approach

e Reuses an already implemented class
— Much simpler to write
— Saves time

© 2011 Pearson Addison-Wesley. All rights reserved 7 B-23

The Java Collections Framework
Class Stack

« JCF contains an implementation of a stack
class called Stack (generic)

e Derived from Vector

* Includes methods: peek, pop, push,
and search

 search returns the 1-based position of an
object on the stack

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-24

Application:
Algebraic Expressions

e When the ADT stack 1s used to solve a
problem, the use of the ADT’ s operations
should not depend on its implementation

* To evaluate an 1nfix expressions

— Convert the infix expression to postfix form
— Evaluate the postfix expression

© 2011 Pearson Addison-Wesley. All rights reserved 7 B-25

Evaluating Postfix Expressions

* A postfix calculator
— Requires you to enter postfix expressions
e Example: 2, 3,4, +, *
— When an operand is entered, the calculator
* Pushes it onto a stack

— When an operator 1s entered, the calculator
* Applies it to the top two operands of the stack
e Pops the operands from the stack
* Pushes the result of the operation on the stack

© 2011 Pearson Addison-Wesley. All rights reserved 7 B-26

Evaluating Postfix Expressions

Key entered

Calculator action

Stack (bottom to top)

2
3
4

Figure 7-8

push 2
push 3
push 4

operand2 = pop stack
operandl = pop stack

result = operandl + operand?2

push result

operand2 = pop stack
operandl pop stack

result = operandl * operand2 (14)

push result

2
2 3
2 34

14

The action of a postfix calculator when evaluating the expression 2 * (3 + 4)

© 2011 Pearson Addison-Wesley. All rights reserved

7 B-27

Evaluating Postfix Expressions

* To evaluate a postfix expression which 1s

entered as a string of characters
— Simplifying assumptions
e The string is a syntactically correct postfix
expression
e No unary operators are present
e No exponentiation operators are present

e Operands are single lowercase letters that represent
integer values

© 2011 Pearson Addison-Wesley. All rights reserved 7 B-28

Converting Infix Expressions to
Equivalent Postfix Expressions

* An infix expression can be evaluated by first being
converted into an equivalent postfix expression

e Facts about converting from infix to postfix

— Operands always stay in the same order with respect to
one another

— An operator will move only “to the right” with respect
to the operands

— All parentheses are removed

© 2011 Pearson Addison-Wesley. All rights reserved 7 B-29

Converting Infix Expressions to
Equivalent Postfix Expressions

ch stack (bottom to top) postfixExp

a
a

a

ab

ab

abc

abc

abcd

abcdx Move operators

abcdx + from stack to

abcdx + postfixExp until " (
abcdx +

abcdx +e Copy operators from
abcdx* +e/- stack to post £ixXExp

~ 0O * 0O 4+ T — | Q@
|
+ + + + +
*

|
AN N N AN AN N N N

I
~ S

Figure 7-9
A trace of the algorithm that converts the infix expression a - (b + ¢ * d)/e to postfix form

© 2011 Pearson Addison-Wesley. All rights reserved 7 B-30

Application: A Search Problem

 High Planes Airline Company (HPAI1r)

— Problem

* For each customer request, indicate whether a
sequence of HPAIr flights exists from the origin city
to the destination city

© 2011 Pearson Addison-Wesley. All rights reserved 7 B-31

Representing the Flight Data

e The flight map for
HPAIr 1s a graph
— Adjacent vertices

e Two vertices that are
joined by an edge

— Directed path

* A sequence of directed
edges

© 2011 Pearson Addison-Wesley. All rights reserved

Xogt——e ()

Figure 7-10
Flight map for HPAIr

7 B-32

A Nonrecursive Solution that
Uses a Stack

e The solution performs an exhaustive search

— Beginning at the origin city, the solution will try every
possible sequence of flights until either
[t finds a sequence that gets to the destination city
e [t determines that no such sequence exists

e The ADT stack 1s useful in organizing an
exhaustive search

e Backtracking can be used to recover from a wrong
choice of a city

© 2011 Pearson Addison-Wesley. All rights reserved 7 B-33

A Nonrecursive Solution that
Uses a Stack

X

R W

P P
@ @ (© @ (e

Figure 7-11
The stack of cities as you travel a) from P; b) to R; c¢) to X; d) back to R; e) back to
P; f)to W

© 2011 Pearson Addison-Wesley. All rights reserved 7 B-34

A Nonrecursive Solution that
Uses a Stack

Action

Push P
Push R
Push X
Pop X
Pop R
Push W
Push S
Push T
Pop T
Pop S
Push Y
Push Z

Figure 7-13

Reason

Initialize

Next unvisited adjacent city
Next unvisited adjacent city
No unvisited adjacent city
No unvisited adjacent city
Next unvisited adjacent city
Next unvisited adjacent city
Next unvisited adjacent city
No unvisited adjacent city
No unvisited adjacent city
Next unvisited adjacent city
Next unvisited adjacent city

Contents of stack (bottom to top)

P

PR
PRX
PR

P

PW
PWS
PWST
PWS
PW
PWY
PWYZ

A trace of the search algorithm, given the flight map in Figure 6-9

© 2011 Pearson Addison-Wesley. All rights reserved

7 B-35

A Recursive Solution

e Possible outcomes of the recursive search
strategy

— You eventually reach the destination city and
can conclude that it 1s possible to fly from the
origin to the destination

— You reach a city C from which there are no
departing flights

— You go around 1in circles

© 2011 Pearson Addison-Wesley. All rights reserved 7 B-36

A Recursive Solution

* A refined recursive search strategy

searchR (originCity, destinationCity)
Mark originCity as visited
1f (originCity 1s destinationCity) {
Terminate —-- the destination 1s reached
}
else {
for (each unvisited city C adjacent to originCity) {

searchR (C, destinationCity)

© 2011 Pearson Addison-Wesley. All rights reserved 7 B-37

The Relationship Between
Stacks and Recursion

e The ADT stack has a hidden presence in the
concept of recursion

e Typically, stacks are used by compilers to
implement recursive methods

— During execution, each recursive call generates an
activation record that is pushed onto a stack

e Stacks can be used to implement a nonrecursive
version of a recursive algorithm

© 2011 Pearson Addison-Wesley. All rights reserved 7 B-38

Summary

 ADT stack operations have a last-in, first-out
(LIFO) behavior

e Algorithms that operate on algebraic expressions
are an important application of stacks

e A stack can be used to determine whether a
sequence of flights exists between two cities

* A strong relationship exists between recursion and
stacks

© 2011 Pearson Addison-Wesley. All rights reserved 7 B-39

