
© 2011 Pearson Addison-Wesley. All rights reserved 6-1

 Chapter 6

Recursion as a Problem-
Solving Technique	

© 2011 Pearson Addison-Wesley. All rights reserved 6-2

Backtracking

•  Backtracking	

– A strategy for guessing at a solution and

backing up when an impasse is reached	

•  Recursion and backtracking can be

combined to solve problems	

© 2011 Pearson Addison-Wesley. All rights reserved 6-3

The Eight Queens Problem

•  Problem	

– Place eight queens on the chessboard so that no

queen can attack any other queen	

•  Strategy: guess at a solution	

– There are 4,426,165,368 ways to arrange 8
queens on a chessboard of 64 squares	

© 2011 Pearson Addison-Wesley. All rights reserved 6-4

The Eight Queens Problem

•  An observation that eliminates many arrangements
from consideration	

–  No queen can reside in a row or a column that contains

another queen	

•  Now: only 40,320 arrangements of queens to be

checked for attacks along diagonals	

© 2011 Pearson Addison-Wesley. All rights reserved 6-5

The Eight Queens Problem

•  Providing organization for the guessing strategy	

–  Place queens one column at a time	

–  If you reach an impasse, backtrack to the previous

column	

© 2011 Pearson Addison-Wesley. All rights reserved 6-6

The Eight Queens Problem

Figure 6-1
a) Five queens that cannot attack each other, but that can attack all of
column 6; b) backtracking to column 5 to try another square for the queen;
c) backtracking to column 4 to try another square for the queen and then considering
column 5 again

© 2011 Pearson Addison-Wesley. All rights reserved 6-7

The Eight Queens Problem

•  A recursive algorithm that places a queen in a
column 	

–  Base case	

•  If there are no more columns to consider	

–  You are finished	

–  Recursive step	

•  If you successfully place a queen in the current column	

–  Consider the next column	

•  If you cannot place a queen in the current column	

–  You need to backtrack	

© 2011 Pearson Addison-Wesley. All rights reserved 6-8

The Eight Queens Problem

Figure 6-2
A solution to the Eight Queens

problem

© 2011 Pearson Addison-Wesley. All rights reserved 6-9

Defining Languages

•  A language	

–  A set of strings of symbols	

–  Examples: English, Java	

–  If a Java program is one long string of characters, the

language JavaPrograms is defined as	

	

JavaPrograms = {strings w : w is a syntactically correct
	

 	

 	

Java program}	

© 2011 Pearson Addison-Wesley. All rights reserved 6-10

Defining Languages

•  A language does not have to be a programming or
a communication language	

–  Example	

•  The set of algebraic expressions 	

	

AlgebraicExpressions = {w : w is an algebraic

expression}	

© 2011 Pearson Addison-Wesley. All rights reserved 6-11

Defining Languages

•  Grammar	

–  States the rules for forming the strings in a language 	

•  Benefit of recursive grammars	

–  Ease of writing a recognition algorithm for the

language	

•  A recognition algorithm determines whether a given

string is in the language	

© 2011 Pearson Addison-Wesley. All rights reserved 6-12

The Basics of Grammars

•  Symbols used in grammars	

–  x | y means x or y	

–  x y means x followed by y 	

	

(In x • y, the symbol • means concatenate, or append)	

–  < word > means any instance of word that the definition
defines	

© 2011 Pearson Addison-Wesley. All rights reserved 6-13

The Basics of Grammars

•  Java identifiers	

–  A Java identifier begins with a letter and is followed by

zero or more letters and digits	

Figure 6-3
A syntax diagram for Java identifiers

© 2011 Pearson Addison-Wesley. All rights reserved 6-14

The Basics of Grammars

•  Java identifiers	

–  Language	

	

 	

JavaIds = {w : w is a legal Java identifier}	

–  Grammar	

< identifier > = < letter > | < identifier > < letter > | <

identifier > < digit>	

< letter > = a | b | … | z | A | B | …| Z | _ | $	

< digit > = 0 | 1 | … | 9	

© 2011 Pearson Addison-Wesley. All rights reserved 6-15

The Basics of Grammars

•  Recognition algorithm	

isId(w)
 if (w is of length 1) {
 if (w is a letter) {
 return true
 }
 else {
 return false
 }
 }
 else if (the last character of w is a letter or a digit) {
 return isId(w minus its last character)
 }
 else {
 return false
 }

© 2011 Pearson Addison-Wesley. All rights reserved 6-16

Two Simple Languages:
Palindromes

•  A string that reads the same from left to right as it
does from right to left	

•  Examples: radar, deed	

•  Language	

Palindromes = {w : w reads the same left to right as	

	

 	

 right to left}	

© 2011 Pearson Addison-Wesley. All rights reserved 6-17

Palindromes

•  Grammar	

< pal > = empty string | < ch > | a < pal > a | b < pal > b | … 	

	

 	

 	

 	

 	

 	

| Z < pal > Z	

< ch > = a | b | … | z | A | B | … | Z 	

© 2011 Pearson Addison-Wesley. All rights reserved 6-18

Palindromes

•  Recognition algorithm 	

isPal(w)	

 if (w is the empty string or w is of length 1) {
 return true
 }
 else if (w’s first and last characters are the
 same letter) {

 return isPal(w minus its first and last
 characters)

 }
 else {
 return false
 }	

© 2011 Pearson Addison-Wesley. All rights reserved 6-19

Strings of the form AnBn

•  AnBn	

–  The string that consists of n consecutive A’s followed
by n consecutive B’s	

•  Language	

L = {w : w is of the form AnBn for some n ≥ 0}	

•  Grammar	

< legal-word > = empty string | A < legal-word > B	

© 2011 Pearson Addison-Wesley. All rights reserved 6-20

Strings of the form AnBn

•  Recognition algorithm	

isAnBn(w)
 if (the length of w is zero) {
 return true
 }
 else if (w begins with the character A and ends
 with the character B) {

 return isAnBn(w minus its first and last
 characters)

 }
 else {
 return false
 }

© 2011 Pearson Addison-Wesley. All rights reserved 6-21

Algebraic Expressions

•  Three languages for algebraic expressions	

–  Infix expressions	

•  An operator appears between its operands	

•  Example: a + b	

–  Prefix expressions	

•  An operator appears before its operands	

•  Example: + a b	

–  Postfix expressions	

•  An operator appears after its operands	

•  Example: a b +	

© 2011 Pearson Addison-Wesley. All rights reserved 6-22

Algebraic Expressions

•  To convert a fully parenthesized infix expression
to a prefix form	

–  Move each operator to the position marked by its

corresponding open parenthesis	

–  Remove the parentheses	

–  Example	

•  Infix expression: ((a + b) * c	

•  Prefix expression: * + a b c	

© 2011 Pearson Addison-Wesley. All rights reserved 6-23

Algebraic Expressions

•  To convert a fully parenthesized infix expression
to a postfix form	

–  Move each operator to the position marked by its

corresponding closing parenthesis	

–  Remove the parentheses	

–  Example	

•  Infix form: ((a + b) * c)	

•  Postfix form: a b + c *	

© 2011 Pearson Addison-Wesley. All rights reserved 6-24

Algebraic Expressions

•  Prefix and postfix expressions	

–  Never need	

•  Precedence rules	

•  Association rules	

•  Parentheses	

–  Have	

•  Simple grammar expressions	

•  Straightforward recognition and evaluation

algorithms	

© 2011 Pearson Addison-Wesley. All rights reserved 6-25

Prefix Expressions

•  Grammar	

< prefix > = < identifier > | < operator > < prefix > < prefix >	

< operator > = + | - | * | /	

< identifier > = a | b | … | z 	

•  A recognition algorithm	

isPre()
 size = length of expression strExp
 lastChar = endPre(0, size – 1)
 if (lastChar >= 0 and lastChar == size-1 {
 return true
 }
 else {
 return false
 }

© 2011 Pearson Addison-Wesley. All rights reserved 6-26

Prefix Expressions

•  An algorithm that evaluates a prefix expression	

evaluatePrefix(strExp)
 ch = first character of expression strExp
 Delete first character from strExp
 if (ch is an identifier) {
 return value of the identifier
 }
 else if (ch is an operator named op) {
 operand1 = evaluatePrefix(strExp)
 operand2 = evaluatePrefix(strExp)
 return operand1 op operand2
 }

© 2011 Pearson Addison-Wesley. All rights reserved 6-27

Postfix Expressions

•  Grammar	

< postfix > = < identifier > | < postfix > < postfix > < operator>	

< operator > = + | - | * | /	

< identifier > = a | b | … | z	

•  At high-level, an algorithm that converts a prefix
expression to postfix form	

if (exp is a single letter) {
 return exp
}
else {
 return postfix(prefix1) + postfix(prefix2) +
 operator

}

© 2011 Pearson Addison-Wesley. All rights reserved 6-28

Postfix Expressions

•  A recursive algorithm that converts a prefix
expression to postfix form	

convert(pre)
 ch = first character of pre
 Delete first character of pre
 if (ch is a lowercase letter) {
 return ch as a string
 }
 else {
 postfix1 = convert(pre)
 postfix2 = convert(pre)
 return postfix1 + postfix2 + ch
 }

© 2011 Pearson Addison-Wesley. All rights reserved 6-29

Fully Parenthesized Expressions

•  To avoid ambiguity, infix notation normally
requires	

–  Precedence rules	

–  Rules for association	

–  Parentheses	

•  Fully parenthesized expressions do not require	

–  Precedence rules	

–  Rules for association	

© 2011 Pearson Addison-Wesley. All rights reserved 6-30

Fully Parenthesized Expressions

•  Fully parenthesized expressions	

–  A simple grammar	

	

< infix > = < identifier > | (< infix > < operator > < infix
>)	

	

< operator > = + | - | * | /	

	

< identifier > = a | b | … | z	

–  Inconvenient for programmers	

© 2011 Pearson Addison-Wesley. All rights reserved 6-31

The Relationship Between
Recursion and Mathematical
Induction
•  A strong relationship exists between recursion and

mathematical induction	

•  Induction can be used to	

–  Prove properties about recursive algorithms	

–  Prove that a recursive algorithm performs a certain

amount of work	

© 2011 Pearson Addison-Wesley. All rights reserved 6-32

The Correctness of the Recursive
Factorial Method

•  Pseudocode for a recursive method that computes
the factorial of a nonnegative integer n	

fact(n)

 if (n is 0) {
 return 1

 }

 else {

 return n * fact(n – 1)

 }

© 2011 Pearson Addison-Wesley. All rights reserved 6-33

The Correctness of the Recursive
Factorial Method

•  Induction on n can prove that the method fact
returns the values	

fact(0) = 0! = 1	

fact(n) = n! = n * (n – 1) * (n – 2) * …* 1 if n > 0	

	

© 2011 Pearson Addison-Wesley. All rights reserved 6-34

The Cost of Towers of Hanoi

•  Solution to the Towers of Hanoi problem	

solveTowers(count, source, destination, spare)

 if (count is 1) {

 Move a disk directly from source to destination

 }

 else {

 solveTowers(count-1, source, spare, destination)

 solveTowers(1, source, destination, spare)

 solveTowers(count-1, spare, destination, source)
 }	

© 2011 Pearson Addison-Wesley. All rights reserved 6-35

The Cost of Towers of Hanoi

•  Question	

–  If you begin with N disks, how many moves does
solveTowers make to solve the problem?	

•  Let	

–  moves(N) be the number of moves made starting with

N disks	

•  When N = 1	

–  moves(1) = 1	

© 2011 Pearson Addison-Wesley. All rights reserved 6-36

The Cost of Towers of Hanoi

•  When N > 1	

moves(N) = moves(N – 1) + moves(1) + moves(N – 1)	

•  Recurrence relation for the number of moves that
solveTowers requires for N disks	

moves(1) = 1	

moves(N) = 2 * moves(N – 1) + 1 	

if N > 1	

© 2011 Pearson Addison-Wesley. All rights reserved 6-37

The Cost of Towers of Hanoi

•  A closed-form formula for the number of moves
that solveTowers requires for N disks	

moves(N) = 2N – 1, for all N ≥ 1 	

•  Induction on N can provide the proof that
moves(N) = 2N – 1	

© 2011 Pearson Addison-Wesley. All rights reserved 6-38

Summary

•  Backtracking is a solution strategy that involves
both recursion and a sequence of guesses that
ultimately lead to a solution	

•  A grammar is a device for defining a language	

–  A language is a set of strings of symbols	

–  A recognition algorithm for a language can often be

based directly on the grammar of the language	

–  Grammars are frequently recursive	

© 2011 Pearson Addison-Wesley. All rights reserved 6-39

Summary

•  Different languages of algebraic expressions have
their relative advantages and disadvantages	

–  Prefix expressions	

–  Postfix expressions	

–  Infix expressions	

•  A close relationship exists between mathematical
induction and recursion	

–  Induction can be used to prove properties about a

recursive algorithm	

