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 Chapter 6 

Recursion as a Problem-
Solving Technique	





© 2011 Pearson Addison-Wesley. All rights reserved 6-2 

Backtracking 

•  Backtracking	


– A strategy for guessing at a solution and 

backing up when an impasse is reached	


•  Recursion and backtracking can be 

combined to solve problems	
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The Eight Queens Problem 

•  Problem	


– Place eight queens on the chessboard so that no 

queen can attack any other queen	


•  Strategy: guess at a solution	



– There are 4,426,165,368 ways to arrange 8 
queens on a chessboard of 64 squares	
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The Eight Queens Problem 

•  An observation that eliminates many arrangements 
from consideration	


–  No queen can reside in a row or a column that contains 

another queen	


•  Now: only 40,320 arrangements of queens to be 

checked for attacks along diagonals	
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The Eight Queens Problem 

•  Providing organization for the guessing strategy	


–  Place queens one column at a time	


–  If you reach an impasse, backtrack to the previous 

column	
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The Eight Queens Problem 

Figure 6-1 
a) Five queens that cannot attack each other, but that can attack all of  
column 6; b) backtracking to column 5 to try another square for the queen;  
c) backtracking to column 4 to try another square for the queen and then considering 
column 5 again 
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The Eight Queens Problem 

•  A recursive algorithm that places a queen in a 
column 	


–  Base case	



•  If there are no more columns to consider	


–  You are finished	



–  Recursive step	


•  If you successfully place a queen in the current column	



–  Consider the next column	


•  If you cannot place a queen in the current column	



–  You need to backtrack	
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The Eight Queens Problem 

Figure 6-2 
A solution to the Eight Queens 

problem 
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Defining Languages 

•  A language	


–  A set of strings of symbols	


–  Examples: English, Java	


–  If a Java program is one long string of characters, the 

language JavaPrograms is defined as	


	

JavaPrograms = {strings w : w is a syntactically correct 
	

 	

 	

Java program}	
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Defining Languages 

•  A language does not have to be a programming or 
a communication language	


–  Example	



•  The set of algebraic expressions 	

	


AlgebraicExpressions = {w : w is an algebraic 

expression}	
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Defining Languages 

•  Grammar	


–  States the rules for forming the strings in a language 	



•  Benefit of recursive grammars	


–  Ease of writing a recognition algorithm for the 

language	


•  A recognition algorithm determines whether a given 

string is in the language	





© 2011 Pearson Addison-Wesley. All rights reserved 6-12 

The Basics of Grammars 

•  Symbols used in grammars	


–  x | y means x or y	


–  x y means x followed by y 	


	

(In x • y, the symbol • means concatenate, or append)	



–  < word > means any instance of word that the definition 
defines	
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The Basics of Grammars 

•  Java identifiers	


–  A Java identifier begins with a letter and is followed by 

zero or more letters and digits	



Figure 6-3 
A syntax diagram for Java identifiers 
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The Basics of Grammars 

•  Java identifiers	


–  Language	


	

 	

JavaIds = {w : w is a legal Java identifier}	



–  Grammar	


< identifier > = < letter > | < identifier > < letter > | < 

identifier > < digit>	


< letter > = a | b | … | z | A | B | …| Z | _ | $	


< digit > = 0 | 1 | … | 9	
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The Basics of Grammars 

•  Recognition algorithm	


isId(w) 
 if (w is of length 1) { 
  if (w is a letter) { 
    return true 
  } 
  else { 
    return false 
  } 
 } 
 else if (the last character of w is a letter or a digit) { 
  return isId(w minus its last character) 
 } 
 else { 
   return false 
 } 
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Two Simple Languages: 
Palindromes 

•  A string that reads the same from left to right as it 
does from right to left	



•  Examples: radar, deed	


•  Language	



Palindromes = {w : w reads the same left to right as	


	

 	

         right to left}	
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Palindromes 

•  Grammar	


< pal > = empty string | < ch > | a < pal > a | b  < pal > b | … 	



	

 	

 	

 	

 	

 	

| Z < pal > Z	


< ch > = a | b | … | z | A | B | … | Z 	





© 2011 Pearson Addison-Wesley. All rights reserved 6-18 

Palindromes 

•  Recognition algorithm 	


isPal(w)	


 if (w is the empty string or w is of length 1) { 
  return true 
 } 
 else if (w’s first and last characters are the  
  same letter ) { 

  return isPal(w minus its first and last 
    characters) 

 } 
 else { 
  return false 
 }	
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Strings of the form AnBn 

•  AnBn	



–  The string that consists of n consecutive A’s followed 
by n consecutive B’s	



•  Language	


L = {w : w is of the form AnBn for some n ≥ 0}	



•  Grammar	


< legal-word > = empty string | A < legal-word > B	
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Strings of the form AnBn 

•  Recognition algorithm	


isAnBn(w) 
 if (the length of w is zero) { 
  return true 
 } 
 else if (w begins with the character A and ends 
   with the character B) { 

  return isAnBn(w minus its first and last  
  characters) 

 } 
 else { 
  return false 
 } 
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Algebraic Expressions 

•  Three languages for algebraic expressions	


–  Infix expressions	



•  An operator appears between its operands	


•  Example: a + b	



–  Prefix expressions	


•  An operator appears before its operands	


•  Example: + a b	



–  Postfix expressions	


•  An operator appears after its operands	


•  Example: a b +	
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Algebraic Expressions 

•  To convert a fully parenthesized infix expression 
to a prefix form	


–  Move each operator to the position marked by its 

corresponding open parenthesis	


–  Remove the parentheses	


–  Example	



•  Infix expression: ((a + b) * c	


•  Prefix expression: * + a b c	
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Algebraic Expressions 

•  To convert a fully parenthesized infix expression 
to a postfix form	


–  Move each operator to the position marked by its 

corresponding closing parenthesis	


–  Remove the parentheses	


–  Example	



•  Infix form: ((a + b) * c)	


•  Postfix form: a b + c *	
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Algebraic Expressions 

•  Prefix and postfix expressions	


–  Never need	



•  Precedence rules	


•  Association rules	


•  Parentheses	



–   Have	


•  Simple grammar expressions	


•  Straightforward recognition and evaluation 

algorithms	
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Prefix Expressions 

•  Grammar	


< prefix > = < identifier > | < operator > < prefix > < prefix >	


< operator > = + | - | * | /	


< identifier > = a | b | … | z 	



•  A recognition algorithm	


isPre() 
 size = length of expression strExp 
 lastChar = endPre(0, size – 1) 
 if (lastChar >= 0 and lastChar == size-1 { 
  return true 
 } 
 else { 
  return false 
 } 
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Prefix Expressions 

•  An algorithm that evaluates a prefix expression	


evaluatePrefix(strExp) 
 ch  = first character of expression strExp 
 Delete first character from strExp 
 if (ch is an identifier) { 
  return value of the identifier 
 } 
 else if (ch is an operator named op) { 
  operand1 = evaluatePrefix(strExp) 
  operand2 = evaluatePrefix(strExp) 
  return operand1 op operand2 
 } 
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Postfix Expressions 

•  Grammar	


< postfix > = < identifier > | < postfix > < postfix > < operator>	


< operator > = + | - | * | /	


< identifier > = a | b | … | z	



•  At high-level, an algorithm that converts a prefix 
expression to postfix form	


if (exp is a single letter) { 
 return exp 
} 
else { 
 return postfix(prefix1) + postfix(prefix2) + 
  operator 

} 
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Postfix Expressions 

•  A recursive algorithm that converts a prefix 
expression to postfix form	


convert(pre) 
 ch = first character of pre 
 Delete first character of pre 
 if (ch is a lowercase letter) { 
  return ch as a string 
 } 
 else { 
  postfix1 = convert(pre) 
  postfix2 = convert(pre) 
  return postfix1 + postfix2 + ch 
 } 
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Fully Parenthesized Expressions 

•  To avoid ambiguity, infix notation normally 
requires	


–  Precedence rules	


–  Rules for association	


–  Parentheses	



•  Fully parenthesized expressions do not require	


–  Precedence rules	


–  Rules for association	
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Fully Parenthesized Expressions 

•  Fully parenthesized expressions	


–  A simple grammar	


	

< infix > = < identifier > | (< infix > < operator > < infix 
> )	


	

< operator > = + | - | * | /	


	

< identifier > = a | b | … | z	



–  Inconvenient for programmers	
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The Relationship Between 
Recursion and Mathematical 
Induction 
•  A strong relationship exists between recursion and 

mathematical induction	


•  Induction can be used to	



–  Prove properties about recursive algorithms	


–  Prove that a recursive algorithm performs a certain 

amount of work	
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The Correctness of the Recursive 
Factorial Method 

•  Pseudocode for a recursive method that computes 
the factorial of a nonnegative integer n	


fact(n) 

 if (n is 0) { 
  return 1 

 } 

 else { 

  return n * fact(n – 1) 

 }  
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The Correctness of the Recursive 
Factorial Method 

•  Induction on n can prove that the method fact 
returns the values	


fact(0) = 0! = 1	


fact(n) = n! = n * (n – 1) * (n – 2) * …* 1   if n > 0	
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The Cost of Towers of Hanoi 

•  Solution to the Towers of Hanoi problem	


solveTowers(count, source, destination, spare) 

 if (count is 1) { 

   Move a disk directly from source to destination 

 } 

 else { 

   solveTowers(count-1, source, spare, destination) 

   solveTowers(1, source, destination, spare) 

   solveTowers(count-1, spare, destination, source) 
 }	
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The Cost of Towers of Hanoi 

•  Question	


–  If you begin with N disks, how many moves does 
solveTowers make to solve the problem?	



•  Let	


–  moves(N) be the number of moves made starting with 

N disks	


•  When N = 1	



–  moves(1) = 1	
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The Cost of Towers of Hanoi 

•  When N > 1	


moves(N) = moves(N – 1) + moves(1) + moves(N – 1)	



•  Recurrence relation for the number of moves that 
solveTowers requires for N disks	


moves(1) = 1	


moves(N) = 2 * moves(N – 1) + 1 	

if N > 1	
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The Cost of Towers of Hanoi 

•  A closed-form formula for the number of moves 
that solveTowers requires for N disks	


moves(N) = 2N – 1, for all N ≥ 1 	



•  Induction on N can provide the proof that 
moves(N) = 2N – 1	
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Summary 

•  Backtracking is a solution strategy that involves 
both recursion and a sequence of guesses that 
ultimately lead to a solution	



•  A grammar is a device for defining a language	


–  A language is a set of strings of symbols	


–  A recognition algorithm for a language can often be 

based directly on the grammar of the language	


–  Grammars are frequently recursive	





© 2011 Pearson Addison-Wesley. All rights reserved 6-39 

Summary 

•  Different languages of algebraic expressions have 
their relative advantages and disadvantages	


–  Prefix expressions	


–  Postfix expressions	


–  Infix expressions	



•  A close relationship exists between mathematical 
induction and recursion	


–  Induction can be used to prove properties about a 

recursive algorithm	




