
5 A-1

 Chapter 5

	
 	
 Linked Lists	

© 2011 Pearson Addison-Wesley. All rights reserved

© 2011 Pearson Addison-Wesley. All rights reserved 5 A-2

Preliminaries

•  Options for implementing an ADT	

–  Array	

•  Has a fixed size	

•  Data must be shifted during insertions and deletions	

–  Linked list	

•  Is able to grow in size as needed	

•  Does not require the shifting of items during

insertions and deletions	

© 2011 Pearson Addison-Wesley. All rights reserved 5 A-3

Preliminaries

Figure 5-1
a) A linked list of integers; b) insertion; c) deletion

© 2011 Pearson Addison-Wesley. All rights reserved 5 A-4

Object References

•  A reference variable	

–  Contains the location of an object	

–  Example	

	
Integer intRef;
 intRef = new Integer(5);

–  As a data field of a class	

•  Has the default value null

–  A local reference variable to a method	

•  Does not have a default value	

© 2011 Pearson Addison-Wesley. All rights reserved 5 A-5

Object References

Figure 5-2
A reference to an

Integer object

© 2011 Pearson Addison-Wesley. All rights reserved 5 A-6

Object References

•  When one reference variable is assigned to
another reference variable, both references then
refer to the same object	

	
Integer p, q;
 p = new Integer(6);

 q = p;

•  A reference variable that no longer references any
object is marked for garbage collection	

© 2011 Pearson Addison-Wesley. All rights reserved 5 A-7

Object References

Figure 5-3a-d
a) Declaring reference
variables; b) allocating an
object; c) allocating another
object, with the dereferenced
object marked for garbage
collection

© 2011 Pearson Addison-Wesley. All rights reserved 5 A-8

Object References

Figure 5-3e-g
e) allocating an object; f)

assigning null to a
reference variable; g)
assigning a reference with
a null value

© 2011 Pearson Addison-Wesley. All rights reserved 5 A-9

Object References

•  An array of objects	

–  Is actually an array of references to the objects	

–  Example	

 Integer[] scores = new Integer[30];

–  Instantiating Integer objects for each array reference	

	
scores[0] = new Integer(7);
 scores[1] = new Integer(9); // and so on …

© 2011 Pearson Addison-Wesley. All rights reserved 5 A-10

Object References

•  Equality operators (== and !=)	

–  Compare the values of the reference variables, not the

objects that they reference	

•  equals method	

–  Compares objects field by field	

•  When an object is passed to a method as an

argument, the reference to the object is copied to
the method’s formal parameter	

•  Reference-based ADT implementations and data
structures use Java references 	

© 2011 Pearson Addison-Wesley. All rights reserved 5 A-11

Resizable Arrays

•  The number of references in a Java array is of
fixed size	

•  Resizable array	

–  An array that grows and shrinks as the program

executes	

–  An illusion that is created by using an allocate and copy

strategy with fixed-size arrays	

•  java.util.Vector class	

–  Uses a similar technique to implement a growable array
of objects	

© 2011 Pearson Addison-Wesley. All rights reserved 5 A-12

Reference-Based Linked Lists

•  Linked list	

–  Contains nodes that are linked to one

another	

–  A node contains both data and a link to

the next item	

–  Access is package-private	

package List;
class Node {
 Object item;
 Node next;
 // constructors, accessors,
 // and mutators …
} // end class Node

Figure 5-5
A node

© 2011 Pearson Addison-Wesley. All rights reserved 5 A-13

Reference-Based Linked Lists
•  Using the Node class	

 Node n = new Node (new Integer(6));
 Node first = new Node (new Integer(9), n);

Figure 5-7
Using the Node constructor to initialize a data field and a link value

© 2011 Pearson Addison-Wesley. All rights reserved 5 A-14

Reference-Based Linked Lists

•  Data field next in the last node is set to null
•  head reference variable	

–  References the list’s first node	

–  Always exists even when the list is empty	

Figure 5-8
A head reference to a linked list

© 2011 Pearson Addison-Wesley. All rights reserved 5 A-15

Reference-Based Linked Lists

•  head reference variable can be assigned null without first
using new
–  Following sequence results in a lost node	

 head = new Node(); // Don’t really need to use new here

 head = null; // since we lose the new Node object here

Figure 5-9
A lost node

© 2011 Pearson Addison-Wesley. All rights reserved 5 A-16

Programming with Linked Lists:
Displaying the Contents of a
Linked List
•  curr reference variable	

–  References the current node	

–  Initially references the first node	

•  To display the data portion of the current node	

	
System.out.println(curr.item);

•  To advance the current position to the next node	

 curr = curr.next;	

© 2011 Pearson Addison-Wesley. All rights reserved 5 A-17

Displaying the Contents of a
Linked List

Figure 5-10
The effect of the assignment curr = curr.next

© 2011 Pearson Addison-Wesley. All rights reserved 5 A-18

Displaying the Contents of a
Linked List

•  To display all the data items in a linked list	

 for (Node curr = head; curr != null; curr =
 curr.next) {

 System.out.println(curr.item);

 } // end for

	

© 2011 Pearson Addison-Wesley. All rights reserved 5 A-19

Deleting a Specified Node from a
Linked List
•  To delete node N which curr references	

–  Set next in the node that precedes N to reference the node that
follows N 	

	
prev.next = curr.next;

Figure 5-11
Deleting a node from a linked list

© 2011 Pearson Addison-Wesley. All rights reserved 5 A-20

Deleting a Specified Node from a
Linked List

•  Deleting the first node is a special case	

	
head = head.next;

Figure 5-12
Deleting the first node

© 2011 Pearson Addison-Wesley. All rights reserved 5 A-21

Deleting a Specified Node from a
Linked List

•  To return a node that is no longer needed to the
system	

	
curr.next = null;
 curr = null;

•  Three steps to delete a node from a linked list	

–  Locate the node that you want to delete	

–  Disconnect this node from the linked list by changing

references	

–  Return the node to the system	

© 2011 Pearson Addison-Wesley. All rights reserved 5 A-22

Inserting a Node into a Specified
Position of a Linked List
•  To create a node for the new item	

	
newNode = new Node(item);	

•  To insert a node between two nodes	

	
newNode.next = curr;
 prev.next = newNode;

Figure 5-13
Inserting a new node into a linked list

© 2011 Pearson Addison-Wesley. All rights reserved 5 A-23

Inserting a Node into a Specified
Position of a Linked List
•  To insert a node at the beginning of a linked list	

	
newNode.next = head;
 head = newNode;

Figure 5-14
Inserting at the beginning of a linked list

© 2011 Pearson Addison-Wesley. All rights reserved 5 A-24

Inserting a Node into a Specified
Position of a Linked List
•  Inserting at the end of a linked list is not a special case if
curr is null
 newNode.next = curr;
 prev.next = newNode;	

Figure 5-15
Inserting at the end of

a linked list

© 2011 Pearson Addison-Wesley. All rights reserved 5 A-25

Inserting a Node into a Specified
Position of a Linked List

•  Three steps to insert a new node into a linked list	

–  Determine the point of insertion	

–  Create a new node and store the new data in it	

–  Connect the new node to the linked list by changing

references	

© 2011 Pearson Addison-Wesley. All rights reserved 5 A-26

Determining curr and prev

•  Determining the point of insertion or deletion for a
sorted linked list of objects	

	
for (prev = null, curr = head;
 (curr != null) &&
 (newValue.compareTo(curr.item) > 0);

 prev = curr, curr = curr.next) {

 } // end for

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-27

A Reference-Based
Implementation of the ADT List

•  A reference-based implementation of the ADT list	

–  Does not shift items during insertions and deletions	

–  Does not impose a fixed maximum length on the list 	

Figure 5-18
A reference-based implementation of the ADT list

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-28

A Reference-Based
Implementation of the ADT List

•  Default constructor	

–  Initializes the data fields numItems and head

•  List operations	

–  Public methods	

•  isEmpty	

•  size	

•  add	

•  remove	

•  get	

•  removeAll	

–  Private method	

•  find	

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-29

Comparing Array-Based and
Referenced-Based
Implementations
•  Size	

–  Array-based	

•  Fixed size	

–  Issues	

»  Can you predict the maximum number of items in the

ADT?	

»  Will an array waste storage?	

– Resizable array	

»  Increasing the size of a resizable array can waste

storage and time	

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-30

Comparing Array-Based and
Referenced-Based
Implementations
•  Size (Continued)	

–  Reference-based	

•  Do not have a fixed size	

–  Do not need to predict the maximum size of the list	

–  Will not waste storage	

•  Storage requirements	

–  Array-based	

•  Requires less memory than a reference-based implementation	

–  There is no need to store explicitly information about where to

find the next data item	

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-31

Comparing Array-Based and
Referenced-Based
Implementations
•  Storage requirements (Continued)	

–  Reference-based	

•  Requires more storage	

–  An item explicitly references the next item in the list	

•  Access time	

–  Array-based	

•  Constant access time	

–  Reference-based	

•  The time to access the ith node depends on i	

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-32

Comparing Array-Based and
Referenced-Based
Implementations
•  Insertion and deletions	

–  Array-based	

•  Require you to shift the data	

–  Reference-based	

•  Do not require you to shift the data	

•  Require a list traversal	

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-33

Passing a Linked List to a
Method
•  A method with access to a linked list’s head reference

has access to the entire list	

•  When head is an actual argument to a method, its value is

copied into the corresponding formal parameter	

Figure 5-19
A head reference as an argument

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-34

Processing Linked Lists
Recursively

•  Traversal	

–  Recursive strategy to display a list	

	
Write the first node of the list	

	
Write the list minus its first node	

–  Recursive strategies to display a list backward 	

• writeListBackward strategy	

	
Write the last node of the list	

	
Write the list minus its last node backward	

• writeListBackward2 strategy	

	
Write the list minus its first node backward	

	
Write the first node of the list	

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-35

Processing Linked Lists
Recursively

•  Insertion	

–  Recursive view of a sorted linked list	

The linked list that head references is a sorted linked list if	

head is null (the empty list is a sorted linked list)	

or	

head.next is null (a list with a single node is a	

sorted linked list)	

or	

head.item < head.next.item,	

and head.next references a sorted linked list	

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-36

Variations of the Linked List:
Tail References
•  tail references

–  Remembers where the end of the linked list is	

–  To add a node to the end of a linked list	

tail.next = new Node(request, null);	

Figure 5-22
A linked list with head and tail references

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-37

Circular Linked List

•  Last node references the first node	

•  Every node has a successor	

Figure 5-23
A circular linked list

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-38

Circular Linked List

Figure 5-24
A circular linked list with an external reference to the last node

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-39

Dummy Head Nodes

•  Dummy head node	

–  Always present, even when the linked list is empty	

–  Insertion and deletion algorithms initialize prev to

reference the dummy head node, rather than null

Figure 5-25
A dummy head node

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-40

Doubly Linked List

•  Each node references both its predecessor and its successor	

•  Dummy head nodes are useful in doubly linked lists	

Figure 5-26
A doubly linked list

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-41

Doubly Linked List

•  Circular doubly linked list	

–  preceding reference of the dummy head node

references the last node	

–  next reference of the last node references the dummy

head node	

–  Eliminates special cases for insertions and deletions	

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-42

Doubly Linked List

Figure 5-27
a) A circular doubly linked list with a dummy head node; b) an empty list with a
dummy head node

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-43

Doubly Linked List
•  To delete the node that curr references	

curr.preceding.next = curr.next;	

curr.next.preceding = curr.preceding; 	

Figure 5-28
Reference changes for deletion

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-44

Doubly Linked List
•  To insert a new node that newNode references before the

node referenced by curr 	

newNode.next = curr;	

newNode.preceding = curr.preceding;	

curr.preceding = newNode;	

newNode.preceding.next = newNode; 	

Figure 5-29
Reference changes

for insertion

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-45

Application: Maintaining an
Inventory
•  Stages of the problem-solving process	

–  Design of a solution	

–  Implementation of the solution	

–  Final set of refinements to the program	

•  Operations on the inventory	

–  List the inventory in alphabetical order by title (L

command)	

–  Find the inventory item associated with title (I, M, D,

O, and S commands)	

–  Replace the inventory item associated with a title (M,

D, R, and S commands)	

–  Insert new inventory items (A and D commands)	

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-46

The Java Collections Framework

•  Implements many of the more commonly used
ADTs

•  Collections framework
–  Unified architecture for representing and manipulating

collections
–  Includes

•  Interfaces
•  Implementations
•  Algorithms

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-47

Generics

•  JCF relies heavily on Java generics
•  Generics

–  Develop classes and interfaces and defer certain data-
type information

•  Until you are actually ready to use the class or interface

•  Definition of the class or interface is followed by
<E>
–  E represents the data type that client code will specify

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-48

Iterators

•  Iterator
–  Gives the ability to cycle through items in a collection
–  Access next item in a collection by using iter.next()

•  JCF provides two primary iterator interfaces
–  java.util.Iterator
–  java.util.ListIterator

•  Every ADT collection in the JCF have a method to
return an iterator object

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-49

Iterators

•  ListIterator methods
–  void add(E o)
–  boolean hasNext()
–  boolean hasPrevious()
–  E next()
–  int nextIndex()
–  E previous()
–  int previousIndex()
–  void remove()
–  void set(E o)

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-50

The Java Collection’s Framework
List Interface

•  JCF provides an interface java.util.List
•  List interface supports an ordered collection

–  Also known as a sequence
•  Methods

–  boolean add(E o)
–  void add(int index, E element)
–  void clear()
–  boolean contains(Object o)
–  boolean equals(Object o)
–  E get(int index)
–  int indexOf(Object o)

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-51

The Java Collection’s Framework
List Interface

•  Methods (continued)
–  boolean isEmpty()
–  Iterator<E> iterator()
–  ListIterator<E> listIterator()
–  ListIterator<E> listIterator(int
index)

–  E remove(int index)
–  boolean remove(Object o)

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-52

The Java Collection’s Framework
List Interface

•  Methods (continued)
–  E set(int index, E element)
–  int size()
–  List<E> subList(int fromIndex, int
toIndex)

–  Object[] toArray()

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-53

Summary

•  Reference variables can be used to implement the
data structure known as a linked list	

•  Each reference in a linked list is a reference to the
next node in the list	

•  Algorithms for insertions and deletions in a linked
list involve	

–  Traversing the list from the beginning until you reach

the appropriate position	

–  Performing reference changes to alter the structure of

the list 	

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-54

Summary

•  Inserting a new node at the beginning of a linked
list and deleting the first node of a linked list are
special cases	

•  An array-based implementation uses an implicit
ordering scheme; a reference-based
implementation uses an explicit ordering scheme	

•  Any element in an array can be accessed directly;
you must traverse a linked list to access a
particular node	

•  Items can be inserted into and deleted from a
reference-based linked list without shifting data	

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-55

Summary

•  The new operator can be used to allocate memory
dynamically for both an array and a linked list	

–  The size of a linked list can be increased one node at a

time more efficiently than that of an array	

•  A binary search of a linked list is impractical	

•  Recursion can be used to perform operations on a

linked list	

•  The recursive insertion algorithm for a sorted

linked list works because each smaller linked list
is also sorted	

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-56

Summary

•  A tail reference can be used to facilitate locating
the end of a list	

•  In a circular linked list, the last node references
the first node	

•  Dummy head nodes eliminate the special cases for
insertion into and deletion from the beginning of a
linked list	

•  A head record contains global information about a
linked list	

•  A doubly linked list allows you to traverse the list
in either direction	

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-57

 Summary

•  Generic class or interface
–  Enables you to defer the choice of certain data-type

information until its use
•  Java Collections Framework

–  Contains interfaces, implementations, and algorithms
for many common ADTs

•  Collection
–  Object that holds other objects
–  Iterator cycles through its contents

