
© 2011 Pearson Addison-Wesley. All rights reserved 4-1

 Chapter 4

	
Data Abstraction: The Walls 	

© 2011 Pearson Addison-Wesley. All rights reserved 4-2

Abstract Data Types

•  Modularity	

–  Keeps the complexity of a large program manageable

by systematically controlling the interaction of its
components	

–  Isolates errors	

–  Eliminates redundancies	

–  A modular program is	

•  Easier to write	

•  Easier to read	

•  Easier to modify	

© 2011 Pearson Addison-Wesley. All rights reserved 4-3

Abstract Data Types

•  Procedural abstraction	

–  Separates the purpose and use of a module from its

implementation	

–  A module’s specifications should	

•  Detail how the module behaves	

•  Identify details that can be hidden within the module	

•  Information hiding	

–  Hides certain implementation details within a module	

–  Makes these details inaccessible from outside the

module	

	

© 2011 Pearson Addison-Wesley. All rights reserved 4-4

Abstract Data Types

Figure 4-1
Isolated tasks: the implementation of task T does not affect task Q

© 2011 Pearson Addison-Wesley. All rights reserved 4-5

Abstract Data Types
•  The isolation of modules is not total	

–  Methods’ specifications, or contracts, govern how they interact
with each other	

Figure 4-2
A slit in the wall

© 2011 Pearson Addison-Wesley. All rights reserved 4-6

Abstract Data Types

•  Typical operations on data	

–  Add data to a data collection	

–  Remove data from a data collection	

–  Ask questions about the data in a data collection	

•  Data abstraction	

–  Asks you to think what you can do to a collection of

data independently of how you do it	

–  Allows you to develop each data structure in relative

isolation from the rest of the solution	

–  A natural extension of procedural abstraction	

© 2011 Pearson Addison-Wesley. All rights reserved 4-7

Abstract Data Types

•  Abstract data type (ADT)	

–  An ADT is composed of	

•  A collection of data	

•  A set of operations on that data	

–  Specifications of an ADT indicate	

•  What the ADT operations do, not how to implement

them	

–  Implementation of an ADT	

•  Includes choosing a particular data structure	

© 2011 Pearson Addison-Wesley. All rights reserved 4-8

Abstract Data Types

•  Data structure	

–  A construct that is defined within a programming

language to store a collection of data	

–  Example: arrays	

•  ADTs and data structures are not the same	

•  Data abstraction	

–  Results in a wall of ADT operations between data
structures and the program that accesses the data within
these data structures	

© 2011 Pearson Addison-Wesley. All rights reserved 4-9

Abstract Data Types

Figure 4-4
A wall of ADT operations isolates a data structure from the program that uses it

© 2011 Pearson Addison-Wesley. All rights reserved 4-10

Specifying ADTs

•  In a list	

–  Except for the first and last

items, each item has	

•  A unique predecessor	

•  A unique successor	

–  Head or front	

•  Does not have a predecessor	

–  Tail or end	

•  Does not have a successor	

Figure 4-5
list A grocery

© 2011 Pearson Addison-Wesley. All rights reserved 4-11

The ADT List

•  ADT List operations	

–  Create an empty list	

–  Determine whether a list is empty	

–  Determine the number of items in a list	

–  Add an item at a given position in the list	

–  Remove the item at a given position in the list	

–  Remove all the items from the list	

–  Retrieve (get) the item at a given position in the list	

•  Items are referenced by their position within the
list	

© 2011 Pearson Addison-Wesley. All rights reserved 4-12

The ADT List

•  Specifications of the ADT operations	

–  Define the contract for the ADT list	

–  Do not specify how to store the list or how to perform

the operations	

•  ADT operations can be used in an application

without the knowledge of how the operations will
be implemented	

© 2011 Pearson Addison-Wesley. All rights reserved 4-13

The ADT List

Figure 4-7
The wall between displayList and the implementation of the ADT list

© 2011 Pearson Addison-Wesley. All rights reserved 4-14

The ADT Sorted List

•  The ADT sorted list	

–  Maintains items in sorted order	

–  Inserts and deletes items by their values, not their

positions	

© 2011 Pearson Addison-Wesley. All rights reserved 4-15

Designing an ADT

•  The design of an ADT should evolve naturally
during the problem-solving process	

•  Questions to ask when designing an ADT	

–  What data does a problem require?	

–  What operations does a problem require?	

© 2011 Pearson Addison-Wesley. All rights reserved 4-16

Axioms (Optional)

•  For complex abstract data types, the behavior of
the operations must be specified using axioms	

–  Axiom: A mathematical rule	

© 2011 Pearson Addison-Wesley. All rights reserved 4-17

Axioms (Optional)

•  Axioms for the ADT List	

–  (aList.createList()).size() = 0	

–  (aList.add(i, x)).size() = aList.size() + 1	

–  (aList.remove(i)).size() = aList.size() – 1	

–  (aList.createList()).isEmpty() = true	

–  (aList.add(i, item)).isEmpty() = false	

–  (aList.createList()).remove(i) = error	

–  (aList.add(i, x)).remove(i) = aList	

–  (aList.createList()).get(i) = error	

–  (aList.add(i, x)).get(i) = x	

–  aList.get(i) = (aList.add(i, x).get(i+1)	

–  aList.get(i+1) = (aList.remove(i)).get(i)	

© 2011 Pearson Addison-Wesley. All rights reserved 4-18

Implementing ADTs

•  Choosing the data structure to represent the
ADT’s data is a part of implementation	

–  Choice of a data structure depends on	

•  Details of the ADT’s operations	

•  Context in which the operations will be used	

•  Implementation details should be hidden behind a
wall of ADT operations	

–  A program would only be able to access the data

structure using the ADT operations	

© 2011 Pearson Addison-Wesley. All rights reserved 4-19

Implementing ADTs

Figure 4-8
ADT operations provide access to a data structure

© 2011 Pearson Addison-Wesley. All rights reserved 4-20

Implementing ADTs

Figure 4-9
Violating the wall of ADT operations

© 2011 Pearson Addison-Wesley. All rights reserved 4-21

Java Classes Revisited

•  Object-oriented programming (OOP) views a
program as a collection of objects	

•  Encapsulation	

–  A principle of OOP	

–  Can be used to enforce the walls of an ADT	

–  Combines an ADT’s data with its method to form an

object	

–  Hides the implementation details of the ADT from the

programmer who uses it	

© 2011 Pearson Addison-Wesley. All rights reserved 4-22

Java Classes Revisited

Figure 4-10
An object’s data and

methods are encapsulated

© 2011 Pearson Addison-Wesley. All rights reserved 4-23

Java Classes Revisited

•  A Java class	

–  A new data type whose instances are objects	

–  Class members	

•  Data fields	

– Should almost always be private	

•  Methods	

–  All members in a class are private, unless the

programmer designates them as public	

© 2011 Pearson Addison-Wesley. All rights reserved 4-24

Java Classes Revisited

•  A Java class (Continued)	

–  Constructor	

•  A method that creates and initializes new instances
of a class	

•  Has the same name as the class	

•  Has no return type	

–  Java’s garbage collection mechanism	

•  Destroys objects that a program no longer references	

© 2011 Pearson Addison-Wesley. All rights reserved 4-25

Java Classes Revisited

•  Constructors	

–  Allocate memory for an object and can initialize the

object’s data	

–  A class can have more than one constructor	

–  Default constructor	

•  Has no parameters	

•  Typically, initializes data fields to values the class

implementation chooses	

© 2011 Pearson Addison-Wesley. All rights reserved 4-26

Java Classes Revisited

•  Constructors (Continued)	

–  Compiler-generated default constructor	

•  Generated by the compiler if no constructor is
included in a class	

•  Client of a class	

–  A program or module that uses the class	

© 2011 Pearson Addison-Wesley. All rights reserved 4-27

Java Classes Revisited

•  Inheritance	

–  Base class or superclass	

–  Derived class or subclass	

•  Inherits the contents of the superclass	

•  Includes an extends clause that indicates the

superclass	

• super keyword	

– Used in a constructor of a subclass to call the
constructor of the superclass	

© 2011 Pearson Addison-Wesley. All rights reserved 4-28

Java Classes Revisited

•  Object Equality	

–  equals method of the Object class	

•  Default implementation	

– Compares two objects and returns true if they

are actually the same object	

•  Customized implementation for a class	

– Can be used to check the values contained in
two objects for equality	

© 2011 Pearson Addison-Wesley. All rights reserved 4-29

Java Interfaces

•  An interface	

–  Specifies methods and constants, but supplies no

implementation details	

–  Can be used to specify some desired common behavior

that may be useful over many different types of objects	

–  The Java API has many predefined interfaces	

•  Example: java.util.Collection

© 2011 Pearson Addison-Wesley. All rights reserved 4-30

Java Interfaces

•  A class that implements an interface must	

–  Include an implements clause	

–  Provide implementations of the methods of the

interface	

•  To define an interface	

–  Use the keyword interface instead of class in the
header	

–  Provide only method specifications and constants in the
interface definition	

© 2011 Pearson Addison-Wesley. All rights reserved 4-31

Java Exceptions

•  Exception	

–  A mechanism for handling an error during execution	

–  A method indicates that an error has occurred by

throwing an exception	

© 2011 Pearson Addison-Wesley. All rights reserved 4-32

Java Exceptions

•  Catching exceptions	

–  try block	

•  A statement that might throw an exception is placed
within a try block	

•  Syntax	

	
try {
 statement(s);

 } // end try

© 2011 Pearson Addison-Wesley. All rights reserved 4-33

Java Exceptions

•  Catching exceptions (Continued)	

–  catch block	

•  Used to catch an exception and deal with the error
condition	

•  Syntax	

 catch (exceptionClass
identifier) {

 statement(s);

 } // end catch

© 2011 Pearson Addison-Wesley. All rights reserved 4-34

Java Exceptions

•  Types of exceptions	

–  Checked exceptions	

•  Instances of classes that are subclasses of the
java.lang.Exception class	

•  Must be handled locally or explicitly thrown from
the method	

•  Used in situations where the method has
encountered a serious problem	

© 2011 Pearson Addison-Wesley. All rights reserved 4-35

Java Exceptions

•  Types of exceptions (Continued)	

–  Runtime exceptions	

•  Used in situations where the error is not considered
as serious	

•  Can often be prevented by fail-safe programming	

•  Instances of classes that are subclasses of the
RuntimeException class	

•  Are not required to be caught locally or explicitly
thrown again by the method	

© 2011 Pearson Addison-Wesley. All rights reserved 4-36

Java Exceptions

•  Throwing exceptions	

–  A throw statement is used to throw an exception	

	
throw new exceptionClass
(stringArgument);

•  Defining a new exception class	

–  A programmer can define a new exception class	

© 2011 Pearson Addison-Wesley. All rights reserved 4-37

An Array-Based Implementation
of the ADT List

•  An array-based implementation	

–  A list’s items are stored in an array items
–  A natural choice	

•  Both an array and a list identify their items by
number	

–  A list’s kth item will be stored in items[k-1]

© 2011 Pearson Addison-Wesley. All rights reserved 4-38

An Array-Based Implementation
of the ADT List

Figure 4-11
An array-based implementation of the ADT list

© 2011 Pearson Addison-Wesley. All rights reserved 4-39

Summary

•  Data abstraction: a technique for controlling the
interaction between a program and its data
structures	

•  An ADT: the specifications of a set of data
management operations and the data values upon
which they operate	

•  The formal mathematical study of ADTs uses
systems of axioms to specify the behavior of ADT
operations	

•  Only after you have fully defined an ADT should
you think about how to implement it	

© 2011 Pearson Addison-Wesley. All rights reserved 4-40

Summary

•  A client should only be able to access the data
structure by using the ADT operations	

•  An object encapsulates both data and operations
on that data	

–  In Java, objects are instances of a class, which is a

programmer-defined data type	

•  A Java class contains at least one constructor,

which is an initialization method	

•  Typically, you should make the data fields of a

class private and provide public methods to access
some or all of the data fields	

