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  Chapter 3 

Recursion: The Mirrors	
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Recursive Solutions 

•  Recursion	

–  An extremely powerful problem-solving technique	

–  Breaks a problem in smaller identical problems	

–  An alternative to iteration	


•  An iterative solution involves loops	
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Recursive Solutions 

•  Sequential search	

–  Starts at the beginning of the collection	

–  Looks at every item in the collection in order until the 

item being searched for is found	

•  Binary search	


–  Repeatedly halves the collection and determines which 
half could contain the item	


–  Uses a divide and conquer strategy	
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Recursive Solutions 

•  Facts about a recursive solution	

–  A recursive method calls itself	

–  Each recursive call solves an identical, but smaller, 

problem	

–  A test for the base case enables the recursive calls to 

stop	

•  Base case: a known case in a recursive definition	


–  Eventually, one of the smaller problems must be the 
base case	
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Recursive Solutions 

•  Four questions for construction recursive solutions	

–  How can you define the problem in terms of a smaller 

problem of the same type?	

–  How does each recursive call diminish the size of the 

problem?	

–  What instance of the problem can serve as the base 

case?	

–  As the problem size diminishes, will you reach this 

base case?	
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A Recursive Valued Method:  
The Factorial of n 

•  Problem	

–  Compute the factorial of an integer n	


•  An iterative definition of factorial(n)	

	
factorial(n) = n * (n-1) * (n-2) * … * 1 	

	
 	
 	
 	
for any integer n > 0	

	
factorial(0) = 1	
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A Recursive Valued Method:  
The Factorial of n 

•  A recursive definition of factorial(n)	

	
factorial(n)  = 	
1 	
 	
 	
if n = 0	

	
                     	
n * factorial(n-1) 	
 	
if n > 0 	


•  A recurrence relation	

–  A mathematical formula that generates the terms in a 

sequence from previous terms	

–  Example	

	
factorial(n) = n * [(n-1) * (n-2) * … * 1]	

	
 	
 	
  = n * factorial(n-1)  	
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A Recursive Valued Method:  
The Factorial of n 

•  Box trace	

–  A systematic way to trace the actions of a recursive 

method	

–  Each box roughly corresponds to an activation record	

–  An activation record	


•  Contains a method’s local environment at the time 
of and as a result of the call to the method	
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A Recursive Valued Method:  
The Factorial of n 

•  A method’s local 
environment includes:	

–  The method’s local 

variables	

–  A copy of the actual 

value arguments	

–  A return address in the 

calling routine	

–  The value of the 

method itself 	


Figure 3-3 
A box 
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A Recursive void Method: 
Writing a String Backward 

•  Problem	

–  Given a string of characters, write it in reverse order	


•  Recursive solution	

–  Each recursive step of the solution diminishes by 1 the 

length of the string to be written backward	

–  Base case	


•  Write the empty string backward	
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A Recursive void Method: 
Writing a String Backward 

Figure 3-6 
A recursive solution 
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A Recursive void Method: 
Writing a String Backward 

•  Execution of writeBackward can be traced 
using the box trace	


•  Temporary System.out.println statements 
can be used to debug a recursive method	
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Counting Things 

•  Next three problems	

–  Require you to count certain events or combinations of 

events or things	

–  Contain more than one base cases	

–  Are good examples of inefficient recursive solutions	
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Multiplying Rabbits  
(The Fibonacci Sequence) 

•  “Facts” about rabbits	

–  Rabbits never die	

–  A rabbit reaches sexual maturity exactly two months 

after birth, that is, at the beginning of its third month of 
life	


–  Rabbits are always born in male-female pairs	

•  At the beginning of every month, each sexually 

mature male-female pair gives birth to exactly one 
male-female pair	
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Multiplying Rabbits  
(The Fibonacci Sequence) 

•  Problem	

–  How many pairs of rabbits are alive in month n?	


•  Recurrence relation	

	
rabbit(n) = rabbit(n-1) + rabbit(n-2)	
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Multiplying Rabbits  
(The Fibonacci Sequence) 

Figure 3-10 
Recursive solution to the rabbit problem 
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Multiplying Rabbits  
(The Fibonacci Sequence) 

•  Base cases	

–  rabbit(2), rabbit(1)	


•  Recursive definition	

	
rabbit(n) =      1 	
 	
 	
 	
if n is 1 or 2	

	
 	
 	
       rabbit(n-1) + rabbit(n-2) 	
if n > 2	


•  Fibonacci sequence	

–  The series of numbers rabbit(1), rabbit(2), rabbit(3), 

and so on	
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Organizing a Parade 

•  Rules about organizing a parade	

–  The parade will consist of bands and floats in a single 

line	

–  One band cannot be placed immediately after another	


•  Problem	

–  How many ways can you organize a parade of length n?	
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Organizing a Parade 

•  Let:	

–  P(n) be the number of ways to organize a parade of 

length n	

–  F(n) be the number of parades of length n that end with 

a float	

–  B(n) be the number of parades of length n that end with 

a band	

•  Then	


–  P(n) = F(n) + B(n)	
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Organizing a Parade 

•  Number of acceptable parades of length n that end 
with a float	

	
F(n) = P(n-1)	


•  Number of acceptable parades of length n that end 
with a band	

	
B(n) = F(n-1)	


•  Number of acceptable parades of length n	

– P(n) = P(n-1) + P(n-2)	
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Organizing a Parade 

•  Base cases	

	
P(1) = 2	
(The parades of length 1 are float and band.)	

	
P(2) = 3	
(The parades of length 2 are float-float, band-
	
 	
float, and float-band.)	


•  Solution	

	
P(1) = 2	

	
P(2) = 3	

	
P(n) = P(n-1) + P(n-2) 	
for n > 2	
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Mr. Spock’s Dilemma  
(Choosing k out of n Things) 

•  Problem	

–  How many different choices are possible for exploring 

k planets out of n planets in a solar system?	

•  Let	


–  c(n, k) be the number of groups of k planets chosen 
from n	
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Mr. Spock’s Dilemma  
(Choosing k out of n Things) 

•  In terms of Planet X:	

	
c(n, k) = (the number of groups of k planets that 
	
 	
  include Planet X)	

	
 	
            +	

	
 	
            (the number of groups of k planets that               
	
 	
  do not include Planet X) 	
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Mr. Spock’s Dilemma  
(Choosing k out of n Things) 

•  The number of ways to choose k out of n things is 
the sum of	

–  The number of ways to choose k-1 out of n-1 things	

	
and	


–  The number of ways to choose k out of n-1 things	


	
c(n, k) = c(n-1, k-1) + c(n-1, k)	
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Mr. Spock’s Dilemma  
(Choosing k out of n Things) 

•  Base cases	

–  There is one group of everything	


	
c(k, k) = 1	

–  There is one group of nothing	


	
c(n, 0) = 1	

–  c(n, k) = 0 	
if k > n	
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Mr. Spock’s Dilemma  
(Choosing k out of n Things) 

•  Recursive solution	

	
 	
                  1 	
 	
 	
 	
  if k = 0	

	
c(n, k) =     1 	
 	
 	
 	
  if k = n	

	
 	
 	
      0 	
 	
 	
 	
  if k > n	

	
 	
 	
      c(n-1, k-1) + c(n-1, k) 	
  if 0 < k < n	
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Searching an Array: 
Finding the Largest Item in an 
Array 
•  A recursive solution	


 if (anArray has only one item) { 

  maxArray(anArray) is the item in anArray 

 } 

 else if (anArray has more than one item) { 
  maxArray(anArray) is the maximum of 

    maxArray(left half of anArray) and 

    maxArray(right half of anArray) 

 }  // end if 
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Finding the Largest Item in an 
Array 

Figure 3-13 
Recursive solution to the largest-item problem 
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Binary Search 

•  A high-level binary search	

	
if (anArray is of size 1) { 
  Determine if anArray’s item is equal to value 
 } 
 else { 
  Find the midpoint of anArray 
  Determine which half of anArray contains value 
  if (value is in the first half of anArray) { 
    binarySearch (first half of anArray, value) 
  } 
  else { 
    binarySearch(second half of anArray, value) 
  } // end if 
 } // end if 
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Binary Search 

•  Implementation issues:	

–  How will you pass “half of anArray” to the recursive 

calls to binarySearch?	

–  How do you determine which half of the array contains 

value?	

–  What should the base case(s) be?	

–  How will binarySearch indicate the result of the 

search?	
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Finding the kth Smallest Item in 
an Array 

•  The recursive solution proceeds by:	

1.  Selecting a pivot item in the array	

2.  Cleverly arranging, or partitioning, the items in the 

array about this pivot item	

3.  Recursively applying the strategy to one of the 

partitions 	
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Finding the kth Smallest Item in 
an Array 

Figure 3-18 
A partition about a pivot 



© 2011 Pearson Addison-Wesley. All rights reserved 3-33 

Finding the kth Smallest Item in 
an Array 

•  Let: 	

	
kSmall(k, anArray, first, last) = 
   kth smallest item in anArray[first..last] 

•  Solution:	

kSmall(k, anArray, first, last) 
     kSmall(k, anArray, first, pivotIndex-1) 
     if k < pivotIndex – first + 1 

=     if k = pivotIndex – first + 1 
     p 
     kSmall(k-(pivotIndex-first+1), anArray,  
            pivotIndex+1, last) 
     if k > pivotIndex – first + 1  
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Organizing Data: 
The Towers of Hanoi 

Figure 3-19a and b 
a) The initial state; b) move n - 1 disks from A to C 
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The Towers of Hanoi 

Figure 3-19c and d 
c) move one disk from A to B; d) move n - 1 disks from C to B 
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The Towers of Hanoi 

•  Pseudocode solution	

	
solveTowers(count, source, destination, spare) 
  if (count is 1) { 

    Move a disk directly from source to destination 

  } 
  else { 

    solveTowers(count-1, source, spare, destination) 

    solveTowers(1, source, destination, spare) 

    solveTowers(count-1, spare, destination, source) 

  } //end if 
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Recursion and Efficiency 

•  Some recursive solutions are so inefficient that 
they should not be used	


•  Factors that contribute to the inefficiency of some 
recursive solutions	

–  Overhead associated with method calls	

–  Inherent inefficiency of some recursive algorithms	
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Summary 

•  Recursion solves a problem by solving a smaller 
problem of the same type	


•  Four questions to keep in mind when constructing 
a recursive solution	

–  How can you define the problem in terms of a smaller 

problem of the same type?	

–  How does each recursive call diminish the size of the 

problem?	

–  What instance of the problem can serve as the base 

case?	

–  As the problem size diminishes, will you reach this 

base case?	
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Summary 

•  A recursive call’s postcondition can be assumed 
to be true if its precondition is true	


•  The box trace can be used to trace the actions of a 
recursive method	


•  Recursion can be used to solve problems whose 
iterative solutions are difficult to conceptualize	
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Summary 

•  Some recursive solutions are much less efficient 
than a corresponding iterative solution due to their 
inherently inefficient algorithms and the overhead 
of method calls	


•  If you can easily, clearly, and efficiently solve a 
problem by using iteration, you should do so	



