
© 2011 Pearson Addison-Wesley. All rights reserved 3-1

 Chapter 3

Recursion: The Mirrors	

© 2011 Pearson Addison-Wesley. All rights reserved 3-2

Recursive Solutions

•  Recursion	

–  An extremely powerful problem-solving technique	

–  Breaks a problem in smaller identical problems	

–  An alternative to iteration	

•  An iterative solution involves loops	

© 2011 Pearson Addison-Wesley. All rights reserved 3-3

Recursive Solutions

•  Sequential search	

–  Starts at the beginning of the collection	

–  Looks at every item in the collection in order until the

item being searched for is found	

•  Binary search	

–  Repeatedly halves the collection and determines which
half could contain the item	

–  Uses a divide and conquer strategy	

© 2011 Pearson Addison-Wesley. All rights reserved 3-4

Recursive Solutions

•  Facts about a recursive solution	

–  A recursive method calls itself	

–  Each recursive call solves an identical, but smaller,

problem	

–  A test for the base case enables the recursive calls to

stop	

•  Base case: a known case in a recursive definition	

–  Eventually, one of the smaller problems must be the
base case	

© 2011 Pearson Addison-Wesley. All rights reserved 3-5

Recursive Solutions

•  Four questions for construction recursive solutions	

–  How can you define the problem in terms of a smaller

problem of the same type?	

–  How does each recursive call diminish the size of the

problem?	

–  What instance of the problem can serve as the base

case?	

–  As the problem size diminishes, will you reach this

base case?	

© 2011 Pearson Addison-Wesley. All rights reserved 3-6

A Recursive Valued Method:
The Factorial of n

•  Problem	

–  Compute the factorial of an integer n	

•  An iterative definition of factorial(n)	

	
factorial(n) = n * (n-1) * (n-2) * … * 1 	

	
 	
 	
 	
for any integer n > 0	

	
factorial(0) = 1	

© 2011 Pearson Addison-Wesley. All rights reserved 3-7

A Recursive Valued Method:
The Factorial of n

•  A recursive definition of factorial(n)	

	
factorial(n) = 	
1 	
 	
 	
if n = 0	

	
 	
n * factorial(n-1) 	
 	
if n > 0 	

•  A recurrence relation	

–  A mathematical formula that generates the terms in a

sequence from previous terms	

–  Example	

	
factorial(n) = n * [(n-1) * (n-2) * … * 1]	

	
 	
 	
 = n * factorial(n-1) 	

© 2011 Pearson Addison-Wesley. All rights reserved 3-8

A Recursive Valued Method:
The Factorial of n

•  Box trace	

–  A systematic way to trace the actions of a recursive

method	

–  Each box roughly corresponds to an activation record	

–  An activation record	

•  Contains a method’s local environment at the time
of and as a result of the call to the method	

© 2011 Pearson Addison-Wesley. All rights reserved 3-9

A Recursive Valued Method:
The Factorial of n

•  A method’s local
environment includes:	

–  The method’s local

variables	

–  A copy of the actual

value arguments	

–  A return address in the

calling routine	

–  The value of the

method itself 	

Figure 3-3
A box

© 2011 Pearson Addison-Wesley. All rights reserved 3-10

A Recursive void Method:
Writing a String Backward

•  Problem	

–  Given a string of characters, write it in reverse order	

•  Recursive solution	

–  Each recursive step of the solution diminishes by 1 the

length of the string to be written backward	

–  Base case	

•  Write the empty string backward	

© 2011 Pearson Addison-Wesley. All rights reserved 3-11

A Recursive void Method:
Writing a String Backward

Figure 3-6
A recursive solution

© 2011 Pearson Addison-Wesley. All rights reserved 3-12

A Recursive void Method:
Writing a String Backward

•  Execution of writeBackward can be traced
using the box trace	

•  Temporary System.out.println statements
can be used to debug a recursive method	

© 2011 Pearson Addison-Wesley. All rights reserved 3-13

Counting Things

•  Next three problems	

–  Require you to count certain events or combinations of

events or things	

–  Contain more than one base cases	

–  Are good examples of inefficient recursive solutions	

© 2011 Pearson Addison-Wesley. All rights reserved 3-14

Multiplying Rabbits
(The Fibonacci Sequence)

•  “Facts” about rabbits	

–  Rabbits never die	

–  A rabbit reaches sexual maturity exactly two months

after birth, that is, at the beginning of its third month of
life	

–  Rabbits are always born in male-female pairs	

•  At the beginning of every month, each sexually

mature male-female pair gives birth to exactly one
male-female pair	

© 2011 Pearson Addison-Wesley. All rights reserved 3-15

Multiplying Rabbits
(The Fibonacci Sequence)

•  Problem	

–  How many pairs of rabbits are alive in month n?	

•  Recurrence relation	

	
rabbit(n) = rabbit(n-1) + rabbit(n-2)	

© 2011 Pearson Addison-Wesley. All rights reserved 3-16

Multiplying Rabbits
(The Fibonacci Sequence)

Figure 3-10
Recursive solution to the rabbit problem

© 2011 Pearson Addison-Wesley. All rights reserved 3-17

Multiplying Rabbits
(The Fibonacci Sequence)

•  Base cases	

–  rabbit(2), rabbit(1)	

•  Recursive definition	

	
rabbit(n) = 1 	
 	
 	
 	
if n is 1 or 2	

	
 	
 	
 rabbit(n-1) + rabbit(n-2) 	
if n > 2	

•  Fibonacci sequence	

–  The series of numbers rabbit(1), rabbit(2), rabbit(3),

and so on	

© 2011 Pearson Addison-Wesley. All rights reserved 3-18

Organizing a Parade

•  Rules about organizing a parade	

–  The parade will consist of bands and floats in a single

line	

–  One band cannot be placed immediately after another	

•  Problem	

–  How many ways can you organize a parade of length n?	

© 2011 Pearson Addison-Wesley. All rights reserved 3-19

Organizing a Parade

•  Let:	

–  P(n) be the number of ways to organize a parade of

length n	

–  F(n) be the number of parades of length n that end with

a float	

–  B(n) be the number of parades of length n that end with

a band	

•  Then	

–  P(n) = F(n) + B(n)	

© 2011 Pearson Addison-Wesley. All rights reserved 3-20

Organizing a Parade

•  Number of acceptable parades of length n that end
with a float	

	
F(n) = P(n-1)	

•  Number of acceptable parades of length n that end
with a band	

	
B(n) = F(n-1)	

•  Number of acceptable parades of length n	

– P(n) = P(n-1) + P(n-2)	

© 2011 Pearson Addison-Wesley. All rights reserved 3-21

Organizing a Parade

•  Base cases	

	
P(1) = 2	
(The parades of length 1 are float and band.)	

	
P(2) = 3	
(The parades of length 2 are float-float, band-
	
 	
float, and float-band.)	

•  Solution	

	
P(1) = 2	

	
P(2) = 3	

	
P(n) = P(n-1) + P(n-2) 	
for n > 2	

© 2011 Pearson Addison-Wesley. All rights reserved 3-22

Mr. Spock’s Dilemma
(Choosing k out of n Things)

•  Problem	

–  How many different choices are possible for exploring

k planets out of n planets in a solar system?	

•  Let	

–  c(n, k) be the number of groups of k planets chosen
from n	

© 2011 Pearson Addison-Wesley. All rights reserved 3-23

Mr. Spock’s Dilemma
(Choosing k out of n Things)

•  In terms of Planet X:	

	
c(n, k) = (the number of groups of k planets that
	
 	
 include Planet X)	

	
 	
 +	

	
 	
 (the number of groups of k planets that
	
 	
 do not include Planet X) 	

© 2011 Pearson Addison-Wesley. All rights reserved 3-24

Mr. Spock’s Dilemma
(Choosing k out of n Things)

•  The number of ways to choose k out of n things is
the sum of	

–  The number of ways to choose k-1 out of n-1 things	

	
and	

–  The number of ways to choose k out of n-1 things	

	
c(n, k) = c(n-1, k-1) + c(n-1, k)	

© 2011 Pearson Addison-Wesley. All rights reserved 3-25

Mr. Spock’s Dilemma
(Choosing k out of n Things)

•  Base cases	

–  There is one group of everything	

	
c(k, k) = 1	

–  There is one group of nothing	

	
c(n, 0) = 1	

–  c(n, k) = 0 	
if k > n	

© 2011 Pearson Addison-Wesley. All rights reserved 3-26

Mr. Spock’s Dilemma
(Choosing k out of n Things)

•  Recursive solution	

	
 	
 1 	
 	
 	
 	
 if k = 0	

	
c(n, k) = 1 	
 	
 	
 	
 if k = n	

	
 	
 	
 0 	
 	
 	
 	
 if k > n	

	
 	
 	
 c(n-1, k-1) + c(n-1, k) 	
 if 0 < k < n	

© 2011 Pearson Addison-Wesley. All rights reserved 3-27

Searching an Array:
Finding the Largest Item in an
Array
•  A recursive solution	

 if (anArray has only one item) {

 maxArray(anArray) is the item in anArray

 }

 else if (anArray has more than one item) {
 maxArray(anArray) is the maximum of

 maxArray(left half of anArray) and

 maxArray(right half of anArray)

 } // end if

© 2011 Pearson Addison-Wesley. All rights reserved 3-28

Finding the Largest Item in an
Array

Figure 3-13
Recursive solution to the largest-item problem

© 2011 Pearson Addison-Wesley. All rights reserved 3-29

Binary Search

•  A high-level binary search	

	
if (anArray is of size 1) {
 Determine if anArray’s item is equal to value
 }
 else {
 Find the midpoint of anArray
 Determine which half of anArray contains value
 if (value is in the first half of anArray) {
 binarySearch (first half of anArray, value)
 }
 else {
 binarySearch(second half of anArray, value)
 } // end if
 } // end if

© 2011 Pearson Addison-Wesley. All rights reserved 3-30

Binary Search

•  Implementation issues:	

–  How will you pass “half of anArray” to the recursive

calls to binarySearch?	

–  How do you determine which half of the array contains

value?	

–  What should the base case(s) be?	

–  How will binarySearch indicate the result of the

search?	

© 2011 Pearson Addison-Wesley. All rights reserved 3-31

Finding the kth Smallest Item in
an Array

•  The recursive solution proceeds by:	

1.  Selecting a pivot item in the array	

2.  Cleverly arranging, or partitioning, the items in the

array about this pivot item	

3.  Recursively applying the strategy to one of the

partitions 	

© 2011 Pearson Addison-Wesley. All rights reserved 3-32

Finding the kth Smallest Item in
an Array

Figure 3-18
A partition about a pivot

© 2011 Pearson Addison-Wesley. All rights reserved 3-33

Finding the kth Smallest Item in
an Array

•  Let: 	

	
kSmall(k, anArray, first, last) =
 kth smallest item in anArray[first..last]

•  Solution:	

kSmall(k, anArray, first, last)
 kSmall(k, anArray, first, pivotIndex-1)
 if k < pivotIndex – first + 1

= if k = pivotIndex – first + 1
 p
 kSmall(k-(pivotIndex-first+1), anArray,
 pivotIndex+1, last)
 if k > pivotIndex – first + 1

© 2011 Pearson Addison-Wesley. All rights reserved 3-34

Organizing Data:
The Towers of Hanoi

Figure 3-19a and b
a) The initial state; b) move n - 1 disks from A to C

© 2011 Pearson Addison-Wesley. All rights reserved 3-35

The Towers of Hanoi

Figure 3-19c and d
c) move one disk from A to B; d) move n - 1 disks from C to B

© 2011 Pearson Addison-Wesley. All rights reserved 3-36

The Towers of Hanoi

•  Pseudocode solution	

	
solveTowers(count, source, destination, spare)
 if (count is 1) {

 Move a disk directly from source to destination

 }
 else {

 solveTowers(count-1, source, spare, destination)

 solveTowers(1, source, destination, spare)

 solveTowers(count-1, spare, destination, source)

 } //end if

© 2011 Pearson Addison-Wesley. All rights reserved 3-37

Recursion and Efficiency

•  Some recursive solutions are so inefficient that
they should not be used	

•  Factors that contribute to the inefficiency of some
recursive solutions	

–  Overhead associated with method calls	

–  Inherent inefficiency of some recursive algorithms	

© 2011 Pearson Addison-Wesley. All rights reserved 3-38

Summary

•  Recursion solves a problem by solving a smaller
problem of the same type	

•  Four questions to keep in mind when constructing
a recursive solution	

–  How can you define the problem in terms of a smaller

problem of the same type?	

–  How does each recursive call diminish the size of the

problem?	

–  What instance of the problem can serve as the base

case?	

–  As the problem size diminishes, will you reach this

base case?	

© 2011 Pearson Addison-Wesley. All rights reserved 3-39

Summary

•  A recursive call’s postcondition can be assumed
to be true if its precondition is true	

•  The box trace can be used to trace the actions of a
recursive method	

•  Recursion can be used to solve problems whose
iterative solutions are difficult to conceptualize	

© 2011 Pearson Addison-Wesley. All rights reserved 3-40

Summary

•  Some recursive solutions are much less efficient
than a corresponding iterative solution due to their
inherently inefficient algorithms and the overhead
of method calls	

•  If you can easily, clearly, and efficiently solve a
problem by using iteration, you should do so	

