Chapter 2

oooooooooo
PPPPPPP
‘‘‘‘‘‘‘‘

........

Principles of Programming &
Software Engineering

© 2011 Pearson Addison-Wesley. All rights reserved

2-1

Problem Solving and Software
Engineering

e Coding without a solution design increases
debugging time

* A team of programmers 1s needed for a large
software development project

e Teamwork requires:
— An overall plan
— Organization
— Communication

e Software engineering

— Provides techniques to facilitate the development of
computer programs

© 2011 Pearson Addison-Wesley. All rights reserved 2-2

What is Problem Solving?

e Problem solving

— The process of taking the statement of a problem and
developing a computer program that solves that
problem

e A solution consists of:
— Algorithms

e Algorithm: a step-by-step specification of a method
to solve a problem within a finite amount of time

— Ways to store data

© 2011 Pearson Addison-Wesley. All rights reserved 2-3

The Life Cycle of Software

e The life cycle of a software
— A lengthy and continuing process
— Required for the development of good software

— Programmer can move from any phase of the cycle to
any other phase

© 2011 Pearson Addison-Wesley. All rights reserved

2-4

The Life Cycle of Software

Figure 2-1
The life cycle of software as a water wheel that can rotate from one phase to any

other phase
© 2011 Pearson Addison-Wesley. All rights reserved

2-5

The Life Cycle of Software

e Phase 1: Specification
— Aspects of the problem which must be specified:

What is the input data?
What data i1s valid and what data is invalid?

Who will use the software, and what user interface should be
used?

What error detection and error messages are desirable?
What assumptions are possible?

Are there special cases?

What is the form of the output?

What documentation is necessary?

What enhancements to the program are likely in the future?

© 2011 Pearson Addison-Wesley. All rights reserved 2-6

The Life Cycle of Software

e Phase 1: Specification (Continued)
— Prototype program

* A program that simulates the behavior of portions of
the desired software product

e Phase 2: Design
— Includes:
e Dividing the program into modules
e Specifying the purpose of each module
e Specifying the data flow among modules

© 2011 Pearson Addison-Wesley. All rights reserved 2-7

The Life Cycle of Software

e Phase 2: Design (Continued)
— Modules
e Self-contained units of code

e Should be designed to be:

— Loosely coupled
— Highly cohesive

— Interfaces

e Communication mechanisms among modules

© 2011 Pearson Addison-Wesley. All rights reserved

2-8

The Life Cycle of Software

e Phase 2: Design (Continued)

— Specifications of a method

e A contract between the method and the module that calls it
e Should not commit the method to a particular way of
performing its task
e Include the method’ s:
— Precondition

» A statement of the conditions that must exist at the
beginning of the method

— Postcondition
» A statement of the conditions at the end of the method

© 2011 Pearson Addison-Wesley. All rights reserved 2-9

The Life Cycle of Software

* Phase 3: Risk Analysis

— Building software entails risks
— Techniques exist to identify, assess, and manage the
risks of creating a software product
e Phase 4: Verification

— Formal methods can be used to prove that an algorithm
1S correct

— Assertion

* A statement about a particular condition at a certain point in an
algorithm

e Java's assert statement: assert booleanExpression;

© 2011 Pearson Addison-Wesley. All rights reserved 2-10

The Life Cycle of Software

e Phase 4: Verification (Continued)
— Invariant

e A condition that is always true at a particular point
in an algorithm

— Loop invariant

* A condition that is true before and after each
execution of an algorithm’ s loop

* Can be used to detect errors before coding is started

© 2011 Pearson Addison-Wesley. All rights reserved =

The Life Cycle of Software

e Phase 4: Verification (Continued)

— The invariant for a correct loop is true:

 Initially, after any initialization steps, but before the loop
begins execution

» Before every iteration of the loop
» After every iteration of the loop
e After the loop terminates

e Phase 5: Coding

— Involves:
* Translating the design into a particular programming language
e Removing syntax errors

© 2011 Pearson Addison-Wesley. All rights reserved 2-12

The Life Cycle of Software

* Phase 6: Testing

— Involves:
* Removing the logical errors

— Test data should include:
e Valid data that leads to a known result
e Invalid data
e Random data
e Actual data

© 2011 Pearson Addison-Wesley. All rights reserved 2-13

The Life Cycle of Software

e Phase 7: Refining the Solution
— During phases 1 through 6

* A working program 1s developed under simplifying
assumptions

— During phase 7

e Refining sophistication is added, such as:
— More sophisticated input and output routines
— Additional features

— More error checks

© 2011 Pearson Addison-Wesley. All rights reserved 2-14

The Life Cycle of Software

e Phase 8: Production
— Involves:
e Distribution to the intended users
e Use by the users
 Phase 9: Maintenance
— Involves
e Correcting user-detected errors
e Adding more features
* Modifying existing portions to suit the users better

© 2011 Pearson Addison-Wesley. All rights reserved 2-15

What is a Good Solution?

e A solution is good if:

— The total cost it incurs over all phases of its life cycle is
minimal

e The cost of a solution includes:
— Computer resources that the program consumes
— Difficulties encountered by those who use the program

— Consequences of a program that does not behave
correctly

e Programs must be well structured and documented
e Efficiency is only one aspect of a solution’ s cost

© 2011 Pearson Addison-Wesley. All rights reserved 2-16

Achieving an Object-Oriented
Design: Abstraction and
Information Hiding

e A modular solution to a problem should specity
what to do, not how to do it

e Abstraction

— Separates the purpose of a module from its
implementation

* Procedural abstraction

— Separates the purpose of a method from its
implementation

© 2011 Pearson Addison-Wesley. All rights reserved 2-17

Abstraction and Information
Hiding

| can sort data
into ascending order.

> sort

Sort this data for
me; | don't care how
you do it.

aBox |«

Unorganized data Data sorted into
ascending order

Figure 2-2
The details of the sorting algorithm are hidden from other parts of the solution.

© 2011 Pearson Addison-Wesley. All rights reserved

2-18

Abstraction and Information
Hiding

e Data abstraction

— Focuses of the operations of data, not on the
implementation of the operations

— Abstract data type (ADT)

* A collection of data and a set of operations on the data
e An ADT’ s operations can be used without knowing how the
operations are implemented, if:
— the operations’ specifications are known
— Data structure

* A construct that can be defined within a programming
language to store a collection of data

© 2011 Pearson Addison-Wesley. All rights reserved 2-19

Abstraction and Information
Hiding

e Public view of a module

— Described by its specifications

e Private view of a module

— Consists of details which should not be described by the
specifications

e Principle of information hiding

— Hide details within a module

— Ensure that no other module can tamper with these
hidden details

© 2011 Pearson Addison-Wesley. All rights reserved 2-20

Object-Oriented Design

* Object-oriented approach to modularity

— Produces a collection of objects that have behaviors
* Object

— An instance of a class

— Combines data and operations on that data

e Encapsulation
— A technique that hides inner details
— Methods encapsulate actions
— Objects encapsulate data as well as actions

© 2011 Pearson Addison-Wesley. All rights reserved 2-21

Object-Oriented Design

* Principles of object-oriented programming (OOP)
— Encapsulation
e Objects combine data and operations
— Inheritance
e Classes can inherit properties from other classes
— Polymorphism
e Objects can determine appropriate operations at
execution time

© 2011 Pearson Addison-Wesley. All rights reserved 2-22

Functional Decomposition

e Object-oriented design (OOD)

— Produces modular solutions for problems that primarily
involve data

— Identifies objects by focusing on the nouns in the
problem statement
e Functional Decomposition (FD)

— Produces modular solutions for problems in which the
emphasis 1s on the algorithms

— Identifies actions by focusing on the verbs in the
problem statement

— A task 1s addressed at successively lower levels of
detail

© 2011 Pearson Addison-Wesley. All rights reserved 2-23

Functional Decomposition

Find the
median
l v l
Read the Sort the Get the
scores scores middle score
Prompt the Place the score : : : :
user for a score into an array : | : |
________ J -]
Figure 2-4

A structure chart showing the hierarchy of modules
© 2011 Pearson Addison-Wesley. All rights reserved 2-24

General Design Guidelines

e Use OOD and FD together
e Use OOD for problems that primarily involve data

e Use FD to design algorithms for an object’ s
operations

e Consider FD to design solutions to problems that
emphasize algorithms over data

* Focus on what, not how, when designing both
ADTs and algorithms

e Consider incorporating previously written
software components into your design

© 2011 Pearson Addison-Wesley. All rights reserved 2-25

Modeling Object-Oriented
Designs Using IML

e Unified Modeling Language (UML): language to
express OO designs

e (Class diagrams include name, data, operations

* Text-based notation: more complete specifications

Clock

hoor
minuto

Soocond

SatTima ()
adwvance Timey)
displayTima)

HAGURE =-5

LIML diagram for the class clock

© 2011 Pearson Addison-Wesley. All rights reserved 2-26

A Summary of Key Issues in
Programming

e Modularity
— Favorable impact on program development
* Modifiability
— Use of methods and named constants
e Ease of Use
— Considerations for the user interface
e Program should prompt the user for input
e A program should always echo its input
e The output should be well labeled and easy to read

© 2011 Pearson Addison-Wesley. All rights reserved 2-27

A Summary of Key Issues in
Programming

e Fail-Safe Programming
— Fail-safe program

e A program that will perform reasonably no matter
how anyone uses it

— Types of errors:
e Errors in input data
e Errors in the program logic

© 2011 Pearson Addison-Wesley. All rights reserved 2-28

A Summary of Key Issues in
Programming

e Style
— Five 1ssues of style
e Extensive use of methods
e Use of private data fields
e Error handling
e Readability

e Documentation

© 2011 Pearson Addison-Wesley. All rights reserved 2-29

A Summary of Key Issues in
Programming

 Debugging

— Programmer must systematically check a program’ s
logic to determine where an error occurs

— Tools to use while debugging:
* Watches
e Breakpoints
e System.out.println statements
 Dump methods

© 2011 Pearson Addison-Wesley. All rights reserved 2-30

Summary

e Software engineering studies ways to facilitate the
development of computer programs

e Software life cycle consists of:
— Specitying the problem
— Designing the algorithm
— Analyzing the risks
— Veritying the algorithm
— Coding the programs
— Testing the programs
— Refining the solution
— Using the solution
— Maintaining the software

© 2011 Pearson Addison-Wesley. All rights reserved 2-31

Summary

* A loop invariant is a property of an algorithm that
1s true before and after each iteration of a loop

e An evaluation of the quality of a solution must
take into consideration

— The solution’ s correctness

— The solution’ s efficiency

— The time that went into the development of the solution
— The solution’ s ease of use

— The cost of modifying and expanding the solution

© 2011 Pearson Addison-Wesley. All rights reserved 2-32

Summary

e A combination of object-oriented and functional
decomposition techniques will lead to a modular
solution

e The final solution should be as easy to modify as
possible

* A method should be as independent as possible
and perform one well-defined task

* A method should always include an 1nitial
comment that states its purpose, its precondition,
and 1ts postcondition

© 2011 Pearson Addison-Wesley. All rights reserved 2-33

Summary

e A program should be as fail-safe as possible

e Effective use of available diagnostic aids 1s one of
the keys to debugging

 To make it easier to examine the contents of
complex data structures while debugging, dump
methods that display the contents of the data
structures should be used

© 2011 Pearson Addison-Wesley. All rights reserved 2-34

