
© 2011 Pearson Addison-Wesley. All rights reserved 2-1

 Chapter 2

	

Principles of Programming &
Software Engineering	

© 2011 Pearson Addison-Wesley. All rights reserved 2-2

Problem Solving and Software
Engineering
•  Coding without a solution design increases

debugging time	

•  A team of programmers is needed for a large

software development project	

•  Teamwork requires:	

–  An overall plan	

–  Organization	

–  Communication	

•  Software engineering	

–  Provides techniques to facilitate the development of

computer programs	

© 2011 Pearson Addison-Wesley. All rights reserved 2-3

What is Problem Solving?

•  Problem solving	

–  The process of taking the statement of a problem and

developing a computer program that solves that
problem	

•  A solution consists of:	

–  Algorithms	

•  Algorithm: a step-by-step specification of a method
to solve a problem within a finite amount of time	

–  Ways to store data	

© 2011 Pearson Addison-Wesley. All rights reserved 2-4

The Life Cycle of Software

•  The life cycle of a software	

–  A lengthy and continuing process	

–  Required for the development of good software	

–  Programmer can move from any phase of the cycle to

any other phase	

© 2011 Pearson Addison-Wesley. All rights reserved 2-5

The Life Cycle of Software

Figure 2-1
The life cycle of software as a water wheel that can rotate from one phase to any
other phase

© 2011 Pearson Addison-Wesley. All rights reserved 2-6

The Life Cycle of Software

•  Phase 1: Specification	

–  Aspects of the problem which must be specified:	

•  What is the input data?	

•  What data is valid and what data is invalid?	

•  Who will use the software, and what user interface should be

used?	

•  What error detection and error messages are desirable?	

•  What assumptions are possible?	

•  Are there special cases?	

•  What is the form of the output?	

•  What documentation is necessary?	

•  What enhancements to the program are likely in the future? 	

© 2011 Pearson Addison-Wesley. All rights reserved 2-7

The Life Cycle of Software

•  Phase 1: Specification (Continued)	

–  Prototype program	

•  A program that simulates the behavior of portions of
the desired software product	

•  Phase 2: Design	

–  Includes:	

•  Dividing the program into modules	

•  Specifying the purpose of each module	

•  Specifying the data flow among modules	

© 2011 Pearson Addison-Wesley. All rights reserved 2-8

The Life Cycle of Software

•  Phase 2: Design (Continued)	

–  Modules	

•  Self-contained units of code	

•  Should be designed to be:	

–  Loosely coupled	

–  Highly cohesive	

–  Interfaces	

•  Communication mechanisms among modules	

© 2011 Pearson Addison-Wesley. All rights reserved 2-9

The Life Cycle of Software

•  Phase 2: Design (Continued)	

–  Specifications of a method	

•  A contract between the method and the module that calls it	

•  Should not commit the method to a particular way of

performing its task	

•  Include the method’s:	

–  Precondition	

»  A statement of the conditions that must exist at the

beginning of the method	

–  Postcondition	

»  A statement of the conditions at the end of the method 	

© 2011 Pearson Addison-Wesley. All rights reserved 2-10

The Life Cycle of Software

•  Phase 3: Risk Analysis	

–  Building software entails risks	

–  Techniques exist to identify, assess, and manage the

risks of creating a software product	

•  Phase 4: Verification	

–  Formal methods can be used to prove that an algorithm
is correct	

–  Assertion	

•  A statement about a particular condition at a certain point in an

algorithm	

•  Java’s assert statement: assert booleanExpression;

© 2011 Pearson Addison-Wesley. All rights reserved 2-11

The Life Cycle of Software

•  Phase 4: Verification (Continued)	

–  Invariant	

•  A condition that is always true at a particular point
in an algorithm	

–  Loop invariant	

•  A condition that is true before and after each

execution of an algorithm’s loop	

•  Can be used to detect errors before coding is started	

© 2011 Pearson Addison-Wesley. All rights reserved 2-12

The Life Cycle of Software

•  Phase 4: Verification (Continued)	

–  The invariant for a correct loop is true:	

•  Initially, after any initialization steps, but before the loop
begins execution	

•  Before every iteration of the loop	

•  After every iteration of the loop	

•  After the loop terminates	

•  Phase 5: Coding	

–  Involves:	

•  Translating the design into a particular programming language	

•  Removing syntax errors	

© 2011 Pearson Addison-Wesley. All rights reserved 2-13

The Life Cycle of Software

•  Phase 6: Testing	

–  Involves:	

•  Removing the logical errors	

–  Test data should include:	

•  Valid data that leads to a known result	

•  Invalid data	

•  Random data	

•  Actual data	

© 2011 Pearson Addison-Wesley. All rights reserved 2-14

The Life Cycle of Software

•  Phase 7: Refining the Solution	

–  During phases 1 through 6	

•  A working program is developed under simplifying
assumptions	

–  During phase 7	

•  Refining sophistication is added, such as:	

–  More sophisticated input and output routines	

–  Additional features	

–  More error checks	

© 2011 Pearson Addison-Wesley. All rights reserved 2-15

The Life Cycle of Software

•  Phase 8: Production	

–  Involves:	

•  Distribution to the intended users	

•  Use by the users	

•  Phase 9: Maintenance	

–  Involves	

•  Correcting user-detected errors	

•  Adding more features	

•  Modifying existing portions to suit the users better	

© 2011 Pearson Addison-Wesley. All rights reserved 2-16

What is a Good Solution?

•  A solution is good if:	

–  The total cost it incurs over all phases of its life cycle is

minimal	

•  The cost of a solution includes:	

–  Computer resources that the program consumes	

–  Difficulties encountered by those who use the program	

–  Consequences of a program that does not behave

correctly	

•  Programs must be well structured and documented	

•  Efficiency is only one aspect of a solution’s cost	

© 2011 Pearson Addison-Wesley. All rights reserved 2-17

Achieving an Object-Oriented
Design: Abstraction and
Information Hiding
•  A modular solution to a problem should specify

what to do, not how to do it	

•  Abstraction	

–  Separates the purpose of a module from its
implementation	

•  Procedural abstraction	

–  Separates the purpose of a method from its

implementation	

© 2011 Pearson Addison-Wesley. All rights reserved 2-18

Abstraction and Information
Hiding

Figure 2-2
The details of the sorting algorithm are hidden from other parts of the solution.

© 2011 Pearson Addison-Wesley. All rights reserved 2-19

Abstraction and Information
Hiding

•  Data abstraction	

–  Focuses of the operations of data, not on the

implementation of the operations	

–  Abstract data type (ADT)	

•  A collection of data and a set of operations on the data	

•  An ADT’s operations can be used without knowing how the

operations are implemented, if:	

–  the operations’ specifications are known	

–  Data structure	

•  A construct that can be defined within a programming

language to store a collection of data	

© 2011 Pearson Addison-Wesley. All rights reserved 2-20

Abstraction and Information
Hiding

•  Public view of a module	

–  Described by its specifications	

•  Private view of a module	

–  Consists of details which should not be described by the

specifications	

•  Principle of information hiding	

–  Hide details within a module	

–  Ensure that no other module can tamper with these

hidden details	

© 2011 Pearson Addison-Wesley. All rights reserved 2-21

Object-Oriented Design

•  Object-oriented approach to modularity	

–  Produces a collection of objects that have behaviors	

•  Object	

–  An instance of a class	

–  Combines data and operations on that data	

•  Encapsulation	

–  A technique that hides inner details	

–  Methods encapsulate actions	

–  Objects encapsulate data as well as actions	

© 2011 Pearson Addison-Wesley. All rights reserved 2-22

Object-Oriented Design

•  Principles of object-oriented programming (OOP)	

–  Encapsulation	

•  Objects combine data and operations	

–  Inheritance	

•  Classes can inherit properties from other classes	

–  Polymorphism	

•  Objects can determine appropriate operations at
execution time 	

© 2011 Pearson Addison-Wesley. All rights reserved 2-23

Functional Decomposition

•  Object-oriented design (OOD)	

–  Produces modular solutions for problems that primarily

involve data	

–  Identifies objects by focusing on the nouns in the

problem statement	

•  Functional Decomposition (FD)	

–  Produces modular solutions for problems in which the
emphasis is on the algorithms	

–  Identifies actions by focusing on the verbs in the
problem statement	

–  A task is addressed at successively lower levels of
detail	

© 2011 Pearson Addison-Wesley. All rights reserved 2-24

Functional Decomposition

Figure 2-4
A structure chart showing the hierarchy of modules

© 2011 Pearson Addison-Wesley. All rights reserved 2-25

General Design Guidelines

•  Use OOD and FD together	

•  Use OOD for problems that primarily involve data	

•  Use FD to design algorithms for an object’s

operations	

•  Consider FD to design solutions to problems that

emphasize algorithms over data	

•  Focus on what, not how, when designing both

ADTs and algorithms	

•  Consider incorporating previously written

software components into your design	

© 2011 Pearson Addison-Wesley. All rights reserved 2-26

Modeling Object-Oriented
Designs Using IML
•  Unified Modeling Language (UML): language to

express OO designs	

•  Class diagrams include name, data, operations 	

•  Text-based notation: more complete specifications	

© 2011 Pearson Addison-Wesley. All rights reserved 2-27

A Summary of Key Issues in
Programming
•  Modularity	

–  Favorable impact on program development	

•  Modifiability	

–  Use of methods and named constants	

•  Ease of Use	

–  Considerations for the user interface	

•  Program should prompt the user for input	

•  A program should always echo its input	

•  The output should be well labeled and easy to read	

© 2011 Pearson Addison-Wesley. All rights reserved 2-28

A Summary of Key Issues in
Programming

•  Fail-Safe Programming	

–  Fail-safe program	

•  A program that will perform reasonably no matter
how anyone uses it	

–  Types of errors:	

•  Errors in input data	

•  Errors in the program logic	

© 2011 Pearson Addison-Wesley. All rights reserved 2-29

A Summary of Key Issues in
Programming

•  Style	

–  Five issues of style	

•  Extensive use of methods	

•  Use of private data fields	

•  Error handling	

•  Readability	

•  Documentation	

© 2011 Pearson Addison-Wesley. All rights reserved 2-30

A Summary of Key Issues in
Programming

•  Debugging	

–  Programmer must systematically check a program’s

logic to determine where an error occurs	

–  Tools to use while debugging:	

•  Watches	

•  Breakpoints	

• System.out.println statements	

•  Dump methods	

© 2011 Pearson Addison-Wesley. All rights reserved 2-31

Summary
•  Software engineering studies ways to facilitate the

development of computer programs	

•  Software life cycle consists of:	

–  Specifying the problem	

–  Designing the algorithm	

–  Analyzing the risks	

–  Verifying the algorithm	

–  Coding the programs	

–  Testing the programs	

–  Refining the solution	

–  Using the solution	

–  Maintaining the software	

© 2011 Pearson Addison-Wesley. All rights reserved 2-32

Summary

•  A loop invariant is a property of an algorithm that
is true before and after each iteration of a loop	

•  An evaluation of the quality of a solution must
take into consideration	

–  The solution’s correctness	

–  The solution’s efficiency	

–  The time that went into the development of the solution	

–  The solution’s ease of use	

–  The cost of modifying and expanding the solution	

© 2011 Pearson Addison-Wesley. All rights reserved 2-33

Summary

•  A combination of object-oriented and functional
decomposition techniques will lead to a modular
solution	

•  The final solution should be as easy to modify as
possible	

•  A method should be as independent as possible
and perform one well-defined task	

•  A method should always include an initial
comment that states its purpose, its precondition,
and its postcondition	

© 2011 Pearson Addison-Wesley. All rights reserved 2-34

Summary

•  A program should be as fail-safe as possible	

•  Effective use of available diagnostic aids is one of

the keys to debugging	

•  To make it easier to examine the contents of

complex data structures while debugging, dump
methods that display the contents of the data
structures should be used	

