v Chapter 1

& Problem

lllll

J.PRIC

“ Review of Java Fundamentals

© 2011 Pearson Addison-Wesley. All rights reserved

1-1

Language Basics

e Java application

— Collection of classes

e One class contains the main method

e Java programs can also be written as applets

© 2011 Pearson Addison-Wesley. All rights reserved

1-2

Comments

e Comment line

— Begins with two slashes (//)

— Continues until the end of the line
e Multiple-line comment

— Begins with /* and ends with */

— Useftul for debugging

— Cannot contain another multiple-line comment
 Javadoc comments

— Begins with /** and ends with */

© 2011 Pearson Addison-Wesley. All rights reserved

1-3

ldentifiers and Keywords

e Identifier
— Sequence of letters, digits, underscores, and dollar signs
— Must begin with either a letter or underscore
— Used to name various parts of the program

— Java distinguishes between uppercase and lowercase
letters

e Keywords

— Java reserved i1dentifiers

© 2011 Pearson Addison-Wesley. All rights reserved -

Variables

* Represents a memory location
e Contains a value of primitive type or a reference
e [ts name 1s a Java identifier

e Declared by preceding variable name with data
type

double radius; // radius of a sphere

String name; // reference to a String object

© 2011 Pearson Addison-Wesley. All rights reserved 1-5

Primitive Data Types

e Organized into four categories
— Boolean
— Character
— Integer
— Floating point

e Character and integer types are called integral
types

e Integral and floating-point types are called
arithmetic types

© 2011 Pearson Addison-Wesley. All rights reserved

1-6

Primitive Data Types

Category Cata Tyvpe Wrapper Class
Boolean boolean Boolean
Character char Character
Integer bvte Byte
short short
int Integer
long Long
Floating point float Float
doubls Double
Figure 1-5

Primitive data types and corresponding wrapper classes

© 2011 Pearson Addison-Wesley. All rights reserved 1-7

Primitive Data Types

e Value of primitive type is not considered an object

* java.lang provides wrapper classes for each of
the primitive types
e Autoboxing

— Automatically converts from a primitive type to the
equivalent wrapper class

* Auto-unboxing

— Reverse process

© 2011 Pearson Addison-Wesley. All rights reserved 1-8

References

e Data type used to locate an object

e Java does not allow programmer to perform
operations on the reference value

e Location of object in memory can be assigned to a
reference variable

© 2011 Pearson Addison-Wesley. All rights reserved 1-9

Literal Constants

e Indicate particular values within a program
e Used to initialize the value of a variable

* Decimal integer constants
— Do not use commas, decimal points, or leading zeros
— Default data type is either int or 1ong

* Floating constants
— Written using decimal points
— Default data type 1s double

© 2011 Pearson Addison-Wesley. All rights reserved 1-10

Literal Constants

e Character constants
— Enclosed in single quotes
— Default data type i1s char
— Literal character strings

e Sequence of characters enclosed in double quotes

© 2011 Pearson Addison-Wesley. All rights reserved

Named Constants

e Have values that do not change

e Declared as a variable but using the keyword
final

© 2011 Pearson Addison-Wesley. All rights reserved

Assignments and Expressions

e Expressions

— Combination of variables, constants, operators, and
parentheses

e Assignment statement
— Example: radius = r;
e Arithmetic expression

— Combine variables and constants with arithmetic
operators and parentheses

e Arithmetic operators: *,/, %, +, -

© 2011 Pearson Addison-Wesley. All rights reserved

Assignments and Expressions

e Relational expressions

— Combine variables and constants with relational, or
comparison, and equality operators and parentheses
* Relational or comparison operators: <, <=, >=.>

e Equality operators: ==, !=

— Evaluate to true or false

© 2011 Pearson Addison-Wesley. All rights reserved

Assignments and Expressions

* Logical expressions

— Combine variables and constants of arithmetic types,
relational expressions with logical operators
* Logical operators: &&, |l

— Evaluate to true or false

— Short-circuit evaluation
* Evaluates logical expressions from left to right

e Stops as soon as the value of expression is apparent

© 2011 Pearson Addison-Wesley. All rights reserved

Assignments and Expressions

e Implicit type conversions

— Occur during assignment and during expression
evaluation

— Right-hand side of assignment operator is converted to
data type of item on left-hand side

— Floating-point values are truncated not rounded

— Integral promotion
e Values of type byte, char,or short are converted to int

— Conversion hierarchy
e int @ long — float — double

© 2011 Pearson Addison-Wesley. All rights reserved 1-16

Assignments and Expressions

e Explicit type conversions
— Possible by means of a cast

— Cast operator
* Unary operator

* Formed by enclosing the desired data type within parentheses

e Multiple assignments

— Embed assignment expressions within assignment
expressions
e Example:a = 5 + (b = 4)
e Evaluates to 9 while b is assigned 4

© 2011 Pearson Addison-Wesley. All rights reserved 1-17

Assignments and Expressions

e Other assignment operators

— %

~
Il

o\°
Il

|
|
|

© 2011 Pearson Addison-Wesley. All rights reserved

Arrays

e Collection of elements with the same data type
e Array elements have an order
e Support direct and random access

* One-dimensional arrays

— Declaration example

final int DAYS PER WEEK = 7;
double [] maxTemps = new double[DAYS PER WEEK];

— Length of an array 1s accessible using data field
length

— Use an index or subscript to access an array element

© 2011 Pearson Addison-Wesley. All rights reserved 1-19

Arrays

a 1 2 3 4 3 G -— jndex

maxTemps | &2.0 71.5 al.8 750 | BB.3 0.0 .0

‘ ——
maxTemps [4] Lnused at present

Figure 1-7

One-dimensional array of at most seven elements

© 2011 Pearson Addison-Wesley. All rights reserved 1-20

Arrays

e One-dimensional arrays (continued)

— Initializer list example
double [] weekDayTemps = {82.0, 71.5, 61.8,
75.0, 88.3};

— You can also declare array of object references

 Multidimensional arrays
— Use more than one index

— Declaration example
final int DAYS PER WEEK = 7;
final int WEEKS PER YEAR = 52;

double[] [] minTemps = new double[DAYS PER WEEK]
[WEEKS PER YEAR];

© 2011 Pearson Addison-Wesley. All rights reserved 1-21

Columns
A

Rows <

Figure 1-8
A two-dimensional array

© 2011 Pearson Addison-Wesley. All rights reserved 1-22

Arrays

e Passing an array to a method

— Declare the method as follows:
public double averageTemp (double[] temps, int n)

— Invoke the method by writing:

double avg = averageTemp (maxTemps, 6);

— Location of array is passed to the method
e Cannot return a new array through this value

— Method can modify content of the array

© 2011 Pearson Addison-Wesley. All rights reserved 1-23

Selection Statements

e The if statement e Nested if
if (expression) if (expression) {
statementl statementl
or }

if (expression) else if (expression) {

statementl statement?2
else }
statement? else {
statement?3

} // end if

© 2011 Pearson Addison-Wesley. All rights reserved 1-24

Selection Statements

e The switch statement
switch (integral expression)

case 1:
statementl;
break;

case 2, case 3:
statement?;

case 4:
statement3;
break;

default:
statement4;

} //end of switch

© 2011 Pearson Addison-Wesley. All rights reserved

1-25

lteration Statements

e The while statement

while (expression) {
statement

}

 statement is executed as long as
expressionis true

 statement may not be executed at all

e continue expression

— Stops the current iteration of the loop and begins the
next iteration at the top of the loop

© 2011 Pearson Addison-Wesley. All rights reserved 1-26

lteration Statements

e The for statement
for (initialize; test; update)
statement

 statement 1s executed as long as test 1s true
« for statement 1s equivalent to a while statement
e The for loop and arrays

for (ArrayElementType variableName : arrayName)
statement

© 2011 Pearson Addison-Wesley. All rights reserved 1-27

lteration Statements

e The do statement
do {
statement
} while (expression);
* statement is executed until expression is
false

« do statement loops at least once

© 2011 Pearson Addison-Wesley. All rights reserved 1-28

Program Structure

e Typical Java program consists of
— User written classes
— Java Application Programming Interface (API) classes

e Java application
— Has one class with a main method

e Java program basic elements:
— Packages
— Classes
— Data fields
— Methods

© 2011 Pearson Addison-Wesley. All rights reserved 1-29

Packages

* Provide a mechanism for grouping related classes

e package statement
— Indicates a class 1s part of a package

e Java assumes all classes 1n a particular package
are contained 1in same directory

e Java API consists of many predefined packages

© 2011 Pearson Addison-Wesley. All rights reserved 1-30

Packages

e Import statement

— Allows you to use classes contained in other packages

e Package java.lang is implicitly imported to all
Java code

© 2011 Pearson Addison-Wesley. All rights reserved 1-31

ackages

File Simpl eSphere.java

package MyPackagep
import java.lang.Math;
public class SimplaSphere |
private deuble raaius;
public static final double DEFAULT RADIUS = 1.0;
publie SimpleSphere() |
ragius = DEFAULT_RADIUS;
} // end defaunlt conetruckor
public SimpleSphere{double r) {
radius = r;
} // end conetructor
public double getRadiu=() {
return radius;
} // ena getRadius
public double getVolume() {
//{ Computes the wolume of the sphere.
double radiunsCubed = radius * radius * radius;
return 4 * Math.PI * radiusCubed / 3;
} // ena getvolums

} // end SimpleSphere

File TestClass.java

1. Indicates 8impleSphers is part of a package --—x|

2. Indicates class Math is used by SimpleSphere —x

3. Bagins dass SimpleSphere -——

4, Declares a private data field radiua ——————- =

5. Declares a constant

6. A default constructor =

7. Assignment staternent =

8. A second constructor =

9. Assignment staternent =
10. Begins method getRadius —-—-—-—-m-mmmmm - =
11. Returns data field radine --——-—-—-——corme—- =
12. Begins method getVolume -—-—-—-—-—-m-mo— —
13, A comment =
14, Declares and assigns a local variable -————-—-- .
15. Returns result of computation -—-—-—-—-—————- =
16. Ends dass SimpleSphere ——-————————3 |
17. Indicates TestClass is part of a package ————- =
18. Begins class TestClags —-—-—-—————-—-—r——=; -
19. Begins method main =
20. Dedares reference ball ————————— o
21. Creates a SimpleSphere chject ~——-——-———- B
22, Qutputs results =
23. Continuation of output string
24. Continuation of output string

package MyPackage;
public class TestClass |
statlec publie weld main(String[] args) {
SimpleSphere ball;
ball = new SimpleSphere{l®.1);
Sygtem. out .println{"The volums of a sphere of radius =
+ ball.getRadiue() + * inches is "
+ (float)ball.getVolume ()
+ "cuble inches'n");
} //ena main

} // end TestClaes

\\iS. Ends class TestClass

Figure 1-1

A simple Java Program

© 2011 Pearson Addison-Wesley. All rights reserved

Classes

e Data type that specifies data and methods available
for instances of the class

* An object in Java 1s an instance of a class

e (Class definition includes
— Optional subclassing modifier
— Optional access modifier
— Keyword class
— Optional extends clause
— Optional implements clause

— Class body

© 2011 Pearson Addison-Wesley. All rights reserved 1-33

Classes

* Every Java class is a subclass of either
— Another Java class
— Object class

* new operator
— Creates an object or instance of a class

© 2011 Pearson Addison-Wesley. All rights reserved 1-34

Classes

Component Syntax Description
Subclassing abstract Class must be extended to be useful.
modifier
(use only one) | ginal Class cannot be extended.
Access public Class is available outside of package.
modifiers
no access modifier Class is available only within package.
Keyword class class-name Class should be contained in a file called
elass class-pname.java.
extends extends Indicates that this class is a subclass of the class
clause superclass-name superclass-name in the extends clause.
implements implements Indicates the interfaces that this class implements.
clause interface-list The interface-list is a comma-separated list of
interface names.
Class body Enclosed in braces Contains data fields and methods for the class.

Figure 1-2

Components of a class
© 2011 Pearson Addison-Wesley. All rights reserved

1-35

Data Fields

e (Class members that are either variables or
constants

e Data field declarations can contain
— Access modifiers

— Use modifiers
— Modules

© 2011 Pearson Addison-Wesley. All rights reserved 1-36

Data Fields

Type of modifier | Keyword Description
Access modifier public Data field is available everywhere (when the class is
{use only one) also declared public).
private Data field is available only within the class.
protected | Data field is available within the class, available in
subclasses, and available to classes within the same
package.
No access Data field is available within the class and within
modifier the package.
Use modifiers static Indicates that only one such data field is available
{all can be used at for all instances of this class. Without this modifier,
once) each instance has its own copy of a dara field.
final The value provided for the data field cannot be
modified {a constant).
transient | The data field is not part of the persistent state of
the object.
volatile | The value provided for the data field can be
accessed by multiple threads of control. Java
ensures that the freshest copy of the data field is
always used.

Figure 1-3

Modifiers used in data field declarations

© 2011 Pearson Addison-Wesley. All rights reserved

1-37

Methods

e Used to implement operations
e Should perform one well-defined task
* Method modifiers

— Access modifiers and use modifiers

e Valued method

— Returns a value

— Body must contain return expression;

© 2011 Pearson Addison-Wesley. All rights reserved 1-38

Method Modifiers

Type of modifier | Keyword Description
Access modifier public Method is available everywhere (when the class is
(use only one) also declared as public).
private Method is available only within the class (cannor
be declared abstract).
protected Method is available within the class, available in
subclasses, and available to classes within the same
package.
No access Method is available within the class and to classes
modifier within the package.
Use modifiers static Indicates that only one such method is available
{all can be used at for all instances of this class. Since a static
once) method is shared by all instances, the method can
refer only to data fields that are also declared
statie and shared by all instances.
final The method cannot be overridden in a subclass.
abstract The method must be overridden in a subclass.
native The body of the method is not written in Java but
in some other programming language.
synchrenized | The method can be run by only one thread of

control at a time.

Figure 1-4

Modifiers used in a method declaration
© 2011 Pearson Addison-Wesley. All rights reserved

1-39

Methods

e Syntax of a method declaration

access—-modifier use-modifiers return-type
method-name (formal-parameter-list) {
method-body

}
e Arguments are passed by value

— Except for objects and arrays

» A reference value is copied instead

e Java 1.5 allows a method to have a variable
number of arguments of the same type

— Using the ellipses (three consecutive dots)

© 2011 Pearson Addison-Wesley. All rights reserved 1-40

Methods

e Constructor
— Special kind of method
— Has the same name as the class and no return type
— Executed only when an object is created

e A class can contain multiple constructors

© 2011 Pearson Addison-Wesley. All rights reserved 1-41

How to Access Members of an
Object

e Data fields and methods declared public

— Name the object, followed by a period, followed by
member name

e Members declared static

— Use the class name, followed by a period, followed by
member name

© 2011 Pearson Addison-Wesley. All rights reserved 1-42

Inheritance

e Technique for creating a new class that 1s based on
one that already exists.

— Desire to add new features
— Desire to define a more specific data type

— We don’ t want to change the original class

 Example: SimpleSphere and ColoredSphere

— We already have the SimpleSphere class

— ColoredSphere will be everything a SimpleSphere is,
but more.

© 2011 Pearson Addison-Wesley. All rights reserved 1-43

Inheritance

 Terminology

— Base class (or superclass): the original class from
which we create the new one

— Derived class (or subclass): the new class we create

— We say that the subclass inherits data members and
operations of its superclass.

e Accessibility

— Subclass has access to attributes of its superclass, but
the superclass cannot access attributes of its subclass(s)

© 2011 Pearson Addison-Wesley. All rights reserved 1-44

Inheritance

e How to define

public class ColoredSphere extends SimpleSphere

— The Java keyword extends means we are using
inheritance.

e Constructor for the derived class:

public ColoredSphere (Color c) {
super () ; // We call superclass constructor

color = c;

© 2011 Pearson Addison-Wesley. All rights reserved 1-45

Inheritance

e Another use of the word super

— If we write code inside ColoredSphere that requires us
to call a method in the superclass SimpleSphere, such
as getVolume.

double myVolume = super.getVolume () ;

e If a client class uses a ColoredSphere object, it can
use a superclass method automatically.

double volume = cs.getVolume(() ;

— This 1s a legal statement even though getVolume is not
inside ColoredSphere java: it’ s inherited.

© 2011 Pearson Addison-Wesley. All rights reserved 1-46

Useful Java Classes

e The Object class

— Java supports a single class inheritance hierarchy
e With class Object as the root

— More useful methods
e public boolean equals (Object obj)
« protected void finalize ()
e public i1nt hashCode ()
e public String toString()

© 2011 Pearson Addison-Wesley. All rights reserved 1-47

Useful Java Classes

e The Arrays class

— 1mport java.util.Arrays;

— Contains static methods for manipulating arrays

e Commonly used examples

— Sort (does it in ascending order)
— Binary search (quickly finds a value in the array)

— toString
e Example: Let s say a is an array of 1000 ints

Arrays.sort(a);

© 2011 Pearson Addison-Wesley. All rights reserved 1-48

Useful Java Classes

e String classes
— Class String

e Declaration examples:
— String title;

— String title = “Walls and Mirrors’;
* Assignment example:
- Title = “Walls and Mirrors’;

String length example:
— title.length();

Referencing a single character
— title.charAt (0);

Comparing strings
— title.compareTo (string?) ;

© 2011 Pearson Addison-Wesley. All rights reserved 1-49

Useful Java Classes

e String classes (continued)
— Class String

* Concatenation example:
String monthName = "December";
int day = 31;
int year = 02;
String date = monthName + " " + day + ", 20"
+ year;

© 2011 Pearson Addison-Wesley. All rights reserved 1-50

Useful Java Classes

e String classes (continued)
— Class StringBuffer

* Creates mutable strings
* Provides same functionality as class String

e More useful methods
— public StringBuffer append(String str)

— public StringBuffer insert (int offset,
String str)

— public StringBuffer delete(int start, int
end)

— public void setCharAt (int index, char ch)

— public StringBuffer replace(int start, 1int
end, String str)

© 2011 Pearson Addison-Wesley. All rights reserved 1-51

Useful Java Classes

e String classes (continued)

— Class StringTokenizer
* Allows a program to break a string into pieces or tokens

e More useful methods
— public StringTokenizer (String str)

— public StringTokenizer (String str, String
delim)

— public StringTokenizer (String str, String
delim, boolean returnTokens)

— public String nextToken ()
— public boolean hasMoreTokens ()

© 2011 Pearson Addison-Wesley. All rights reserved 1-52

Java Exceptions

e Exception

— Handles an error during execution

e Throw an exception

— To indicate an error during a method execution

e (Catch an exception

— To deal with the error condition

© 2011 Pearson Addison-Wesley. All rights reserved 1-53

Catching Exceptions

e Java provides try-catch blocks

— To handle an exception

e Place statement that might throw an exception
within the t ry block
— Must be followed by one or more catch blocks
— When an exception occurs, control 1s passed to catch
block

e Catch block indicates type of exception you
want to handle

© 2011 Pearson Addison-Wesley. All rights reserved 1-54

Catching Exceptions

 try-catch blocks syntax

try {
statement (s) ;

}
catch (exceptionClass identifier) {
statement (s) ;

}

* Some exceptions from the Java API cannot be
totally 1ignored

— You must provide a handler for that exception

© 2011 Pearson Addison-Wesley. All rights reserved 1-55

Catching Exceptions

ExceptionExample el = new ExXceptionExample();

/- myArray

ofofofoofofofofofo]

public vold addvalue{int n, int value) {

/7 add value to element n by calling addone n times
for (int 1 = 1; 1 == value; i++) {

addona(n);
} // end for
} // end addvalue

-

public vold addone(int n) {
S/ add 1 to the elemant'Q
myArray[n] += 1;
¥ /JF end addone @
AN

/

The method main \

public statiec veold main(string[] args) {

} // end main

ExceptionExample el = new ExceptionExample(); @
el.addvalua(99, 3); // add 3 to element 929 .\

Output:

The element you reguested, 99 ies not available. @
java. lang.ArrayIndexout0ofBoundsException: 99

Figure 1-9

Flow of control in

at ExceptionExample.addine(ExceptionExample.java)
at ExceptionExample.addvalue(Compiled Code)

at TestExceptionExample.main(TestExceptionExample. java)

a simple Java application

© 2011 Pearson Addison-Wesley. All rights reserved

1-56

Catching Exceptions

 Types of exception

— Checked exceptions

¢ Instances of classes that are subclasses of
jJava.lang.Exception

e Must be handled locally or thrown by the method

e Used when method encounters a serious problem

— Runtime exceptions

e (Occur when the error is not considered serious

e Instances of classes that are subclasses of
java.lang.RuntimeException

© 2011 Pearson Addison-Wesley. All rights reserved 1-57

Catching Exceptions

e The finally block

— Executed whether or not an exception is thrown
— Can be used even if no catch block 1s used

— Syntax
finally {

statement (s) ;

}

© 2011 Pearson Addison-Wesley. All rights reserved 1-58

Throwing Exceptions

e throws clause

— Indicates a method may throw an exception

 If an error occurs during its execution
— Syntax
public methodName throws ExceptionClassName
* throw statement
— Used to throw an exception at any time
— Syntax

throw new exceptionClass (stringArgument) ;

* You can define your own exception class

© 2011 Pearson Addison-Wesley. All rights reserved 1-59

Text Input and Output

e Input and output consist of streams

o Streams

— Sequence of characters that either come from or go to
an I/O device

— InputStream - Input stream class
— PrintStream - Output stream class

e java.ang.System provides three stream variables
— System. in — standard input stream
— System.out — standard output stream
— System.err — standard error stream

© 2011 Pearson Addison-Wesley. All rights reserved 1-60

Input

e (Character streams

BufferedReader stdin = new BufferedReader (new
InputStreamReader (System.in)) ;

String nextlLine = stdin.readLine () ;

StringTokenizer input = new
StringTokenizer (nextLine);

x = Integer.parselnt (input.nextToken()) ;
y = Integer.parselnt (input.nextToken())

© 2011 Pearson Addison-Wesley. All rights reserved 1-61

Input

e Another approach: the Scanner class

int nextValue;
int sum=0;
Scanner kbInput = new Scanner (System.in);
nextValue = kbInput.nextInt();
while (nextValue > 0) {
sum += nextValue;
nextValue = kbInput.nextInt();
} // end while
kbInput.close() ;

© 2011 Pearson Addison-Wesley. All rights reserved 1-62

Input

e The Scanner class (continued)

— More useful next methods
e String next () ;

boolean nextBoolean () ;
double nextDouble () ;
float nextFloat () ;

e int nextInt (),

String nextLine () ;

long nextLong () ;
short nextShort():;

© 2011 Pearson Addison-Wesley. All rights reserved 1-63

Output

e Methods print and println

— Write character strings, primitive types, and objects to
System.out

— println terminates a line of output so next one starts
on the next line

— When an object 1s used with these methods

e Return value of object’ s toString method is displayed

* You usually override this method with your own
implementation

— Problem
e Lack of formatting abilities

© 2011 Pearson Addison-Wesley. All rights reserved 1-64

Output

e Method printf
— C-style formatted output method

— Syntax

printf (String format, Object...
— Example:

String name = "Jamie";

int x =5, yv = 6;
int sum = x + y;

System.out.printf ("%s, %d + %d
X, Y, sum);

//produces output Jamie, 5 + 6

© 2011 Pearson Addison-Wesley. All rights reserved

args)

sd", name,

11

1-65

Slalr|a String name = "Sarah";

double v = 10123.34568;

int n = 145;
system.out.printf("%.4s\n", name);
system.out.printf("%10.2s\n", name):;
system.out.printf("sliodwn", ni;
system.out.printf("%t1l0.2a\n", v);
System.out.printf("%10.2£\n", v);
system.out.printf("5.5£vn", vi;

1
1).|1]d|al+
1]0{112]3].
1i0(112]3].]3|4[5

i s S ks O
WO L fee LN B

123456 768 91911
Column number

Figure 1-10
Formatting example with printf

© 2011 Pearson Addison-Wesley. All rights reserved 1-66

The Console Class

e 1mport java.io.Console;

e [nitialize: console cons = System.console() ;
— Returns null if no console available (e.g. in IDE instead
of command line)
e Can format output using printf ()

e [nput
— Has readrnine () method that can read formatted input,
in an analogous manner to printf () for output.

— readPassword (): read input without echoing what
the user types in.

© 2011 Pearson Addison-Wesley. All rights reserved 1-67

File Input and Output

e File

— Sequence of components of the same type that resides
in auxiliary storage

— Can be large and exists after program execution
terminates

* Files vs. arrays
— Files grow 1n size as needed; arrays have a fixed size

— Files provides both sequential and random access;
arrays provide random access

e File types

— Text and binary (general or nontext) files

© 2011 Pearson Addison-Wesley. All rights reserved 1-68

Text Files

e Designed for easy communication with people
— Flexible and easy to use
— Not efficient with respect to computer time and storage

* End-of-line symbol
— Creates the illusion that a text file contains lines

e End-of-file symbol

— Follows the last component in a file
e Scanner class can be used to process text files

© 2011 Pearson Addison-Wesley. All rights reserved 1-69

Text Files

ealn

ecln

ealn

enln

eoln| is the end-ofdine symbal

A is the end-of-file symiol

Figure 1-11

A text file with end-of-line and end-of-file symbols

© 2011 Pearson Addison-Wesley. All rights reserved

1-70

Text Files

e Example

String fname, lname;

int age;

Scanner fileInput;

File inFile = new File("Ages.dat");

try {
fileInput = new Scanner (inFile);
while (fileInput.hasNext ()) {
fname = filelInput.next();
lname = fileInput.next ()

age = filelInput.nextInt();
age = filelInput.nextInt();
System.out.printf ("%$s %s is %d years old.\n",
fname, lname, age);
} // end while
fileInput.close();
} // end try
catch (FileNotFoundException e) {
System.out.println(e);

} // end catch

© 2011 Pearson Addison-Wesley. All rights reserved 1-71

Text Files

* Open a stream to a file
— Before you can read from or write to a file

— Use class FileReader
e Constructor throws a FileNotFoundException

— Stream is usually embedded within an instance of class
BufferedReader

e That provides text processing capabilities

— StringTokenizer

e Used to break up the string returned by readLine into tokens
for easier processing

© 2011 Pearson Addison-Wesley. All rights reserved 1-72

Text Files

e Example

BufferedReader input;
StringTokenizer line;
String inputline;

try {
input = new BufferedReader (new FileReader ("Ages.dat"));
while ((inputLine = input.readLine()) != null) {
line = new StringTokenizer (inputlLine);

// process line of data

}

} // end try

catch (IOException e) {
System.out.println(e);

System.exit (1l); // I/0 error, exit the program
} // end catch

© 2011 Pearson Addison-Wesley. All rights reserved 1-73

Text Files

e File output

— You need to open an output stream to the file
— Useclass FileWriter

— Stream is usually embedded within an instance of class
PrintWriter
e That provides methods print and println

© 2011 Pearson Addison-Wesley. All rights reserved 1-74

Text Files

e Example
try |

PrintWriter output = new PrintWriter (new
FileWriter ("Results.dat"));

output.println ("Results of the survey");

output.println ("Number of males: " + numMales);
output.println ("Number of females: " +
numFemales) ;

// other code and output appears here...
} // end try
catch (IOException e) {

System.out.println (e) ;

System.exit (1); // I/0O error, exit the program
} // end catch

© 2011 Pearson Addison-Wesley. All rights reserved

1-75

Text Files

e Closing a file
— Syntax
myStream.close () ;

* Adding to a text file

— When opening a file, you can specity if file should be
replaced or appended

— Syntax

PrintWriter ofStream = new PrintWriter (new
FileOutputStream ("Results.dat", true));

© 2011 Pearson Addison-Wesley. All rights reserved 1-76

Object Serialization

e Data persistence

— Data stored in a file for later use

e Object serialization

— Java mechanism to create persistent objects

e Serialization

— Transforming an object into a sequence of bytes that
represents the object

— Serialized objects can be stored to files for later use

© 2011 Pearson Addison-Wesley. All rights reserved 1-77

Object Serialization

e Deserialization

— Reverse process

e Interface java.io.Serializable
— Needed to save an object using object serialization
— Contains no methods
e Objects referenced by a serialized object are also
serialized

— As long as these objects also implement the
Serializable interface

© 2011 Pearson Addison-Wesley. All rights reserved 1-78

Summary

e Java packages
— Provide a mechanism for grouping related classes

e 1mport statement
— Required to use classes contained 1n other packages
e (Object 1in Java 1s an instance of a class

e Class
— Data type that specifies data and methods available

— Data fields are either variables or constants
— Methods implement object behavior

 Method parameters are passed by value

© 2011 Pearson Addison-Wesley. All rights reserved 1-79

Summary

e Comments in Java
— Comment lines
— Multiple-line comments

e Java identifier
— Sequence of letters, digits, underscores, and dollar signs

 Primitive data types categories
— Integer, character, floating point, and boolean

e Java reference
— Used to locate an object

© 2011 Pearson Addison-Wesley. All rights reserved 1-80

Summary

e Define named constant with final keyword

e Java uses short-circuit evaluation for logical and
relational expressions

e Array
— Collection of references that have the same data type

e Selection statements
— if and switch

e [teration statements
— while, for,and do

© 2011 Pearson Addison-Wesley. All rights reserved 1-81

Summary

e String
— Sequence of characters

— String classes: String, StringBuffer,
StringTokenizer

e Exceptions

— Used to handle errors during execution

e Files are accessed using Scanner class or
streams

e Data persistence and object serialization

© 2011 Pearson Addison-Wesley. All rights reserved 1-82

