
© 2011 Pearson Addison-Wesley. All rights reserved 1-1

Chapter 1

Review of Java Fundamentals	

© 2011 Pearson Addison-Wesley. All rights reserved 1-2

Language Basics

•  Java application	

–  Collection of classes	

•  One class contains the main method	

•  Java programs can also be written as applets	

© 2011 Pearson Addison-Wesley. All rights reserved 1-3

Comments

•  Comment line	

–  Begins with two slashes (//)	

–  Continues until the end of the line	

•  Multiple-line comment	

–  Begins with /* and ends with */	

–  Useful for debugging	

–  Cannot contain another multiple-line comment	

•  javadoc comments	

–  Begins with /** and ends with */	

© 2011 Pearson Addison-Wesley. All rights reserved 1-4

Identifiers and Keywords

•  Identifier	

–  Sequence of letters, digits, underscores, and dollar signs	

–  Must begin with either a letter or underscore	

–  Used to name various parts of the program	

–  Java distinguishes between uppercase and lowercase

letters	

•  Keywords	

–  Java reserved identifiers	

© 2011 Pearson Addison-Wesley. All rights reserved 1-5

Variables

•  Represents a memory location	

•  Contains a value of primitive type or a reference	

•  Its name is a Java identifier	

•  Declared by preceding variable name with data

type	

double radius; // radius of a sphere
String name; // reference to a String object

© 2011 Pearson Addison-Wesley. All rights reserved 1-6

Primitive Data Types

•  Organized into four categories	

–  Boolean	

–  Character	

–  Integer	

–  Floating point	

•  Character and integer types are called integral
types	

•  Integral and floating-point types are called
arithmetic types	

© 2011 Pearson Addison-Wesley. All rights reserved 1-7

Primitive Data Types

Figure 1-5
Primitive data types and corresponding wrapper classes

© 2011 Pearson Addison-Wesley. All rights reserved 1-8

Primitive Data Types

•  Value of primitive type is not considered an object	

•  java.lang provides wrapper classes for each of

the primitive types	

•  Autoboxing	

–  Automatically converts from a primitive type to the
equivalent wrapper class	

•  Auto-unboxing	

–  Reverse process	

© 2011 Pearson Addison-Wesley. All rights reserved 1-9

References

•  Data type used to locate an object	

•  Java does not allow programmer to perform

operations on the reference value	

•  Location of object in memory can be assigned to a

reference variable	

© 2011 Pearson Addison-Wesley. All rights reserved 1-10

Literal Constants

•  Indicate particular values within a program	

•  Used to initialize the value of a variable	

•  Decimal integer constants	

–  Do not use commas, decimal points, or leading zeros	

–  Default data type is either int or long

•  Floating constants	

–  Written using decimal points	

–  Default data type is double

© 2011 Pearson Addison-Wesley. All rights reserved 1-11

Literal Constants

•  Character constants	

–  Enclosed in single quotes	

–  Default data type is char
–  Literal character strings	

•  Sequence of characters enclosed in double quotes	

© 2011 Pearson Addison-Wesley. All rights reserved 1-12

Named Constants

•  Have values that do not change	

•  Declared as a variable but using the keyword
final

© 2011 Pearson Addison-Wesley. All rights reserved 1-13

Assignments and Expressions

•  Expressions	

–  Combination of variables, constants, operators, and

parentheses	

•  Assignment statement	

–  Example: radius = r;
•  Arithmetic expression	

–  Combine variables and constants with arithmetic
operators and parentheses	

•  Arithmetic operators: *, /, %, +, -	

© 2011 Pearson Addison-Wesley. All rights reserved 1-14

Assignments and Expressions

•  Relational expressions	

–  Combine variables and constants with relational, or

comparison, and equality operators and parentheses	

•  Relational or comparison operators: <, <=, >=. >	

•  Equality operators: ==, !=	

– Evaluate to true or false

© 2011 Pearson Addison-Wesley. All rights reserved 1-15

Assignments and Expressions

•  Logical expressions	

–  Combine variables and constants of arithmetic types,

relational expressions with logical operators	

•  Logical operators: &&, ||	

–  Evaluate to true or false
–  Short-circuit evaluation	

•  Evaluates logical expressions from left to right	

•  Stops as soon as the value of expression is apparent	

© 2011 Pearson Addison-Wesley. All rights reserved 1-16

Assignments and Expressions

•  Implicit type conversions	

–  Occur during assignment and during expression

evaluation	

–  Right-hand side of assignment operator is converted to

data type of item on left-hand side	

–  Floating-point values are truncated not rounded	

–  Integral promotion	

•  Values of type byte, char, or short are converted to int
–  Conversion hierarchy	

• int → long → float → double

© 2011 Pearson Addison-Wesley. All rights reserved 1-17

Assignments and Expressions

•  Explicit type conversions	

–  Possible by means of a cast	

–  Cast operator	

•  Unary operator	

•  Formed by enclosing the desired data type within parentheses	

•  Multiple assignments	

–  Embed assignment expressions within assignment

expressions	

•  Example: a = 5 + (b = 4)
•  Evaluates to 9 while b is assigned 4

© 2011 Pearson Addison-Wesley. All rights reserved 1-18

Assignments and Expressions

•  Other assignment operators	

–  -=
–  *=
–  /=
–  %=
–  ++
–  --

© 2011 Pearson Addison-Wesley. All rights reserved 1-19

Arrays

•  Collection of elements with the same data type	

•  Array elements have an order	

•  Support direct and random access	

•  One-dimensional arrays	

–  Declaration example	

final int DAYS_PER_WEEK = 7;
double [] maxTemps = new double[DAYS_PER_WEEK];

–  Length of an array is accessible using data field
length

–  Use an index or subscript to access an array element	

© 2011 Pearson Addison-Wesley. All rights reserved 1-20

Arrays

Figure 1-7
One-dimensional array of at most seven elements

© 2011 Pearson Addison-Wesley. All rights reserved 1-21

Arrays

•  One-dimensional arrays (continued)	

–  Initializer list example	

double [] weekDayTemps = {82.0, 71.5, 61.8,
75.0, 88.3};

–  You can also declare array of object references
•  Multidimensional arrays	

–  Use more than one index 	

–  Declaration example	

final int DAYS_PER_WEEK = 7;
final int WEEKS_PER_YEAR = 52;
double[][] minTemps = new double[DAYS_PER_WEEK]
[WEEKS_PER_YEAR];

© 2011 Pearson Addison-Wesley. All rights reserved 1-22

Arrays

Figure 1-8
A two-dimensional array

© 2011 Pearson Addison-Wesley. All rights reserved 1-23

Arrays

•  Passing an array to a method	

–  Declare the method as follows:	

public double averageTemp(double[] temps, int n)

–  Invoke the method by writing:	

double avg = averageTemp(maxTemps, 6);

–  Location of array is passed to the method	

•  Cannot return a new array through this value	

–  Method can modify content of the array	

© 2011 Pearson Addison-Wesley. All rights reserved 1-24

Selection Statements

•  The if statement	

if (expression)
 statement1

	
or	

if (expression)
 statement1

else
 statement2

•  Nested if
if (expression) {
 statement1

}

else if (expression) {
 statement2

}

else {
 statement3

} // end if

© 2011 Pearson Addison-Wesley. All rights reserved 1-25

Selection Statements

•  The switch statement	

switch (integral expression) {
 case 1:
 statement1;
 break;
 case 2, case 3:
 statement2;
 case 4:
 statement3;
 break;
 default:
 statement4;
} //end of switch

© 2011 Pearson Addison-Wesley. All rights reserved 1-26

Iteration Statements

•  The while statement	

while (expression) {
 statement
}

•  statement is executed as long as
expression is true

•  statement may not be executed at all	

•  continue expression	

–  Stops the current iteration of the loop and begins the
next iteration at the top of the loop

© 2011 Pearson Addison-Wesley. All rights reserved 1-27

Iteration Statements

•  The for statement	

for (initialize; test; update)
 statement

•  statement is executed as long as test is true
•  for statement is equivalent to a while statement	

•  The for loop and arrays	

for (ArrayElementType variableName : arrayName)
 statement

© 2011 Pearson Addison-Wesley. All rights reserved 1-28

Iteration Statements

•  The do statement	

do {
 statement
} while (expression);

•  statement is executed until expression is
false

•  do statement loops at least once	

© 2011 Pearson Addison-Wesley. All rights reserved 1-29

Program Structure

•  Typical Java program consists of	

–  User written classes	

–  Java Application Programming Interface (API) classes	

•  Java application	

–  Has one class with a main method	

•  Java program basic elements:	

–  Packages	

–  Classes	

–  Data fields	

–  Methods	

© 2011 Pearson Addison-Wesley. All rights reserved 1-30

Packages

•  Provide a mechanism for grouping related classes	

•  package statement	

–  Indicates a class is part of a package	

•  Java assumes all classes in a particular package

are contained in same directory	

•  Java API consists of many predefined packages	

© 2011 Pearson Addison-Wesley. All rights reserved 1-31

Packages

•  import statement	

–  Allows you to use classes contained in other packages	

•  Package java.lang is implicitly imported to all
Java code	

© 2011 Pearson Addison-Wesley. All rights reserved 1-32

Packages

Figure 1-1
A simple Java Program

© 2011 Pearson Addison-Wesley. All rights reserved 1-33

Classes

•  Data type that specifies data and methods available
for instances of the class	

•  An object in Java is an instance of a class	

•  Class definition includes	

–  Optional subclassing modifier	

–  Optional access modifier	

–  Keyword class
–  Optional extends clause	

–  Optional implements clause	

–  Class body	

© 2011 Pearson Addison-Wesley. All rights reserved 1-34

Classes

•  Every Java class is a subclass of either	

–  Another Java class	

–  Object class	

•  new operator	

–  Creates an object or instance of a class	

© 2011 Pearson Addison-Wesley. All rights reserved 1-35

Classes

Figure 1-2
Components of a class

© 2011 Pearson Addison-Wesley. All rights reserved 1-36

Data Fields

•  Class members that are either variables or
constants	

•  Data field declarations can contain	

–  Access modifiers	

–  Use modifiers	

–  Modules	

© 2011 Pearson Addison-Wesley. All rights reserved 1-37

Data Fields

Figure 1-3
Modifiers used in data field declarations

© 2011 Pearson Addison-Wesley. All rights reserved 1-38

Methods

•  Used to implement operations	

•  Should perform one well-defined task	

•  Method modifiers	

–  Access modifiers and use modifiers	

•  Valued method	

–  Returns a value	

–  Body must contain return expression;	

© 2011 Pearson Addison-Wesley. All rights reserved 1-39

Method Modifiers

Figure 1-4
Modifiers used in a method declaration

© 2011 Pearson Addison-Wesley. All rights reserved 1-40

Methods

•  Syntax of a method declaration	

access-modifier use-modifiers return-type

 method-name (formal-parameter-list) {

 method-body

}

•  Arguments are passed by value	

–  Except for objects and arrays	

•  A reference value is copied instead	

•  Java 1.5 allows a method to have a variable
number of arguments of the same type	

–  Using the ellipses (three consecutive dots)	

© 2011 Pearson Addison-Wesley. All rights reserved 1-41

Methods

•  Constructor	

–  Special kind of method	

–  Has the same name as the class and no return type	

–  Executed only when an object is created	

•  A class can contain multiple constructors	

© 2011 Pearson Addison-Wesley. All rights reserved 1-42

How to Access Members of an
Object

•  Data fields and methods declared public	

–  Name the object, followed by a period, followed by

member name	

•  Members declared static	

–  Use the class name, followed by a period, followed by
member name	

Inheritance

•  Technique for creating a new class that is based on
one that already exists.	

–  Desire to add new features	

–  Desire to define a more specific data type	

–  We don’t want to change the original class	

•  Example: SimpleSphere and ColoredSphere	

–  We already have the SimpleSphere class	

–  ColoredSphere will be everything a SimpleSphere is,

but more.	

	

© 2011 Pearson Addison-Wesley. All rights reserved 1-43

Inheritance

•  Terminology	

–  Base class (or superclass): the original class from

which we create the new one	

–  Derived class (or subclass): the new class we create	

–  We say that the subclass inherits data members and

operations of its superclass.	

•  Accessibility	

–  Subclass has access to attributes of its superclass, but
the superclass cannot access attributes of its subclass(s)	

© 2011 Pearson Addison-Wesley. All rights reserved 1-44

Inheritance

•  How to define	

	
public class ColoredSphere extends SimpleSphere

–  The Java keyword extends means we are using
inheritance.	

•  Constructor for the derived class:	

	
public ColoredSphere(Color c) {

 super(); // We call superclass constructor

 color = c;

 }

© 2011 Pearson Addison-Wesley. All rights reserved 1-45

Inheritance

•  Another use of the word super
–  If we write code inside ColoredSphere that requires us

to call a method in the superclass SimpleSphere, such
as getVolume.	

double myVolume = super.getVolume();

•  If a client class uses a ColoredSphere object, it can
use a superclass method automatically.	

	
double volume = cs.getVolume();	

–  This is a legal statement even though getVolume is not
inside ColoredSphere.java: it’s inherited.	

	
 © 2011 Pearson Addison-Wesley. All rights reserved 1-46

© 2011 Pearson Addison-Wesley. All rights reserved 1-47

Useful Java Classes

•  The Object class	

–  Java supports a single class inheritance hierarchy	

•  With class Object as the root	

–  More useful methods 	

• public boolean equals(Object obj)
• protected void finalize()
• public int hashCode()
• public String toString()

Useful Java Classes

•  The Arrays class	

–  import java.util.Arrays;
–  Contains static methods for manipulating arrays	

•  Commonly used examples	

–  Sort (does it in ascending order)	

–  Binary search (quickly finds a value in the array)	

–  toString	

•  Example: Let’s say a is an array of 1000 ints	

	
Arrays.sort(a);

© 2011 Pearson Addison-Wesley. All rights reserved 1-48

© 2011 Pearson Addison-Wesley. All rights reserved 1-49

Useful Java Classes

•  String classes	

–  Class String

•  Declaration examples: 	

–  String title;
–  String title = “Walls and Mirrors”;	

•  Assignment example: 	

–  Title = “Walls and Mirrors”;

•  String length example:
–  title.length();

•  Referencing a single character
–  title.charAt(0);

•  Comparing strings
–  title.compareTo(string2);

© 2011 Pearson Addison-Wesley. All rights reserved 1-50

Useful Java Classes

•  String classes (continued)	

–  Class String

•  Concatenation example: 	

String monthName = "December";

int day = 31;

int year = 02;

String date = monthName + " " + day + ", 20"
+ year;

© 2011 Pearson Addison-Wesley. All rights reserved 1-51

Useful Java Classes

•  String classes (continued)	

–  Class StringBuffer

•  Creates mutable strings	

•  Provides same functionality as class String	

•  More useful methods 	

–  public StringBuffer append(String str)
–  public StringBuffer insert(int offset,
String str)

–  public StringBuffer delete(int start, int
end)

–  public void setCharAt(int index, char ch)
–  public StringBuffer replace(int start, int
end, String str)

© 2011 Pearson Addison-Wesley. All rights reserved 1-52

Useful Java Classes

•  String classes (continued)	

–  Class StringTokenizer

•  Allows a program to break a string into pieces or tokens	

•  More useful methods 	

–  public StringTokenizer(String str)
–  public StringTokenizer(String str, String
delim)

–  public StringTokenizer(String str, String
delim, boolean returnTokens)

–  public String nextToken()
–  public boolean hasMoreTokens()

© 2011 Pearson Addison-Wesley. All rights reserved 1-53

Java Exceptions

•  Exception	

–  Handles an error during execution	

•  Throw an exception	

–  To indicate an error during a method execution	

•  Catch an exception	

–  To deal with the error condition	

© 2011 Pearson Addison-Wesley. All rights reserved 1-54

Catching Exceptions

•  Java provides try-catch blocks	

–  To handle an exception	

•  Place statement that might throw an exception
within the try block	

–  Must be followed by one or more catch blocks	

–  When an exception occurs, control is passed to catch

block	

•  Catch block indicates type of exception you

want to handle	

© 2011 Pearson Addison-Wesley. All rights reserved 1-55

Catching Exceptions

•  try-catch blocks syntax	

try {

 statement(s);

}

catch (exceptionClass identifier) {
 statement(s);

}

•  Some exceptions from the Java API cannot be
totally ignored	

–  You must provide a handler for that exception	

© 2011 Pearson Addison-Wesley. All rights reserved 1-56

Catching Exceptions

Figure 1-9
Flow of control in a simple Java application

© 2011 Pearson Addison-Wesley. All rights reserved 1-57

Catching Exceptions

•  Types of exception	

–  Checked exceptions	

•  Instances of classes that are subclasses of
java.lang.Exception

•  Must be handled locally or thrown by the method	

•  Used when method encounters a serious problem	

–  Runtime exceptions	

•  Occur when the error is not considered serious	

•  Instances of classes that are subclasses of
java.lang.RuntimeException

© 2011 Pearson Addison-Wesley. All rights reserved 1-58

Catching Exceptions

•  The finally block	

–  Executed whether or not an exception is thrown	

–  Can be used even if no catch block is used	

–  Syntax	

finally {

 statement(s);
}

© 2011 Pearson Addison-Wesley. All rights reserved 1-59

Throwing Exceptions

•  throws clause	

–  Indicates a method may throw an exception	

•  If an error occurs during its execution	

–  Syntax	

public methodName throws ExceptionClassName

•  throw statement	

–  Used to throw an exception at any time	

–  Syntax	

throw new exceptionClass(stringArgument);

•  You can define your own exception class	

© 2011 Pearson Addison-Wesley. All rights reserved 1-60

Text Input and Output

•  Input and output consist of streams	

•  Streams	

–  Sequence of characters that either come from or go to
an I/O device	

–  InputStream - Input stream class	

–  PrintStream - Output stream class	

•  java.lang.System provides three stream variables	

–  System.in – standard input stream	

–  System.out – standard output stream	

–  System.err – standard error stream	

© 2011 Pearson Addison-Wesley. All rights reserved 1-61

Input

•  Character streams	

BufferedReader stdin = new BufferedReader(new
InputStreamReader(System.in));

String nextLine = stdin.readLine();

StringTokenizer input = new
StringTokenizer(nextLine);

x = Integer.parseInt(input.nextToken());
y = Integer.parseInt(input.nextToken());

© 2011 Pearson Addison-Wesley. All rights reserved 1-62

Input

•  Another approach: the Scanner class	

int nextValue;
int sum=0;
Scanner kbInput = new Scanner(System.in);
nextValue = kbInput.nextInt();
while (nextValue > 0) {
 sum += nextValue;
 nextValue = kbInput.nextInt();
} // end while
kbInput.close();

© 2011 Pearson Addison-Wesley. All rights reserved 1-63

Input

•  The Scanner class (continued)	

–  More useful next methods	

• String next();
• boolean nextBoolean();
• double nextDouble();
• float nextFloat();
• int nextInt();
• String nextLine();
• long nextLong();
• short nextShort();

© 2011 Pearson Addison-Wesley. All rights reserved 1-64

Output

•  Methods print and println	

–  Write character strings, primitive types, and objects to
System.out

–  println terminates a line of output so next one starts
on the next line	

–  When an object is used with these methods	

•  Return value of object’s toString method is displayed	

•  You usually override this method with your own

implementation	

–  Problem	

•  Lack of formatting abilities	

© 2011 Pearson Addison-Wesley. All rights reserved 1-65

Output

•  Method printf	

–  C-style formatted output method	

–  Syntax	

printf(String format, Object... args)	

–  Example:	

String name = "Jamie";
int x = 5, y = 6;

int sum = x + y;

System.out.printf("%s, %d + %d = %d", name,
x, y, sum);

//produces output Jamie, 5 + 6 = 11	

© 2011 Pearson Addison-Wesley. All rights reserved 1-66

Output

Figure 1-10
Formatting example with printf

The Console Class

•  import java.io.Console;

•  Initialize: Console cons = System.console();
–  Returns null if no console available (e.g. in IDE instead

of command line)	

•  Can format output using printf()
•  Input	

–  Has readLine() method that can read formatted input,
in an analogous manner to printf() for output.	

–  readPassword(): read input without echoing what
the user types in.	

	
© 2011 Pearson Addison-Wesley. All rights reserved 1-67

© 2011 Pearson Addison-Wesley. All rights reserved 1-68

File Input and Output

•  File	

–  Sequence of components of the same type that resides

in auxiliary storage	

–  Can be large and exists after program execution

terminates	

•  Files vs. arrays	

–  Files grow in size as needed; arrays have a fixed size	

–  Files provides both sequential and random access;

arrays provide random access	

•  File types	

–  Text and binary (general or nontext) files	

© 2011 Pearson Addison-Wesley. All rights reserved 1-69

Text Files

•  Designed for easy communication with people	

–  Flexible and easy to use	

–  Not efficient with respect to computer time and storage	

•  End-of-line symbol	

–  Creates the illusion that a text file contains lines	

•  End-of-file symbol	

–  Follows the last component in a file	

•  Scanner class can be used to process text files	

© 2011 Pearson Addison-Wesley. All rights reserved 1-70

Text Files

Figure 1-11
A text file with end-of-line and end-of-file symbols

© 2011 Pearson Addison-Wesley. All rights reserved 1-71

Text Files
•  Example	

String fname, lname;
int age;
Scanner fileInput;
File inFile = new File("Ages.dat");
try {
 fileInput = new Scanner(inFile);
 while (fileInput.hasNext()) {
 fname = fileInput.next();
 lname = fileInput.next();
 age = fileInput.nextInt();
 age = fileInput.nextInt();
 System.out.printf("%s %s is %d years old.\n",
 fname, lname, age);
 } // end while
 fileInput.close();

} // end try
catch (FileNotFoundException e) {
 System.out.println(e);

} // end catch

© 2011 Pearson Addison-Wesley. All rights reserved 1-72

Text Files

•  Open a stream to a file	

–  Before you can read from or write to a file	

–  Use class FileReader

•  Constructor throws a FileNotFoundException
–  Stream is usually embedded within an instance of class
BufferedReader

•  That provides text processing capabilities	

–  StringTokenizer 	

•  Used to break up the string returned by readLine into tokens

for easier processing	

© 2011 Pearson Addison-Wesley. All rights reserved 1-73

Text Files

•  Example	

BufferedReader input;
StringTokenizer line;
String inputLine;
try {
 input = new BufferedReader(new FileReader("Ages.dat"));
 while ((inputLine = input.readLine()) != null) {
 line = new StringTokenizer(inputLine);
 // process line of data
 ...
 }

} // end try
catch (IOException e) {
 System.out.println(e);
 System.exit(1); // I/O error, exit the program

} // end catch

© 2011 Pearson Addison-Wesley. All rights reserved 1-74

Text Files

•  File output	

–  You need to open an output stream to the file	

–  Use class FileWriter
–  Stream is usually embedded within an instance of class
PrintWriter

•  That provides methods print and println

© 2011 Pearson Addison-Wesley. All rights reserved 1-75

Text Files

•  Example	

try {
 PrintWriter output = new PrintWriter(new
 FileWriter("Results.dat"));

 output.println("Results of the survey");
 output.println("Number of males: " + numMales);
 output.println("Number of females: " +
numFemales);
 // other code and output appears here...

} // end try
catch (IOException e) {
 System.out.println(e);
 System.exit(1); // I/O error, exit the program

} // end catch

© 2011 Pearson Addison-Wesley. All rights reserved 1-76

Text Files

•  Closing a file	

–  Syntax	

myStream.close();

•  Adding to a text file	

–  When opening a file, you can specify if file should be

replaced or appended	

–  Syntax	

PrintWriter ofStream = new PrintWriter(new
FileOutputStream("Results.dat", true));

© 2011 Pearson Addison-Wesley. All rights reserved 1-77

Object Serialization

•  Data persistence	

–  Data stored in a file for later use	

•  Object serialization	

–  Java mechanism to create persistent objects	

•  Serialization	

–  Transforming an object into a sequence of bytes that

represents the object	

–  Serialized objects can be stored to files for later use	

© 2011 Pearson Addison-Wesley. All rights reserved 1-78

Object Serialization

•  Deserialization	

–  Reverse process	

•  Interface java.io.Serializable
–  Needed to save an object using object serialization	

–  Contains no methods	

•  Objects referenced by a serialized object are also
serialized	

–  As long as these objects also implement the
Serializable interface	

© 2011 Pearson Addison-Wesley. All rights reserved 1-79

Summary
•  Java packages 	

–  Provide a mechanism for grouping related classes	

•  import statement	

–  Required to use classes contained in other packages	

•  Object in Java is an instance of a class	

•  Class	

–  Data type that specifies data and methods available	

–  Data fields are either variables or constants	

–  Methods implement object behavior	

•  Method parameters are passed by value	

© 2011 Pearson Addison-Wesley. All rights reserved 1-80

Summary

•  Comments in Java	

–  Comment lines	

–  Multiple-line comments	

•  Java identifier	

–  Sequence of letters, digits, underscores, and dollar signs	

•  Primitive data types categories	

–  Integer, character, floating point, and boolean	

•  Java reference	

–  Used to locate an object	

© 2011 Pearson Addison-Wesley. All rights reserved 1-81

Summary

•  Define named constant with final keyword	

•  Java uses short-circuit evaluation for logical and

relational expressions	

•  Array	

–  Collection of references that have the same data type	

•  Selection statements	

–  if and switch
•  Iteration statements	

–  while, for, and do

© 2011 Pearson Addison-Wesley. All rights reserved 1-82

Summary

•  String	

–  Sequence of characters	

–  String classes: String, StringBuffer,
StringTokenizer

•  Exceptions	

–  Used to handle errors during execution	

•  Files are accessed using Scanner class or
streams	

•  Data persistence and object serialization	

