
1/54 Chapter-11.pdf (#13)2015-12-01 09:30:53

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-1

 Chapter 11

! ! ! !Trees!

2/54 Chapter-11.pdf (2/54)2015-12-01 09:30:53

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-2

Terminology

•  Definition of a general tree!
–  A general tree T is a set of one or more nodes such that

T is partitioned into disjoint subsets:!
•  A single node r, the root!
•  Sets that are general trees, called subtrees of r!

•  Definition of a binary tree!
–  A binary tree is a set T of nodes such that either!

•  T is empty, or !
•  T is partitioned into three disjoint subsets:!

–  A single node r, the root!
–  Two possibly empty sets that are binary trees, called left and

right subtrees of r!

3/54 Chapter-11.pdf (3/54)2015-12-01 09:30:53

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-3

Terminology

Figure 11-4
Binary trees that represent algebraic expressions

4/54 Chapter-11.pdf (4/54)2015-12-01 09:30:53

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-4

Terminology
•  A binary search tree!

–  A binary tree that has the following properties for each node n!
•  n�s value is greater than all values in its left subtree TL!

•  n�s value is less than all values in its right subtree TR!
•  Both TL and TR are binary search trees!

Figure 11-5
A binary search tree of names

5/54 Chapter-11.pdf (5/54)2015-12-01 09:30:53

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-5

Terminology

•  The height of trees!
–  Level of a node n in a tree T!

•  If n is the root of T, it is at level 1!
•  If n is not the root of T, its level is 1 greater than the level of its

parent!

–  Height of a tree T defined in terms of the levels of its
nodes!

•  If T is empty, its height is 0!
•  If T is not empty, its height is equal to the maximum level of

its nodes!

6/54 Chapter-11.pdf (6/54)2015-12-01 09:30:53

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-6

Terminology

Figure 11-6
Binary trees with the same nodes but different heights

7/54 Chapter-11.pdf (7/54)2015-12-01 09:30:53

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-7

Terminology

•  Full, complete, and balanced binary trees!
–  Recursive definition of a full binary tree!

•  If T is empty, T is a full binary tree of height 0!
•  If T is not empty and has height h > 0, T is a full binary tree if

its root�s subtrees are both full binary trees of height h – 1!

Figure 11-7
A full binary tree of height 3

8/54 Chapter-11.pdf (8/54)2015-12-01 09:30:54

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-8

Terminology
•  Complete binary trees!

–  A binary tree T of height h is complete if!
•  All nodes at level h – 2 and above have two children each, and!
•  When a node at level h – 1 has children, all nodes to its left at the

same level have two children each, and!
•  When a node at level h – 1 has one child, it is a left child!

Figure 11-8
A complete binary tree

9/54 Chapter-11.pdf (9/54)2015-12-01 09:30:54

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-9

Terminology

•  Balanced binary trees!
–  A binary tree is balanced if the height of any node�s

right subtree differs from the height of the node�s left
subtree by no more than 1!

•  Full binary trees are complete!
•  Complete binary trees are balanced!

10/54 Chapter-11.pdf (10/54)2015-12-01 09:30:54

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-10

Terminology

•  Summary of tree terminology!
–  General tree!

•  A set of one or more nodes, partitioned into a root node and
subsets that are general subtrees of the root!

–  Parent of node n!
•  The node directly above node n in the tree!

–  Child of node n!
•  A node directly below node n in the tree!

–  Root!
•  The only node in the tree with no parent!

11/54 Chapter-11.pdf (11/54)2015-12-01 09:30:54

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-11

Terminology

•  Summary of tree terminology (Continued)!
–  Leaf!

•  A node with no children!
–  Siblings!

•  Nodes with a common parent!
–  Ancestor of node n!

•  A node on the path from the root to n!
–  Descendant of node n!

•  A node on a path from n to a leaf!
–  Subtree of node n!

•  A tree that consists of a child (if any) of n and the child�s
descendants!

12/54 Chapter-11.pdf (12/54)2015-12-01 09:30:54

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-12

Terminology

•  Summary of tree terminology (Continued)!
–  Height!

•  The number of nodes on the longest path from the root to a leaf!
–  Binary tree!

•  A set of nodes that is either empty or partitioned into a root
node and one or two subsets that are binary subtrees of the root!

•  Each node has at most two children, the left child and the right
child!

–  Left (right) child of node n!
•  A node directly below and to the left (right) of node n in a

binary tree!

13/54 Chapter-11.pdf (13/54)2015-12-01 09:30:54

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-13

Terminology

•  Summary of tree terminology (Continued)!
–  Left (right) subtree of node n!

•  In a binary tree, the left (right) child (if any) of node n plus its
descendants!

–  Binary search tree!
•  A binary tree where the value in any node n is greater than the

value in every node in n�s left subtree, but less than the value
of every node in n�s right subtree!

–  Empty binary tree!
•  A binary tree with no nodes!

14/54 Chapter-11.pdf (14/54)2015-12-01 09:30:54

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-14

Terminology

•  Summary of tree terminology (Continued)!
–  Full binary tree!

•  A binary tree of height h with no missing nodes!
•  All leaves are at level h and all other nodes each have two

children!
–  Complete binary tree!

•  A binary tree of height h that is full to level h – 1 and has level
h filled in from left to right!

–  Balanced binary tree!
•  A binary tree in which the left and right subtrees of any node

have heights that differ by at most 1!

15/54 Chapter-11.pdf (15/54)2015-12-01 09:30:54

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-15

The ADT Binary Tree: Basic
Operations of the ADT Binary
Tree
•  The operations available for a particular ADT

binary tree depend on the type of binary tree being
implemented!

•  Basic operations of the ADT binary tree!
–  createBinaryTree()
–  createBinaryTree(rootItem)
–  makeEmpty()
–  isEmpty()
–  getRootItem() throws TreeException

16/54 Chapter-11.pdf (16/54)2015-12-01 09:30:54

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-16

General Operations of the ADT
Binary Tree
•  General operations of the ADT binary tree!

–  createBinaryTree (rootItem, leftTree,
rightTree)

–  setRootItem(newItem)
–  attachLeft(newItem) throws TreeException
–  attachRight(newItem) throws TreeException
–  attachLeftSubtree(leftTree) throws
TreeException

–  attachRightSubtree(rightTree) throws
TreeException

–  detachLeftSubtree() throws TreeException
–  detachRightSubtree() throws TreeException

17/54 Chapter-11.pdf (17/54)2015-12-01 09:30:54

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-17

Traversals of a Binary Tree

•  A traversal algorithm for a binary tree visits each
node in the tree!

•  Recursive traversal algorithms!
–  Preorder traversal!
–  Inorder traversal!
–  Postorder traversal!

•  Traversal is O(n)!

18/54 Chapter-11.pdf (18/54)2015-12-01 09:30:54

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-18

Traversal of a Binary Tree

Figure 11-10
Traversals of a binary tree: a) preorder; b) inorder; c) postorder

19/54 Chapter-11.pdf (19/54)2015-12-01 09:30:54

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-19

Possible Representations of a
Binary Tree

•  An array-based representation!
–  A Java class is used to define a node in the tree!
–  A binary tree is represented by using an array of tree

nodes!
–  Each tree node contains a data portion and two indexes

(one for each of the node�s children)!
–  Requires the creation of a free list which keeps track of

available nodes!

20/54 Chapter-11.pdf (20/54)2015-12-01 09:30:55

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-20

Possible Representations of a
Binary Tree

Figure 11-11b
b) its array-based implementations

Figure 11-11a
a) A binary tree of names

21/54 Chapter-11.pdf (21/54)2015-12-01 09:30:55

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-21

Possible Representations of a
Binary Tree

•  An array-based representation of a complete tree!
–  If the binary tree is complete and remains complete!

•  A memory-efficient array-based implementation can
be used!

22/54 Chapter-11.pdf (22/54)2015-12-01 09:30:55

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-22

Possible Representations of a
Binary Tree

Figure 11-13
An array-based implementation of the

complete binary tree in Figure 10-12

Figure 11-12
Level-by-level numbering of a complete

binary tree

23/54 Chapter-11.pdf (23/54)2015-12-01 09:30:55

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-23

Possible Representations of a
Binary Tree
•  A reference-based representation!

–  Java references can be used to link the nodes in the tree!

Figure 11-14
A reference-based

implementation of a binary

tree

24/54 Chapter-11.pdf (24/54)2015-12-01 09:30:55

© 2011 Pearson Addison-Wesley. All rights reserved 11 A-24

A Reference-Based
Implementation of the ADT Binary
Tree
•  Classes that provide a reference-based

implementation for the ADT binary tree!
–  TreeNode

•  Represents a node in a binary tree!
–  TreeException

•  An exception class!
–  BinaryTreeBasis

•  An abstract class of basic tree operation!
–  BinaryTree

•  Provides the general operations of a binary tree!
•  Extends BinaryTreeBasis

25/54 Chapter-11.pdf (25/54)2015-12-01 09:30:55

© 2011 Pearson Addison-Wesley. All rights reserved 11 B-25

Tree Traversals Using an Iterator

•  TreeIterator
–  Implements the Java Iterator interface!
–  Provides methods to set the iterator to the type of

traversal desired!
–  Uses a queue to maintain the current traversal of the

nodes in the tree!
•  Nonrecursive traversal (optional)!

–  An iterative method and an explicit stack can be used to
mimic actions at a return from a recursive call to
inorder!

26/54 Chapter-11.pdf (26/54)2015-12-01 09:30:55

© 2011 Pearson Addison-Wesley. All rights reserved 11 B-26

The ADT Binary Search Tree

•  A deficiency of the ADT binary tree which is
corrected by the ADT binary search tree!
–  Searching for a particular item!

•  Each node n in a binary search tree satisfies the
following properties!
–  n�s value is greater than all values in its left subtree TL!

–  n�s value is less than all values in its right subtree TR!
–  Both TL and TR are binary search trees!

27/54 Chapter-11.pdf (27/54)2015-12-01 09:30:55

© 2011 Pearson Addison-Wesley. All rights reserved 11 B-27

The ADT Binary Search Tree
•  Record!

–  A group of related items, called fields, that are not necessarily of
the same data type!

•  Field!
–  A data element within a record!

•  A data item in a binary search tree has a specially
designated search key!
–  A search key is the part of a record that identifies it within a

collection of records!
•  KeyedItem class

–  Contains the search key as a data field and a method for accessing
the search key!

–  Must be extended by classes for items that are in a binary search
tree!

28/54 Chapter-11.pdf (28/54)2015-12-01 09:30:55

© 2011 Pearson Addison-Wesley. All rights reserved 11 B-28

The ADT Binary Search Tree
•  Operations of the ADT binary search tree!

–  Insert a new item into a binary search tree!
–  Delete the item with a given search key from a binary search tree!
–  Retrieve the item with a given search key from a binary search tree!
–  Traverse the items in a binary search tree in preorder, inorder, or

postorder!

Figure 11-19
A binary search tree

29/54 Chapter-11.pdf (29/54)2015-12-01 09:30:55

© 2011 Pearson Addison-Wesley. All rights reserved 11 B-29

Algorithms for the Operations of
the ADT Binary Search Tree

•  Since the binary search tree is recursive in nature,
it is natural to formulate recursive algorithms for
its operations!

•  A search algorithm!
–  search(bst, searchKey)

•  Searches the binary search tree bst for the item
whose search key is searchKey!

30/54 Chapter-11.pdf (30/54)2015-12-01 09:30:55

31/54 Chapter-11.pdf (31/54)2015-12-01 09:30:56

© 2011 Pearson Addison-Wesley. All rights reserved 11 B-30

Algorithms for the Operations of
the ADT Binary Search Tree:
Insertion
•  insertItem(treeNode, newItem)

–  Inserts newItem into the binary search tree of which treeNode
is the root!

Figure 11-23a and 11-23b
a) Insertion into an empty tree; b) search terminates at a leaf

32/54 Chapter-11.pdf (32/54)2015-12-01 09:30:56

© 2011 Pearson Addison-Wesley. All rights reserved 11 B-31

Algorithms for the Operations of
the ADT Binary Search Tree:
Insertion

Figure 11-23c
c) insertion at a leaf

33/54 Chapter-11.pdf (33/54)2015-12-01 09:30:56

© 2011 Pearson Addison-Wesley. All rights reserved 11 B-32

Algorithms for the Operations of
the ADT Binary Search Tree:
Deletion
•  Steps for deletion!

–  Use the search algorithm to locate the item with the
specified key!

–  If the item is found, remove the item from the tree!
•  Three possible cases for node N containing the

item to be deleted!
–  N is a leaf!
–  N has only one child!
–  N has two children!

34/54 Chapter-11.pdf (34/54)2015-12-01 09:30:56

© 2011 Pearson Addison-Wesley. All rights reserved 11 B-33

Algorithms for the Operations of
the ADT Binary Search Tree:
Deletion
•  Strategies for deleting node N!

–  If N is a leaf!
•  Set the reference in N�s parent to null

–  If N has only one child!
•  Let N�s parent adopt N�s child!

–  If N has two children!
•  Locate another node M that is easier to remove from the tree

than the node N!
•  Copy the item that is in M to N!
•  Remove the node M from the tree!

35/54 Chapter-11.pdf (35/54)2015-12-01 09:30:56

36/54 Chapter-11.pdf (36/54)2015-12-01 09:30:56

© 2011 Pearson Addison-Wesley. All rights reserved 11 B-34

Algorithms for the Operations of
the ADT Binary Search Tree:
Retrieval
•  Retrieval operation can be implemented by

refining the search algorithm!
–  Return the item with the desired search key if it exists!
–  Otherwise, return a null reference!

37/54 Chapter-11.pdf (37/54)2015-12-01 09:30:56

© 2011 Pearson Addison-Wesley. All rights reserved 11 B-35

Algorithms for the Operations of
the ADT Binary Search Tree:
Traversal
•  Traversals for a binary search tree are the same as

the traversals for a binary tree!
•  Theorem 11-1!

!The inorder traversal of a binary search tree T will visit
its nodes in sorted search-key order!

38/54 Chapter-11.pdf (38/54)2015-12-01 09:30:56

© 2011 Pearson Addison-Wesley. All rights reserved 11 B-36

A Reference-Based
Implementation of the ADT
Binary Search Tree
•  BinarySearchTree

–  Extends BinaryTreeBasis
–  Inherits the following from BinaryTreeBasis

• isEmpty()
• makeEmpty()
• getRootItem()
•  The use of the constructors!

•  TreeIterator
–  Can be used with BinarySearchTree

39/54 Chapter-11.pdf (39/54)2015-12-01 09:30:56

© 2011 Pearson Addison-Wesley. All rights reserved 11 B-37

The Efficiency of Binary Search
Tree Operations

•  The maximum number
of comparisons for a
retrieval, insertion, or
deletion is the height of
the tree!

•  The maximum and
minimum heights of a
binary search tree!
–  n is the maximum height

of a binary tree with n
nodes!

Figure 11-30
A maximum-height binary tree

with seven nodes

40/54 Chapter-11.pdf (40/54)2015-12-01 09:30:56

41/54 Chapter-11.pdf (41/54)2015-12-01 09:30:57

42/54 Chapter-11.pdf (42/54)2015-12-01 09:30:57

43/54 Chapter-11.pdf (43/54)2015-12-01 09:30:57

44/54 Chapter-11.pdf (44/54)2015-12-01 09:30:57

45/54 Chapter-11.pdf (45/54)2015-12-01 09:30:57

46/54 Chapter-11.pdf (46/54)2015-12-01 09:30:57

© 2011 Pearson Addison-Wesley. All rights reserved 11 B-38

The Efficiency of Binary Search
Tree Operations

•  Theorem 11-2!
!A full binary tree of height h ≥ 0 has 2h – 1 nodes!

•  Theorem 11-3!
!The maximum number of nodes that a binary tree of height h can have is 2h – 1!

Figure 11-32
Counting the nodes in a full

binary tree of height h

47/54 Chapter-11.pdf (47/54)2015-12-01 09:30:57

© 2011 Pearson Addison-Wesley. All rights reserved 11 B-39

The Efficiency of Binary Search
Tree Operations
•  Theorem 11-4!

!The minimum height of a binary tree with n nodes is !log2(n+1)"!
•  The height of a particular binary search tree depends on

the order in which insertion and deletion operations are
performed!

Figure 11-34
The order of the retrieval,
insertion, deletion, and
traversal operations for the
reference-based
implementation of the ADT
binary search tree

48/54 Chapter-11.pdf (48/54)2015-12-01 09:30:57

© 2011 Pearson Addison-Wesley. All rights reserved 11 B-40

Treesort

•  Treesort!
–  Uses the ADT binary search tree to sort an array of

records into search-key order!
–  Efficiency!

•  Average case: O(n * log n)!
•  Worst case: O(n2)!

49/54 Chapter-11.pdf (49/54)2015-12-01 09:30:58

© 2011 Pearson Addison-Wesley. All rights reserved 11 B-41

Saving a Binary Search Tree in a
File

•  Two algorithms for saving and restoring a binary
search tree!
–  Saving a binary search tree and then restoring it to its

original shape!
•  Uses preorder traversal to save the tree to a file!

–  Saving a binary tree and then restoring it to a balanced
shape!

•  Uses inorder traversal to save the tree to a file!
•  Can be accomplished if!

–  The data is sorted!
–  The number of nodes in the tree is known!

50/54 Chapter-11.pdf (50/54)2015-12-01 09:30:58

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-42

The JCF Binary Search Algorithm

•  JCF has two binary search methods!
–  Based on the natural ordering of elements:!
static <T> int !
binarySearch (List<? extends Comparable<? super T>> list, T key)!

–  Based on a specified Comparator:!
static <T> int binarySearch (List<? extends T> list, T key, !
! ! ! ! !Comparator<? super T> c)!

!

51/54 Chapter-11.pdf (51/54)2015-12-01 09:30:58

© 2011 Pearson Addison-Wesley. All rights reserved 11 B-43

General Trees

•  An n-ary tree!
–  A generalization of a binary tree whose nodes each can

have no more than n children!

Figure 11-38
A general tree

Figure 11-41
An implementation of the n-ary tree in Figure 11-38

52/54 Chapter-11.pdf (52/54)2015-12-01 09:30:58

© 2011 Pearson Addison-Wesley. All rights reserved 11 B-44

Summary

•  Binary trees provide a hierarchical organization of
data!

•  Implementation of binary trees!
–  The implementation of a binary tree is usually

referenced-based!
–  If the binary tree is complete, an efficient array-based

implementation is possible!
•  Traversing a tree is a useful operation!
•  The binary search tree allows you to use a binary

search-like algorithm to search for an item with a
specified value!

53/54 Chapter-11.pdf (53/54)2015-12-01 09:30:58

© 2011 Pearson Addison-Wesley. All rights reserved 11 B-45

Summary

•  Binary search trees come in many shapes!
–  The height of a binary search tree with n nodes can

range from a minimum of !log2(n + 1)" to a maximum
of n!

–  The shape of a binary search tree determines the
efficiency of its operations!

•  An inorder traversal of a binary search tree visits
the tree�s nodes in sorted search-key order!

•  The treesort algorithm efficiently sorts an array by
using the binary search tree�s insertion and
traversal operations!

54/54 Chapter-11.pdf (54/54)2015-12-01 09:30:58

© 2011 Pearson Addison-Wesley. All rights reserved 11 B-46

Summary

•  Saving a binary search tree to a file!
– To restore the tree as a binary search tree of

minimum height!
•  Perform inorder traversal while saving the tree to a

file!
– To restore the tree to its original form!

•  Perform preorder traversal while saving the tree to a
file!

