2015-09-29 11:44:25 Chapter-04.pdf (#4)




bubbleSort(int[] a) {
int last = a.length - 1;
while (las 0) {
inti =03
while (i < last) {
if (a[i] > a[i+1])
int temp = a[i];
ali] = a[i+11];
ali+1] = temp;
by
i++;

g

APy bl LS:Q&

L_S_//L/

s L ST =~ LG -

by
by

A

2015-09-29 11:44:25

2/45

Chapter-04.pdf (2/45)



M‘fck@«,wm/,m./\/‘

S ehogHore Sprto (443 4

Fot (un=0: coes A dngth, CUr+H] 4
/jFaa, gﬂfg/:cwtw)' @'(6\%7/{/95/@ ﬁ)L
A (aly 1 < armdf
MIN = 0) >

3

,} iviscua)

% ,é:;\l‘/\‘/f: a_("’“""]j,
4C/Mf/1/]: A[cwt]

3 @LECLU'[Lj :dl/

S

2015-09-29 11:44:25 3/45 Chapter-04.pdf (3/45)




Abstract Data Types

* Modularity

— Keeps the complexity of a large program manageable
by systematically controlling the interaction of its
components

— Isolates errors
— Eliminates redundancies

— A modular program is
» Easier to write
» Easier to read
» Easier to modify

© 2011 Pearson Addison-Wesley. All rights reserved 4-2

2015-09-29 11:44:25 4/45 Chapter-04.pdf (4/45)



Abstract Data Types

e Procedural abstraction

— Separates the purpose and use of a module from its
implementation

— A module’ s specifications should
e Detail how the module behaves
 Identify details that can be hidden within the module

e Information hiding
— Hides certain implementation details within a module

— Makes these details inaccessible from outside the
module

© 2011 Pearson Addison-Wesley. All rights reserved

4-3

2015-09-29 11:44:25

5/45

Chapter-04.pdf (5/45)



Abstract Data Types

First
implemen-

T
Second
implemen-
tation

—
-
fl_i—lll tation
|
V]
X
=
|

Figure 4-1

Isolated tasks: the implementation of task T does not affect task Q

© 2011 Pearson Addison-Wesley. All rights reserved

4-4

2015-09-29 11:44:25

6/45

Chapter-04.pdf (6/45)



Abstract Data Types

e The 1solation of modules is not total
— Methods’ specifications, or contracts, govern how they interact

with each other

Program

Request to perform operation
that uses

method S < )
Result of operation

Figure 4-2

A slit in the wall
© 2011 Pearson Addison-Wesley. All rights reserved

Implementation
of method S

4-5

2015-09-29 11:44:25

7/45

Chapter-04.pdf (7/45)



Abstract Data Types

» Typical operations on data
— Add data to a data collection
— Remove data from a data collection
— Ask questions about the data in a data collection

e Data abstraction

— Asks you to think what you can do to a collection of
data independently of how you do it

— Allows you to develop each data structure in relative
isolation from the rest of the solution

— A natural extension of procedural abstraction

© 2011 Pearson Addison-Wesley. All rights reserved

4-6

2015-09-29 11:44:25

8/45

Chapter-04.pdf (8/45)



Abstract Data Types

» Abstract data type (ADT)
— An ADT is composed of
e A collection of data
* A set of operations on that data
— Specifications of an ADT indicate

* What the ADT operations do, not how to implement
them

— Implementation of an ADT
 Includes choosing a particular data structure

© 2011 Pearson Addison-Wesley. All rights reserved 4-7

2015-09-29 11:44:25

9/45 Chapter-04.pdf (9/45)



Abstract Data Types

e Data structure

— A construct that 1s defined within a programming
language to store a collection of data

— Example: arrays
e ADTSs and data structures are not the same
e Data abstraction

— Results in a wall of ADT operations between data
structures and the program that accesses the data within
these data structures

© 2011 Pearson Addison-Wesley. All rights reserved 4-8

2015-09-29 11:44:26 10/45 Chapter-04.pdf (10/45)



Abstract Data Types

Interface

l

remove

Data
structure

Program
Request to perform operation>

Result of operation

Wall of ADT operations

Figure 4-4
A wall of ADT operations isolates a data structure from the program that uses it

© 2011 Pearson Addison-Wesley. All rights reserved

4-9

2015-09-29 11:44:26

11/45

Chapter-04.pdf (11/45)



Specifying ADTs

4 e In alist

6}/}/@
ek

ogples
bread

chickhen

Figure 4-5
list A grocery

© 2011 Pearson Addison-Wesley. All rights reserved

— Except for the first and last
1tems, each item has
* A unique predecessor
* A unique successor
— Head or front
* Does not have a predecessor
— Tail or end

¢ Does not have a successor

4-10

2015-09-29 11:44:26

12/45

Chapter-04.pdf (12/45)



he ADT List

 ADT List operations
— Create an empty list
— Determine whether a list is empty
— Determine the number of items in a list
— Add an item at a given position in the list
— Remove the item at a given position in the list
— Remove all the items from the list
— Retrieve (get) the item at a given position in the list

» Items are referenced by their position within the
list

© 2011 Pearson Addison-Wesley. All rights reserved

4-11

2015-09-29 11:44:26

13/45

Chapter-04.pdf (13/45)



he ADT List

e Specifications of the ADT operations
— Define the contract for the ADT list

— Do not specify how to store the list or how to perform
the operations

 ADT operations can be used in an application
without the knowledge of how the operations will
be implemented

© 2011 Pearson Addison-Wesley. All rights reserved 4-12

2015-09-29 11:44:26 14/45 Chapter-04.pdf (14/45)



The ADT List

method

Retrieve item at position

displayList

—>

Figure 4-7

dataltem

Implementation
of ADT list

Wall of ADT operations

The wall between displayList and the implementation of the ADT list

© 2011 Pearson Addison-Wesley. All rights reserved

4-13

2015-09-29 11:44:26

15/45

Chapter-04.pdf (15/45)



he ADT Sorted List

e The ADT sorted list

— Maintains items in sorted order

— Inserts and deletes items by their values, not their
positions

© 2011 Pearson Addison-Wesley. All rights reserved 4-14

2015-09-29 11:44:26 16/45 Chapter-04.pdf (16/45)



Designing an AD

e The design of an ADT should evolve naturally
during the problem-solving process

* Questions to ask when designing an ADT
— What data does a problem require?

— What operations does a problem require?

© 2011 Pearson Addison-Wesley. All rights reserved

2015-09-29 11:44:26

17/45

Chapter-04.pdf (17/45)



Axioms (Optional)

e For complex abstract data types, the behavior of
the operations must be specified using axioms

— Axiom: A mathematical rule

© 2011 Pearson Addison-Wesley. All rights reserved 4-16

2015-09-29 11:44:26 18/45 Chapter-04.pdf (18/45)



Axioms (Optional)

e Axioms for the ADT List

(aList.createList()).size() =0
(aList.add(i, x)).size() = aList.size() + 1
(aList.remove(i)).size() = alList.size() — 1
(aList.createList()).isEmpty() = true
(aList.add(i, item)).isEmpty() = false
(aList.createList()).remove(i) = error
(aList.add(i, x)).remove(i) = aList
(aList.createList()).get(i) = error
(aList.add(i, x)).get(i) = x

alList.get(i) = (aList.add(i, x).get(i+1)
alList.get(i+1) = (aList.remove(1)).get(i)

© 2011 Pearson Addison-Wesley. All rights reserved

2015-09-29 11:44:26

19/45

Chapter-04.pdf (19/45)



Implementing ADTs

e Choosing the data structure to represent the
ADT’ s data is a part of implementation

— Choice of a data structure depends on
e Details of the ADT’ s operations
e Context in which the operations will be used
e Implementation details should be hidden behind a
wall of ADT operations

— A program would only be able to access the data
structure using the ADT operations

© 2011 Pearson Addison-Wesley. All rights reserved 4-18

2015-09-29 11:44:26 20/45 Chapter-04.pdf (20/45)



Implementing ADTs

remove

Program '
Request to perform operatlon>

< .
Result of operation

Wall of ADT operations
Figure 4-8

ADT operations provide access to a data structure

© 2011 Pearson Addison-Wesley. All rights reserved

Data

structure

4-19

2015-09-29 11:44:26

21/45

Chapter-04.pdf (21/45)



Implementing ADTs

remove

Program

Figure 4-9 Wall of ADT operations

Violating the wall of ADT operations

© 2011 Pearson Addison-Wesley. All rights reserved

Data
structure

4-20

2015-09-29 11:44:26 22/45

Chapter-04.pdf (22/45)



Java Classes Revisited

e Object-oriented programming (OOP) views a
program as a collection of objects

* Encapsulation
— A principle of OOP
— Can be used to enforce the walls of an ADT

— Combines an ADT’ s data with its method to form an
object

— Hides the implementation details of the ADT from the
programmer who uses it

© 2011 Pearson Addison-Wesley. All rights reserved 4-21

2015-09-29 11:44:27 23/45 Chapter-04.pdf (23/45)



Java Classes Revisited

C T T T T T T T T i Figure 4-10

' — An object’ s data and
1 1 I
Request [ | I | methods are encapsulated
>
Methods L1
<< J—'-r
Results L
I I|I — Il'
' | ' Data ' |
| I I|I -
- 1J=L|f'
IIIII Illll IIIII III.'I III
1 1 1 1 1 L __1 1 1 1
| | 1 | 1 1 | | 1 1

© 2011 Pearson Addison-Wesley. All rights reserved 4-22

2015-09-29 11:44:27 24/45 Chapter-04.pdf (24/45)



Java Classes Revisited

e A Java class
— A new data type whose instances are objects
— Class members
* Data fields
— Should almost always be private
e Methods

— All members in a class are private, unless the
programmer designates them as public

© 2011 Pearson Addison-Wesley. All rights reserved

4-23

2015-09-29 11:44:27

25/45

Chapter-04.pdf (25/45)



Java Classes Revisited

e A Java class (Continued)
— Constructor

* A method that creates and initializes new instances
of a class

e Has the same name as the class
e Has no return type
— Java’' s garbage collection mechanism

* Destroys objects that a program no longer references

© 2011 Pearson Addison-Wesley. All rights reserved 4-24

2015-09-29 11:44:27

26/45 Chapter-04.pdf (26/45)



Java Classes Revisited

e Constructors

— Allocate memory for an object and can initialize the
object’ s data

— A class can have more than one constructor
— Default constructor
* Has no parameters

» Typically, initializes data fields to values the class
implementation chooses

© 2011 Pearson Addison-Wesley. All rights reserved 4-25

2015-09-29 11:44:27 27/45 Chapter-04.pdf (27/45)



Java Classes Revisited

e Constructors (Continued)
— Compiler-generated default constructor

e Generated by the compiler if no constructor is
included in a class

e (Client of a class

— A program or module that uses the class

© 2011 Pearson Addison-Wesley. All rights reserved 4-26

2015-09-29 11:44:27 28/45 Chapter-04.pdf (28/45)



Java Classes Revisited

e Inheritance
— Base class or superclass
— Derived class or subclass
* Inherits the contents of the superclass

e Includes an extends clause that indicates the
superclass

» super keyword

— Used in a constructor of a subclass to call the
constructor of the superclass

© 2011 Pearson Addison-Wesley. All rights reserved 4-27

2015-09-29 11:44:27 29/45 Chapter-04.pdf (29/45)



Java Classes Revisited

e Object Equality
— equals method of the Object class
e Default implementation

— Compares two objects and returns true if they
are actually the same object

» Customized implementation for a class

— Can be used to check the values contained in
two objects for equality

© 2011 Pearson Addison-Wesley. All rights reserved

4-28

2015-09-29 11:44:27

30/45

Chapter-04.pdf (30/45)



Java Interfaces

e An interface

— Specifies methods and constants, but supplies no
implementation details

— Can be used to specify some desired common behavior
that may be useful over many different types of objects

— The Java API has many predefined interfaces

e Example: java.util.Collection

© 2011 Pearson Addison-Wesley. All rights reserved 4-29

2015-09-29 11:44:27 31/45 Chapter-04.pdf (31/45)



Java Interfaces

* A class that implements an interface must
— Include an implements clause

— Provide implementations of the methods of the
interface

e To define an interface

— Use the keyword interface instead of class in the

header

— Provide only method specifications and constants in the

interface definition

© 2011 Pearson Addison-Wesley. All rights reserved

4-30

2015-09-29 11:44:27

32/45

Chapter-04.pdf (32/45)



Java Exceptions

* Exception
— A mechanism for handling an error during execution

— A method indicates that an error has occurred by
throwing an exception

© 2011 Pearson Addison-Wesley. All rights reserved

4-31

2015-09-29 11:44:27

33/45

Chapter-04.pdf (33/45)



Java Exceptions

e Catching exceptions
— try block

e A statement that might throw an exception is placed
within a t rv block

* Syntax
try A
statement (s) ;
} // end try

© 2011 Pearson Addison-Wesley. All rights reserved 4-32

2015-09-29 11:44:27 34/45 Chapter-04.pdf (34/45)



Java Exceptions

e Catching exceptions (Continued)
— catch block

e Used to catch an exception and deal with the error
condition

* Syntax

catch (exceptionClass
identifier) {

statement (s) ;
} // end catch

© 2011 Pearson Addison-Wesley. All rights reserved 4-33

2015-09-29 11:44:27 35/45 Chapter-04.pdf (35/45)



Java Exceptions

e Types of exceptions
— Checked exceptions

e Instances of classes that are subclasses of the
java.lang.Exception class

» Must be handled locally or explicitly thrown from
the method

* Used 1n situations where the method has
encountered a serious problem

© 2011 Pearson Addison-Wesley. All rights reserved 4-34

2015-09-29 11:44:27 36/45 Chapter-04.pdf (36/45)



Java Exceptions

* Types of exceptions (Continued)
— Runtime exceptions

e Used 1n situations where the error is not considered
as serious

e Can often be prevented by fail-safe programming

e Instances of classes that are subclasses of the
RuntimeException class

e Are not required to be caught locally or explicitly
thrown again by the method

© 2011 Pearson Addison-Wesley. All rights reserved 4-

35

2015-09-29 11:44:28

37/45

Chapter-04.pdf (37/45)



Java Exceptions

 Throwing exceptions
— A throw statement 1s used to throw an exception

throw new exceptionClass
(stringArgument) ;

* Defining a new exception class

— A programmer can define a new exception class

© 2011 Pearson Addison-Wesley. All rights reserved

4-36

2015-09-29 11:44:28

38/45

Chapter-04.pdf (38/45)



An Array-Based Implementation
of the ADT List

e An array-based implementation
— Alist’ s items are stored in an array items
— A natural choice

* Both an array and a list identify their items by
number

— A list’ s kh item will be stored in items [k-1]

© 2011 Pearson Addison-Wesley. All rights reserved

4-37

2015-09-29 11:44:28

39/45

Chapter-04.pdf (39/45)



Raadl

Array indeyes

L»L/1 2 3

An Array-Based Implementation
of the ADT List

Aw L.

k-1 MAX LIST -1
| 121 3 | 19 [100 s | 10 | 18 | 240 ?
numItems ’—> 1 2 3 4 k MAX LIST
items
ADT list positions

Figure 4-11
An array-based implementation of the ADT list

© 2011 Pearson Addison-Wesley. All rights reserved 4-38

2015-09-29 11:44:28

40/45

Chapter-04.pdf (40/45)



headt f jﬁ\w

Az

A
j L]‘ | ppip | MEVT
ITE OZEF\

L1sT NODE




Cudlec Moy Loisi Mot {
Crineds Aete;
Pt | SNol /NA!//_
W«Za /\ﬂﬂ/ﬁtﬁfv{/@ﬁ(&bﬁ‘ A1) 4

Asda = O

PM¢ O /ﬁ”ﬁ’@”moﬁ
G«ug-&(, /\mc/{ A//t_' brotd [l’mﬂgﬂé

444444444444444444444



!'H

2015-09-29 11:44:28 43/45 Chapter-04.pdf (43/45)



sSummary

e Data abstraction: a technique for controlling the
interaction between a program and its data
structures

 An ADT: the specifications of a set of data
management operations and the data values upon
which they operate

e The formal mathematical study of ADTs uses
systems of axioms to specify the behavior of ADT
operations

e Only after you have fully defined an ADT should
you think about how to implement it

© 2011 Pearson Addison-Wesley. All rights reserved 4-39

2015-09-29 11:44:28 44/45 Chapter-04.pdf (44/45)



sSummary

e A client should only be able to access the data
structure by using the ADT operations

* An object encapsulates both data and operations
on that data

— In Java, objects are instances of a class, which is a
programmer-defined data type

e A Java class contains at least one constructor,
which 1s an initialization method

e Typically, you should make the data fields of a
class private and provide public methods to access
some or all of the data fields

© 2011 Pearson Addison-Wesley. All rights reserved 4-40

2015-09-29 11:44:28 45/45 Chapter-04.pdf (45/45)



