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  Chapter 3 

Recursion: The Mirrors!
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Recursive Solutions 

•  Recursion!
–  An extremely powerful problem-solving technique!
–  Breaks a problem in smaller identical problems!
–  An alternative to iteration!

•  An iterative solution involves loops!
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Recursive Solutions 

•  Sequential search!
–  Starts at the beginning of the collection!
–  Looks at every item in the collection in order until the 

item being searched for is found!
•  Binary search!

–  Repeatedly halves the collection and determines which 
half could contain the item!

–  Uses a divide and conquer strategy!
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Recursive Solutions 

•  Facts about a recursive solution!
–  A recursive method calls itself!
–  Each recursive call solves an identical, but smaller, 

problem!
–  A test for the base case enables the recursive calls to 

stop!
•  Base case: a known case in a recursive definition!

–  Eventually, one of the smaller problems must be the 
base case!
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Recursive Solutions 

•  Four questions for construction recursive solutions!
–  How can you define the problem in terms of a smaller 

problem of the same type?!
–  How does each recursive call diminish the size of the 

problem?!
–  What instance of the problem can serve as the base 

case?!
–  As the problem size diminishes, will you reach this 

base case?!
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A Recursive Valued Method:  
The Factorial of n 

•  Problem!
–  Compute the factorial of an integer n!

•  An iterative definition of factorial(n)!
!factorial(n) = n * (n-1) * (n-2) * … * 1 !
! ! ! !for any integer n > 0!
!factorial(0) = 1!
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A Recursive Valued Method:  
The Factorial of n 

•  A recursive definition of factorial(n)!
!factorial(n)  = !1 ! ! !if n = 0!
!                     !n * factorial(n-1) ! !if n > 0 !

•  A recurrence relation!
–  A mathematical formula that generates the terms in a 

sequence from previous terms!
–  Example!
!factorial(n) = n * [(n-1) * (n-2) * … * 1]!
! ! !  = n * factorial(n-1)  !
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A Recursive Valued Method:  
The Factorial of n 

•  Box trace!
–  A systematic way to trace the actions of a recursive 

method!
–  Each box roughly corresponds to an activation record!
–  An activation record!

•  Contains a method�s local environment at the time 
of and as a result of the call to the method!
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A Recursive Valued Method:  
The Factorial of n 

•  A method�s local 
environment includes:!
–  The method�s local 

variables!
–  A copy of the actual 

value arguments!
–  A return address in the 

calling routine!
–  The value of the 

method itself !

Figure 3-3 
A box 
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A Recursive void Method: 
Writing a String Backward 

•  Problem!
–  Given a string of characters, write it in reverse order!

•  Recursive solution!
–  Each recursive step of the solution diminishes by 1 the 

length of the string to be written backward!
–  Base case!

•  Write the empty string backward!
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A Recursive void Method: 
Writing a String Backward 

Figure 3-6 
A recursive solution 
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A Recursive void Method: 
Writing a String Backward 

•  Execution of writeBackward can be traced 
using the box trace!

•  Temporary System.out.println statements 
can be used to debug a recursive method!
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Counting Things 

•  Next three problems!
–  Require you to count certain events or combinations of 

events or things!
–  Contain more than one base cases!
–  Are good examples of inefficient recursive solutions!
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Multiplying Rabbits  
(The Fibonacci Sequence) 

•  �Facts� about rabbits!
–  Rabbits never die!
–  A rabbit reaches sexual maturity exactly two months 

after birth, that is, at the beginning of its third month of 
life!

–  Rabbits are always born in male-female pairs!
•  At the beginning of every month, each sexually 

mature male-female pair gives birth to exactly one 
male-female pair!
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Multiplying Rabbits  
(The Fibonacci Sequence) 

•  Problem!
–  How many pairs of rabbits are alive in month n?!

•  Recurrence relation!
!rabbit(n) = rabbit(n-1) + rabbit(n-2)!
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Multiplying Rabbits  
(The Fibonacci Sequence) 

Figure 3-10 
Recursive solution to the rabbit problem 
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Multiplying Rabbits  
(The Fibonacci Sequence) 

•  Base cases!
–  rabbit(2), rabbit(1)!

•  Recursive definition!
!rabbit(n) =      1 ! ! ! !if n is 1 or 2!
! ! !       rabbit(n-1) + rabbit(n-2) !if n > 2!

•  Fibonacci sequence!
–  The series of numbers rabbit(1), rabbit(2), rabbit(3), 

and so on!
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Organizing a Parade 

•  Rules about organizing a parade!
–  The parade will consist of bands and floats in a single 

line!
–  One band cannot be placed immediately after another!

•  Problem!
–  How many ways can you organize a parade of length n?!
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Organizing a Parade 

•  Let:!
–  P(n) be the number of ways to organize a parade of 

length n!
–  F(n) be the number of parades of length n that end with 

a float!
–  B(n) be the number of parades of length n that end with 

a band!
•  Then!

–  P(n) = F(n) + B(n)!
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Organizing a Parade 

•  Number of acceptable parades of length n that end 
with a float!
!F(n) = P(n-1)!

•  Number of acceptable parades of length n that end 
with a band!
!B(n) = F(n-1)!

•  Number of acceptable parades of length n!
– P(n) = P(n-1) + P(n-2)!
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Organizing a Parade 

•  Base cases!
!P(1) = 2!(The parades of length 1 are float and band.)!
!P(2) = 3!(The parades of length 2 are float-float, band-
! !float, and float-band.)!

•  Solution!
!P(1) = 2!
!P(2) = 3!
!P(n) = P(n-1) + P(n-2) !for n > 2!
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Mr. Spock�s Dilemma  
(Choosing k out of n Things) 

•  Problem!
–  How many different choices are possible for exploring 

k planets out of n planets in a solar system?!
•  Let!

–  c(n, k) be the number of groups of k planets chosen 
from n!
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Mr. Spock�s Dilemma  
(Choosing k out of n Things) 

•  In terms of Planet X:!
!c(n, k) = (the number of groups of k planets that 
! !  include Planet X)!
! !            +!
! !            (the number of groups of k planets that               
! !  do not include Planet X) !
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Mr. Spock�s Dilemma  
(Choosing k out of n Things) 

•  The number of ways to choose k out of n things is 
the sum of!
–  The number of ways to choose k-1 out of n-1 things!
!and!

–  The number of ways to choose k out of n-1 things!

!c(n, k) = c(n-1, k-1) + c(n-1, k)!
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Mr. Spock�s Dilemma  
(Choosing k out of n Things) 

•  Base cases!
–  There is one group of everything!

!c(k, k) = 1!
–  There is one group of nothing!

!c(n, 0) = 1!
–  c(n, k) = 0 !if k > n!
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Mr. Spock�s Dilemma  
(Choosing k out of n Things) 

•  Recursive solution!
! !                  1 ! ! ! !  if k = 0!
!c(n, k) =     1 ! ! ! !  if k = n!
! ! !      0 ! ! ! !  if k > n!
! ! !      c(n-1, k-1) + c(n-1, k) !  if 0 < k < n!
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Searching an Array: 
Finding the Largest Item in an 
Array 
•  A recursive solution!

 if (anArray has only one item) { 
  maxArray(anArray) is the item in anArray 
 } 
 else if (anArray has more than one item) { 
  maxArray(anArray) is the maximum of 
    maxArray(left half of anArray) and 
    maxArray(right half of anArray) 
 }  // end if 
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Finding the Largest Item in an 
Array 

Figure 3-13 
Recursive solution to the largest-item problem 
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Binary Search 

•  A high-level binary search!
!if (anArray is of size 1) { 
  Determine if anArray�s item is equal to value 
 } 
 else { 
  Find the midpoint of anArray 
  Determine which half of anArray contains value 
  if (value is in the first half of anArray) { 
    binarySearch (first half of anArray, value) 
  } 
  else { 
    binarySearch(second half of anArray, value) 
  } // end if 
 } // end if 
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Binary Search 

•  Implementation issues:!
–  How will you pass �half of anArray� to the recursive 

calls to binarySearch?!
–  How do you determine which half of the array contains 

value?!
–  What should the base case(s) be?!
–  How will binarySearch indicate the result of the 

search?!
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Finding the kth Smallest Item in 
an Array 

•  The recursive solution proceeds by:!
1.  Selecting a pivot item in the array!
2.  Cleverly arranging, or partitioning, the items in the 

array about this pivot item!
3.  Recursively applying the strategy to one of the 

partitions !
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Finding the kth Smallest Item in 
an Array 

Figure 3-18 
A partition about a pivot 
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Finding the kth Smallest Item in 
an Array 

•  Let: !
!kSmall(k, anArray, first, last) = 
   kth smallest item in anArray[first..last] 

•  Solution:!
kSmall(k, anArray, first, last) 
     kSmall(k, anArray, first, pivotIndex-1) 
     if k < pivotIndex – first + 1 

=     if k = pivotIndex – first + 1 
     p 
     kSmall(k-(pivotIndex-first+1), anArray,  
            pivotIndex+1, last) 
     if k > pivotIndex – first + 1  
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Organizing Data: 
The Towers of Hanoi 

Figure 3-19a and b 
a) The initial state; b) move n - 1 disks from A to C 



41/46 Chapter-03.pdf (41/46)2015-09-17 10:53:20

© 2011 Pearson Addison-Wesley. All rights reserved 3-35 

The Towers of Hanoi 

Figure 3-19c and d 
c) move one disk from A to B; d) move n - 1 disks from C to B 



42/46 Chapter-03.pdf (42/46)2015-09-17 10:53:20

© 2011 Pearson Addison-Wesley. All rights reserved 3-36 

The Towers of Hanoi 

•  Pseudocode solution!
!solveTowers(count, source, destination, spare) 
  if (count is 1) { 
    Move a disk directly from source to destination 
  } 
  else { 
    solveTowers(count-1, source, spare, destination) 
    solveTowers(1, source, destination, spare) 
    solveTowers(count-1, spare, destination, source) 
  } //end if 
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Recursion and Efficiency 

•  Some recursive solutions are so inefficient that 
they should not be used!

•  Factors that contribute to the inefficiency of some 
recursive solutions!
–  Overhead associated with method calls!
–  Inherent inefficiency of some recursive algorithms!
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Summary 

•  Recursion solves a problem by solving a smaller 
problem of the same type!

•  Four questions to keep in mind when constructing 
a recursive solution!
–  How can you define the problem in terms of a smaller 

problem of the same type?!
–  How does each recursive call diminish the size of the 

problem?!
–  What instance of the problem can serve as the base 

case?!
–  As the problem size diminishes, will you reach this 

base case?!
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Summary 

•  A recursive call�s postcondition can be assumed 
to be true if its precondition is true!

•  The box trace can be used to trace the actions of a 
recursive method!

•  Recursion can be used to solve problems whose 
iterative solutions are difficult to conceptualize!
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Summary 

•  Some recursive solutions are much less efficient 
than a corresponding iterative solution due to their 
inherently inefficient algorithms and the overhead 
of method calls!

•  If you can easily, clearly, and efficiently solve a 
problem by using iteration, you should do so!


