
1/46 Chapter-03.pdf (#3)2015-09-17 10:53:17

© 2011 Pearson Addison-Wesley. All rights reserved 3-1

 Chapter 3

Recursion: The Mirrors!

2/46 Chapter-03.pdf (2/46)2015-09-17 10:53:17

© 2011 Pearson Addison-Wesley. All rights reserved 3-2

Recursive Solutions

•  Recursion!
–  An extremely powerful problem-solving technique!
–  Breaks a problem in smaller identical problems!
–  An alternative to iteration!

•  An iterative solution involves loops!

3/46 Chapter-03.pdf (3/46)2015-09-17 10:53:17

© 2011 Pearson Addison-Wesley. All rights reserved 3-3

Recursive Solutions

•  Sequential search!
–  Starts at the beginning of the collection!
–  Looks at every item in the collection in order until the

item being searched for is found!
•  Binary search!

–  Repeatedly halves the collection and determines which
half could contain the item!

–  Uses a divide and conquer strategy!

4/46 Chapter-03.pdf (4/46)2015-09-17 10:53:18

5/46 Chapter-03.pdf (5/46)2015-09-17 10:53:18

6/46 Chapter-03.pdf (6/46)2015-09-17 10:53:18

7/46 Chapter-03.pdf (7/46)2015-09-17 10:53:18

8/46 Chapter-03.pdf (8/46)2015-09-17 10:53:18

© 2011 Pearson Addison-Wesley. All rights reserved 3-4

Recursive Solutions

•  Facts about a recursive solution!
–  A recursive method calls itself!
–  Each recursive call solves an identical, but smaller,

problem!
–  A test for the base case enables the recursive calls to

stop!
•  Base case: a known case in a recursive definition!

–  Eventually, one of the smaller problems must be the
base case!

9/46 Chapter-03.pdf (9/46)2015-09-17 10:53:18

© 2011 Pearson Addison-Wesley. All rights reserved 3-5

Recursive Solutions

•  Four questions for construction recursive solutions!
–  How can you define the problem in terms of a smaller

problem of the same type?!
–  How does each recursive call diminish the size of the

problem?!
–  What instance of the problem can serve as the base

case?!
–  As the problem size diminishes, will you reach this

base case?!

10/46 Chapter-03.pdf (10/46)2015-09-17 10:53:18

© 2011 Pearson Addison-Wesley. All rights reserved 3-6

A Recursive Valued Method:
The Factorial of n

•  Problem!
–  Compute the factorial of an integer n!

•  An iterative definition of factorial(n)!
!factorial(n) = n * (n-1) * (n-2) * … * 1 !
! ! ! !for any integer n > 0!
!factorial(0) = 1!

11/46 Chapter-03.pdf (11/46)2015-09-17 10:53:18

© 2011 Pearson Addison-Wesley. All rights reserved 3-7

A Recursive Valued Method:
The Factorial of n

•  A recursive definition of factorial(n)!
!factorial(n) = !1 ! ! !if n = 0!
! !n * factorial(n-1) ! !if n > 0 !

•  A recurrence relation!
–  A mathematical formula that generates the terms in a

sequence from previous terms!
–  Example!
!factorial(n) = n * [(n-1) * (n-2) * … * 1]!
! ! ! = n * factorial(n-1) !

12/46 Chapter-03.pdf (12/46)2015-09-17 10:53:18

© 2011 Pearson Addison-Wesley. All rights reserved 3-8

A Recursive Valued Method:
The Factorial of n

•  Box trace!
–  A systematic way to trace the actions of a recursive

method!
–  Each box roughly corresponds to an activation record!
–  An activation record!

•  Contains a method�s local environment at the time
of and as a result of the call to the method!

13/46 Chapter-03.pdf (13/46)2015-09-17 10:53:18

© 2011 Pearson Addison-Wesley. All rights reserved 3-9

A Recursive Valued Method:
The Factorial of n

•  A method�s local
environment includes:!
–  The method�s local

variables!
–  A copy of the actual

value arguments!
–  A return address in the

calling routine!
–  The value of the

method itself !

Figure 3-3
A box

14/46 Chapter-03.pdf (14/46)2015-09-17 10:53:18

15/46 Chapter-03.pdf (15/46)2015-09-17 10:53:18

© 2011 Pearson Addison-Wesley. All rights reserved 3-10

A Recursive void Method:
Writing a String Backward

•  Problem!
–  Given a string of characters, write it in reverse order!

•  Recursive solution!
–  Each recursive step of the solution diminishes by 1 the

length of the string to be written backward!
–  Base case!

•  Write the empty string backward!

16/46 Chapter-03.pdf (16/46)2015-09-17 10:53:18

© 2011 Pearson Addison-Wesley. All rights reserved 3-11

A Recursive void Method:
Writing a String Backward

Figure 3-6
A recursive solution

17/46 Chapter-03.pdf (17/46)2015-09-17 10:53:19

© 2011 Pearson Addison-Wesley. All rights reserved 3-12

A Recursive void Method:
Writing a String Backward

•  Execution of writeBackward can be traced
using the box trace!

•  Temporary System.out.println statements
can be used to debug a recursive method!

18/46 Chapter-03.pdf (18/46)2015-09-17 10:53:19

© 2011 Pearson Addison-Wesley. All rights reserved 3-13

Counting Things

•  Next three problems!
–  Require you to count certain events or combinations of

events or things!
–  Contain more than one base cases!
–  Are good examples of inefficient recursive solutions!

19/46 Chapter-03.pdf (19/46)2015-09-17 10:53:19

© 2011 Pearson Addison-Wesley. All rights reserved 3-14

Multiplying Rabbits
(The Fibonacci Sequence)

•  �Facts� about rabbits!
–  Rabbits never die!
–  A rabbit reaches sexual maturity exactly two months

after birth, that is, at the beginning of its third month of
life!

–  Rabbits are always born in male-female pairs!
•  At the beginning of every month, each sexually

mature male-female pair gives birth to exactly one
male-female pair!

20/46 Chapter-03.pdf (20/46)2015-09-17 10:53:19

© 2011 Pearson Addison-Wesley. All rights reserved 3-15

Multiplying Rabbits
(The Fibonacci Sequence)

•  Problem!
–  How many pairs of rabbits are alive in month n?!

•  Recurrence relation!
!rabbit(n) = rabbit(n-1) + rabbit(n-2)!

21/46 Chapter-03.pdf (21/46)2015-09-17 10:53:19

© 2011 Pearson Addison-Wesley. All rights reserved 3-16

Multiplying Rabbits
(The Fibonacci Sequence)

Figure 3-10
Recursive solution to the rabbit problem

22/46 Chapter-03.pdf (22/46)2015-09-17 10:53:19

© 2011 Pearson Addison-Wesley. All rights reserved 3-17

Multiplying Rabbits
(The Fibonacci Sequence)

•  Base cases!
–  rabbit(2), rabbit(1)!

•  Recursive definition!
!rabbit(n) = 1 ! ! ! !if n is 1 or 2!
! ! ! rabbit(n-1) + rabbit(n-2) !if n > 2!

•  Fibonacci sequence!
–  The series of numbers rabbit(1), rabbit(2), rabbit(3),

and so on!

23/46 Chapter-03.pdf (23/46)2015-09-17 10:53:19

24/46 Chapter-03.pdf (24/46)2015-09-17 10:53:19

© 2011 Pearson Addison-Wesley. All rights reserved 3-18

Organizing a Parade

•  Rules about organizing a parade!
–  The parade will consist of bands and floats in a single

line!
–  One band cannot be placed immediately after another!

•  Problem!
–  How many ways can you organize a parade of length n?!

25/46 Chapter-03.pdf (25/46)2015-09-17 10:53:19

© 2011 Pearson Addison-Wesley. All rights reserved 3-19

Organizing a Parade

•  Let:!
–  P(n) be the number of ways to organize a parade of

length n!
–  F(n) be the number of parades of length n that end with

a float!
–  B(n) be the number of parades of length n that end with

a band!
•  Then!

–  P(n) = F(n) + B(n)!

26/46 Chapter-03.pdf (26/46)2015-09-17 10:53:19

© 2011 Pearson Addison-Wesley. All rights reserved 3-20

Organizing a Parade

•  Number of acceptable parades of length n that end
with a float!
!F(n) = P(n-1)!

•  Number of acceptable parades of length n that end
with a band!
!B(n) = F(n-1)!

•  Number of acceptable parades of length n!
– P(n) = P(n-1) + P(n-2)!

27/46 Chapter-03.pdf (27/46)2015-09-17 10:53:19

© 2011 Pearson Addison-Wesley. All rights reserved 3-21

Organizing a Parade

•  Base cases!
!P(1) = 2!(The parades of length 1 are float and band.)!
!P(2) = 3!(The parades of length 2 are float-float, band-
! !float, and float-band.)!

•  Solution!
!P(1) = 2!
!P(2) = 3!
!P(n) = P(n-1) + P(n-2) !for n > 2!

28/46 Chapter-03.pdf (28/46)2015-09-17 10:53:19

© 2011 Pearson Addison-Wesley. All rights reserved 3-22

Mr. Spock�s Dilemma
(Choosing k out of n Things)

•  Problem!
–  How many different choices are possible for exploring

k planets out of n planets in a solar system?!
•  Let!

–  c(n, k) be the number of groups of k planets chosen
from n!

29/46 Chapter-03.pdf (29/46)2015-09-17 10:53:19

© 2011 Pearson Addison-Wesley. All rights reserved 3-23

Mr. Spock�s Dilemma
(Choosing k out of n Things)

•  In terms of Planet X:!
!c(n, k) = (the number of groups of k planets that
! ! include Planet X)!
! ! +!
! ! (the number of groups of k planets that
! ! do not include Planet X) !

30/46 Chapter-03.pdf (30/46)2015-09-17 10:53:19

© 2011 Pearson Addison-Wesley. All rights reserved 3-24

Mr. Spock�s Dilemma
(Choosing k out of n Things)

•  The number of ways to choose k out of n things is
the sum of!
–  The number of ways to choose k-1 out of n-1 things!
!and!

–  The number of ways to choose k out of n-1 things!

!c(n, k) = c(n-1, k-1) + c(n-1, k)!

31/46 Chapter-03.pdf (31/46)2015-09-17 10:53:19

© 2011 Pearson Addison-Wesley. All rights reserved 3-25

Mr. Spock�s Dilemma
(Choosing k out of n Things)

•  Base cases!
–  There is one group of everything!

!c(k, k) = 1!
–  There is one group of nothing!

!c(n, 0) = 1!
–  c(n, k) = 0 !if k > n!

32/46 Chapter-03.pdf (32/46)2015-09-17 10:53:20

© 2011 Pearson Addison-Wesley. All rights reserved 3-26

Mr. Spock�s Dilemma
(Choosing k out of n Things)

•  Recursive solution!
! ! 1 ! ! ! ! if k = 0!
!c(n, k) = 1 ! ! ! ! if k = n!
! ! ! 0 ! ! ! ! if k > n!
! ! ! c(n-1, k-1) + c(n-1, k) ! if 0 < k < n!

33/46 Chapter-03.pdf (33/46)2015-09-17 10:53:20

© 2011 Pearson Addison-Wesley. All rights reserved 3-27

Searching an Array:
Finding the Largest Item in an
Array
•  A recursive solution!

 if (anArray has only one item) {
 maxArray(anArray) is the item in anArray
 }
 else if (anArray has more than one item) {
 maxArray(anArray) is the maximum of
 maxArray(left half of anArray) and
 maxArray(right half of anArray)
 } // end if

34/46 Chapter-03.pdf (34/46)2015-09-17 10:53:20

© 2011 Pearson Addison-Wesley. All rights reserved 3-28

Finding the Largest Item in an
Array

Figure 3-13
Recursive solution to the largest-item problem

35/46 Chapter-03.pdf (35/46)2015-09-17 10:53:20

© 2011 Pearson Addison-Wesley. All rights reserved 3-29

Binary Search

•  A high-level binary search!
!if (anArray is of size 1) {
 Determine if anArray�s item is equal to value
 }
 else {
 Find the midpoint of anArray
 Determine which half of anArray contains value
 if (value is in the first half of anArray) {
 binarySearch (first half of anArray, value)
 }
 else {
 binarySearch(second half of anArray, value)
 } // end if
 } // end if

36/46 Chapter-03.pdf (36/46)2015-09-17 10:53:20

© 2011 Pearson Addison-Wesley. All rights reserved 3-30

Binary Search

•  Implementation issues:!
–  How will you pass �half of anArray� to the recursive

calls to binarySearch?!
–  How do you determine which half of the array contains

value?!
–  What should the base case(s) be?!
–  How will binarySearch indicate the result of the

search?!

37/46 Chapter-03.pdf (37/46)2015-09-17 10:53:20

© 2011 Pearson Addison-Wesley. All rights reserved 3-31

Finding the kth Smallest Item in
an Array

•  The recursive solution proceeds by:!
1.  Selecting a pivot item in the array!
2.  Cleverly arranging, or partitioning, the items in the

array about this pivot item!
3.  Recursively applying the strategy to one of the

partitions !

38/46 Chapter-03.pdf (38/46)2015-09-17 10:53:20

© 2011 Pearson Addison-Wesley. All rights reserved 3-32

Finding the kth Smallest Item in
an Array

Figure 3-18
A partition about a pivot

39/46 Chapter-03.pdf (39/46)2015-09-17 10:53:20

© 2011 Pearson Addison-Wesley. All rights reserved 3-33

Finding the kth Smallest Item in
an Array

•  Let: !
!kSmall(k, anArray, first, last) =
 kth smallest item in anArray[first..last]

•  Solution:!
kSmall(k, anArray, first, last)
 kSmall(k, anArray, first, pivotIndex-1)
 if k < pivotIndex – first + 1

= if k = pivotIndex – first + 1
 p
 kSmall(k-(pivotIndex-first+1), anArray,
 pivotIndex+1, last)
 if k > pivotIndex – first + 1

40/46 Chapter-03.pdf (40/46)2015-09-17 10:53:20

© 2011 Pearson Addison-Wesley. All rights reserved 3-34

Organizing Data:
The Towers of Hanoi

Figure 3-19a and b
a) The initial state; b) move n - 1 disks from A to C

41/46 Chapter-03.pdf (41/46)2015-09-17 10:53:20

© 2011 Pearson Addison-Wesley. All rights reserved 3-35

The Towers of Hanoi

Figure 3-19c and d
c) move one disk from A to B; d) move n - 1 disks from C to B

42/46 Chapter-03.pdf (42/46)2015-09-17 10:53:20

© 2011 Pearson Addison-Wesley. All rights reserved 3-36

The Towers of Hanoi

•  Pseudocode solution!
!solveTowers(count, source, destination, spare)
 if (count is 1) {
 Move a disk directly from source to destination
 }
 else {
 solveTowers(count-1, source, spare, destination)
 solveTowers(1, source, destination, spare)
 solveTowers(count-1, spare, destination, source)
 } //end if

43/46 Chapter-03.pdf (43/46)2015-09-17 10:53:20

© 2011 Pearson Addison-Wesley. All rights reserved 3-37

Recursion and Efficiency

•  Some recursive solutions are so inefficient that
they should not be used!

•  Factors that contribute to the inefficiency of some
recursive solutions!
–  Overhead associated with method calls!
–  Inherent inefficiency of some recursive algorithms!

44/46 Chapter-03.pdf (44/46)2015-09-17 10:53:20

© 2011 Pearson Addison-Wesley. All rights reserved 3-38

Summary

•  Recursion solves a problem by solving a smaller
problem of the same type!

•  Four questions to keep in mind when constructing
a recursive solution!
–  How can you define the problem in terms of a smaller

problem of the same type?!
–  How does each recursive call diminish the size of the

problem?!
–  What instance of the problem can serve as the base

case?!
–  As the problem size diminishes, will you reach this

base case?!

45/46 Chapter-03.pdf (45/46)2015-09-17 10:53:20

© 2011 Pearson Addison-Wesley. All rights reserved 3-39

Summary

•  A recursive call�s postcondition can be assumed
to be true if its precondition is true!

•  The box trace can be used to trace the actions of a
recursive method!

•  Recursion can be used to solve problems whose
iterative solutions are difficult to conceptualize!

46/46 Chapter-03.pdf (46/46)2015-09-17 10:53:20

© 2011 Pearson Addison-Wesley. All rights reserved 3-40

Summary

•  Some recursive solutions are much less efficient
than a corresponding iterative solution due to their
inherently inefficient algorithms and the overhead
of method calls!

•  If you can easily, clearly, and efficiently solve a
problem by using iteration, you should do so!

