
1/58 Chapter-05.pdf (#8)2015-09-30 20:22:48

5 A-1

 Chapter 5

! ! Linked Lists!

© 2011 Pearson Addison-Wesley. All rights reserved

2/58 Chapter-05.pdf (2/58)2015-09-30 20:22:48

© 2011 Pearson Addison-Wesley. All rights reserved 5 A-2

Preliminaries

•  Options for implementing an ADT!
–  Array!

•  Has a fixed size!
•  Data must be shifted during insertions and deletions!

–  Linked list!
•  Is able to grow in size as needed!
•  Does not require the shifting of items during

insertions and deletions!

3/58 Chapter-05.pdf (3/58)2015-09-30 20:22:48

© 2011 Pearson Addison-Wesley. All rights reserved 5 A-3

Preliminaries

Figure 5-1
a) A linked list of integers; b) insertion; c) deletion

4/58 Chapter-05.pdf (4/58)2015-09-30 20:22:48

© 2011 Pearson Addison-Wesley. All rights reserved 5 A-4

Object References

•  A reference variable!
–  Contains the location of an object!
–  Example!

!Integer intRef;
 intRef = new Integer(5);

–  As a data field of a class!
•  Has the default value null

–  A local reference variable to a method!
•  Does not have a default value!

5/58 Chapter-05.pdf (5/58)2015-09-30 20:22:48

© 2011 Pearson Addison-Wesley. All rights reserved 5 A-5

Object References

Figure 5-2
A reference to an

Integer object

6/58 Chapter-05.pdf (6/58)2015-09-30 20:22:48

© 2011 Pearson Addison-Wesley. All rights reserved 5 A-6

Object References

•  When one reference variable is assigned to
another reference variable, both references then
refer to the same object!
!Integer p, q;
 p = new Integer(6);
 q = p;

•  A reference variable that no longer references any
object is marked for garbage collection!

7/58 Chapter-05.pdf (7/58)2015-09-30 20:22:48

© 2011 Pearson Addison-Wesley. All rights reserved 5 A-7

Object References

Figure 5-3a-d
a) Declaring reference
variables; b) allocating an
object; c) allocating another
object, with the dereferenced
object marked for garbage
collection

8/58 Chapter-05.pdf (8/58)2015-09-30 20:22:49

© 2011 Pearson Addison-Wesley. All rights reserved 5 A-8

Object References

Figure 5-3e-g
e) allocating an object; f)

assigning null to a
reference variable; g)
assigning a reference with
a null value

9/58 Chapter-05.pdf (9/58)2015-09-30 20:22:49

© 2011 Pearson Addison-Wesley. All rights reserved 5 A-9

Object References

•  An array of objects!
–  Is actually an array of references to the objects!
–  Example!

 Integer[] scores = new Integer[30];
–  Instantiating Integer objects for each array reference!

!scores[0] = new Integer(7);
 scores[1] = new Integer(9); // and so on …

10/58 Chapter-05.pdf (10/58)2015-09-30 20:22:49

© 2011 Pearson Addison-Wesley. All rights reserved 5 A-10

Object References

•  Equality operators (== and !=)!
–  Compare the values of the reference variables, not the

objects that they reference!
•  equals method!

–  Compares objects field by field!
•  When an object is passed to a method as an

argument, the reference to the object is copied to
the method�s formal parameter!

•  Reference-based ADT implementations and data
structures use Java references !

11/58 Chapter-05.pdf (11/58)2015-09-30 20:22:49

12/58 Chapter-05.pdf (12/58)2015-09-30 20:22:49

© 2011 Pearson Addison-Wesley. All rights reserved 5 A-11

Resizable Arrays

•  The number of references in a Java array is of
fixed size!

•  Resizable array!
–  An array that grows and shrinks as the program

executes!
–  An illusion that is created by using an allocate and copy

strategy with fixed-size arrays!
•  java.util.Vector class!

–  Uses a similar technique to implement a growable array
of objects!

13/58 Chapter-05.pdf (13/58)2015-09-30 20:22:49

© 2011 Pearson Addison-Wesley. All rights reserved 5 A-12

Reference-Based Linked Lists

•  Linked list!
–  Contains nodes that are linked to one

another!
–  A node contains both data and a link to

the next item!
–  Access is package-private!

package List;
class Node {
 Object item;
 Node next;
 // constructors, accessors,
 // and mutators …
} // end class Node

Figure 5-5
A node

14/58 Chapter-05.pdf (14/58)2015-09-30 20:22:49

© 2011 Pearson Addison-Wesley. All rights reserved 5 A-13

Reference-Based Linked Lists
•  Using the Node class!

 Node n = new Node (new Integer(6));
 Node first = new Node (new Integer(9), n);

Figure 5-7
Using the Node constructor to initialize a data field and a link value

15/58 Chapter-05.pdf (15/58)2015-09-30 20:22:49

© 2011 Pearson Addison-Wesley. All rights reserved 5 A-14

Reference-Based Linked Lists

•  Data field next in the last node is set to null
•  head reference variable!

–  References the list�s first node!
–  Always exists even when the list is empty!

Figure 5-8
A head reference to a linked list

16/58 Chapter-05.pdf (16/58)2015-09-30 20:22:49

© 2011 Pearson Addison-Wesley. All rights reserved 5 A-15

Reference-Based Linked Lists

•  head reference variable can be assigned null without first
using new
–  Following sequence results in a lost node!

 head = new Node(); // Don�t really need to use new here
 head = null; // since we lose the new Node object here

Figure 5-9
A lost node

17/58 Chapter-05.pdf (17/58)2015-09-30 20:22:49

© 2011 Pearson Addison-Wesley. All rights reserved 5 A-16

Programming with Linked Lists:
Displaying the Contents of a
Linked List
•  curr reference variable!

–  References the current node!
–  Initially references the first node!

•  To display the data portion of the current node!
!System.out.println(curr.item);

•  To advance the current position to the next node!
 curr = curr.next;!

18/58 Chapter-05.pdf (18/58)2015-09-30 20:22:49

© 2011 Pearson Addison-Wesley. All rights reserved 5 A-17

Displaying the Contents of a
Linked List

Figure 5-10
The effect of the assignment curr = curr.next

19/58 Chapter-05.pdf (19/58)2015-09-30 20:22:50

© 2011 Pearson Addison-Wesley. All rights reserved 5 A-18

Displaying the Contents of a
Linked List

•  To display all the data items in a linked list!
 for (Node curr = head; curr != null; curr =
 curr.next) {

 System.out.println(curr.item);
 } // end for

!

20/58 Chapter-05.pdf (20/58)2015-09-30 20:22:50

© 2011 Pearson Addison-Wesley. All rights reserved 5 A-19

Deleting a Specified Node from a
Linked List
•  To delete node N which curr references!

–  Set next in the node that precedes N to reference the node that
follows N !
!prev.next = curr.next;

Figure 5-11
Deleting a node from a linked list

21/58 Chapter-05.pdf (21/58)2015-09-30 20:22:50

© 2011 Pearson Addison-Wesley. All rights reserved 5 A-20

Deleting a Specified Node from a
Linked List

•  Deleting the first node is a special case!
!head = head.next;

Figure 5-12
Deleting the first node

22/58 Chapter-05.pdf (22/58)2015-09-30 20:22:50

© 2011 Pearson Addison-Wesley. All rights reserved 5 A-21

Deleting a Specified Node from a
Linked List

•  To return a node that is no longer needed to the
system!
!curr.next = null;
 curr = null;

•  Three steps to delete a node from a linked list!
–  Locate the node that you want to delete!
–  Disconnect this node from the linked list by changing

references!
–  Return the node to the system!

23/58 Chapter-05.pdf (23/58)2015-09-30 20:22:50

© 2011 Pearson Addison-Wesley. All rights reserved 5 A-22

Inserting a Node into a Specified
Position of a Linked List
•  To create a node for the new item!

!newNode = new Node(item);!
•  To insert a node between two nodes!

!newNode.next = curr;
 prev.next = newNode;

Figure 5-13
Inserting a new node into a linked list

24/58 Chapter-05.pdf (24/58)2015-09-30 20:22:50

© 2011 Pearson Addison-Wesley. All rights reserved 5 A-23

Inserting a Node into a Specified
Position of a Linked List
•  To insert a node at the beginning of a linked list!

!newNode.next = head;
 head = newNode;

Figure 5-14
Inserting at the beginning of a linked list

25/58 Chapter-05.pdf (25/58)2015-09-30 20:22:50

© 2011 Pearson Addison-Wesley. All rights reserved 5 A-24

Inserting a Node into a Specified
Position of a Linked List
•  Inserting at the end of a linked list is not a special case if
curr is null
 newNode.next = curr;
 prev.next = newNode;!

Figure 5-15
Inserting at the end of

a linked list

26/58 Chapter-05.pdf (26/58)2015-09-30 20:22:50

© 2011 Pearson Addison-Wesley. All rights reserved 5 A-25

Inserting a Node into a Specified
Position of a Linked List

•  Three steps to insert a new node into a linked list!
–  Determine the point of insertion!
–  Create a new node and store the new data in it!
–  Connect the new node to the linked list by changing

references!

27/58 Chapter-05.pdf (27/58)2015-09-30 20:22:50

© 2011 Pearson Addison-Wesley. All rights reserved 5 A-26

Determining curr and prev

•  Determining the point of insertion or deletion for a
sorted linked list of objects!
!for (prev = null, curr = head;
 (curr != null) &&
 (newValue.compareTo(curr.item) > 0);
 prev = curr, curr = curr.next) {
 } // end for

28/58 Chapter-05.pdf (28/58)2015-09-30 20:22:50

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-27

A Reference-Based
Implementation of the ADT List

•  A reference-based implementation of the ADT list!
–  Does not shift items during insertions and deletions!
–  Does not impose a fixed maximum length on the list !

Figure 5-18
A reference-based implementation of the ADT list

29/58 Chapter-05.pdf (29/58)2015-09-30 20:22:51

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-28

A Reference-Based
Implementation of the ADT List

•  Default constructor!
–  Initializes the data fields numItems and head

•  List operations!
–  Public methods!

•  isEmpty!
•  size!
•  add!
•  remove!
•  get!
•  removeAll!

–  Private method!
•  find!

30/58 Chapter-05.pdf (30/58)2015-09-30 20:22:51

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-29

Comparing Array-Based and
Referenced-Based
Implementations
•  Size!

–  Array-based!
•  Fixed size!

–  Issues!
»  Can you predict the maximum number of items in the

ADT?!
»  Will an array waste storage?!

– Resizable array!
»  Increasing the size of a resizable array can waste

storage and time!

31/58 Chapter-05.pdf (31/58)2015-09-30 20:22:51

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-30

Comparing Array-Based and
Referenced-Based
Implementations
•  Size (Continued)!

–  Reference-based!
•  Do not have a fixed size!

–  Do not need to predict the maximum size of the list!
–  Will not waste storage!

•  Storage requirements!
–  Array-based!

•  Requires less memory than a reference-based implementation!
–  There is no need to store explicitly information about where to

find the next data item!

32/58 Chapter-05.pdf (32/58)2015-09-30 20:22:51

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-31

Comparing Array-Based and
Referenced-Based
Implementations
•  Storage requirements (Continued)!

–  Reference-based!
•  Requires more storage!

–  An item explicitly references the next item in the list!

•  Access time!
–  Array-based!

•  Constant access time!
–  Reference-based!

•  The time to access the ith node depends on i!

33/58 Chapter-05.pdf (33/58)2015-09-30 20:22:51

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-32

Comparing Array-Based and
Referenced-Based
Implementations
•  Insertion and deletions!

–  Array-based!
•  Require you to shift the data!

–  Reference-based!
•  Do not require you to shift the data!
•  Require a list traversal!

34/58 Chapter-05.pdf (34/58)2015-09-30 20:22:51

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-33

Passing a Linked List to a
Method
•  A method with access to a linked list�s head reference

has access to the entire list!
•  When head is an actual argument to a method, its value is

copied into the corresponding formal parameter!

Figure 5-19
A head reference as an argument

35/58 Chapter-05.pdf (35/58)2015-09-30 20:22:51

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-34

Processing Linked Lists
Recursively

•  Traversal!
–  Recursive strategy to display a list!

!Write the first node of the list!
!Write the list minus its first node!

–  Recursive strategies to display a list backward !
• writeListBackward strategy!

!Write the last node of the list!
!Write the list minus its last node backward!

• writeListBackward2 strategy!
!Write the list minus its first node backward!
!Write the first node of the list!

36/58 Chapter-05.pdf (36/58)2015-09-30 20:22:51

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-35

Processing Linked Lists
Recursively

•  Insertion!
–  Recursive view of a sorted linked list!

The linked list that head references is a sorted linked list if!
head is null (the empty list is a sorted linked list)!
or!
head.next is null (a list with a single node is a!
sorted linked list)!
or!
head.item < head.next.item,!
and head.next references a sorted linked list!

37/58 Chapter-05.pdf (37/58)2015-09-30 20:22:51

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-36

Variations of the Linked List:
Tail References
•  tail references

–  Remembers where the end of the linked list is!
–  To add a node to the end of a linked list!

tail.next = new Node(request, null);!

Figure 5-22
A linked list with head and tail references

38/58 Chapter-05.pdf (38/58)2015-09-30 20:22:51

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-37

Circular Linked List

•  Last node references the first node!
•  Every node has a successor!

Figure 5-23
A circular linked list

39/58 Chapter-05.pdf (39/58)2015-09-30 20:22:51

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-38

Circular Linked List

Figure 5-24
A circular linked list with an external reference to the last node

40/58 Chapter-05.pdf (40/58)2015-09-30 20:22:51

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-39

Dummy Head Nodes

•  Dummy head node!
–  Always present, even when the linked list is empty!
–  Insertion and deletion algorithms initialize prev to

reference the dummy head node, rather than null

Figure 5-25
A dummy head node

41/58 Chapter-05.pdf (41/58)2015-09-30 20:22:52

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-40

Doubly Linked List

•  Each node references both its predecessor and its successor!
•  Dummy head nodes are useful in doubly linked lists!

Figure 5-26
A doubly linked list

42/58 Chapter-05.pdf (42/58)2015-09-30 20:22:52

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-41

Doubly Linked List

•  Circular doubly linked list!
–  preceding reference of the dummy head node

references the last node!
–  next reference of the last node references the dummy

head node!
–  Eliminates special cases for insertions and deletions!

43/58 Chapter-05.pdf (43/58)2015-09-30 20:22:52

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-42

Doubly Linked List

Figure 5-27
a) A circular doubly linked list with a dummy head node; b) an empty list with a
dummy head node

44/58 Chapter-05.pdf (44/58)2015-09-30 20:22:52

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-43

Doubly Linked List
•  To delete the node that curr references!

curr.preceding.next = curr.next;!
curr.next.preceding = curr.preceding; !

Figure 5-28
Reference changes for deletion

45/58 Chapter-05.pdf (45/58)2015-09-30 20:22:52

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-44

Doubly Linked List
•  To insert a new node that newNode references before the

node referenced by curr !
newNode.next = curr;!
newNode.preceding = curr.preceding;!
curr.preceding = newNode;!
newNode.preceding.next = newNode; !

Figure 5-29
Reference changes

for insertion

46/58 Chapter-05.pdf (46/58)2015-09-30 20:22:52

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-45

Application: Maintaining an
Inventory
•  Stages of the problem-solving process!

–  Design of a solution!
–  Implementation of the solution!
–  Final set of refinements to the program!

•  Operations on the inventory!
–  List the inventory in alphabetical order by title (L

command)!
–  Find the inventory item associated with title (I, M, D,

O, and S commands)!
–  Replace the inventory item associated with a title (M,

D, R, and S commands)!
–  Insert new inventory items (A and D commands)!

47/58 Chapter-05.pdf (47/58)2015-09-30 20:22:52

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-46

The Java Collections Framework

•  Implements many of the more commonly used
ADTs

•  Collections framework
–  Unified architecture for representing and manipulating

collections
–  Includes

•  Interfaces
•  Implementations
•  Algorithms

48/58 Chapter-05.pdf (48/58)2015-09-30 20:22:52

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-47

Generics

•  JCF relies heavily on Java generics
•  Generics

–  Develop classes and interfaces and defer certain data-
type information

•  Until you are actually ready to use the class or interface

•  Definition of the class or interface is followed by
<E>
–  E represents the data type that client code will specify

49/58 Chapter-05.pdf (49/58)2015-09-30 20:22:52

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-48

Iterators

•  Iterator
–  Gives the ability to cycle through items in a collection
–  Access next item in a collection by using iter.next()

•  JCF provides two primary iterator interfaces
–  java.util.Iterator
–  java.util.ListIterator

•  Every ADT collection in the JCF have a method to
return an iterator object

50/58 Chapter-05.pdf (50/58)2015-09-30 20:22:52

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-49

Iterators

•  ListIterator methods
–  void add(E o)
–  boolean hasNext()
–  boolean hasPrevious()
–  E next()
–  int nextIndex()
–  E previous()
–  int previousIndex()
–  void remove()
–  void set(E o)

51/58 Chapter-05.pdf (51/58)2015-09-30 20:22:52

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-50

The Java Collection�s Framework
List Interface

•  JCF provides an interface java.util.List
•  List interface supports an ordered collection

–  Also known as a sequence
•  Methods

–  boolean add(E o)
–  void add(int index, E element)
–  void clear()
–  boolean contains(Object o)
–  boolean equals(Object o)
–  E get(int index)
–  int indexOf(Object o)

52/58 Chapter-05.pdf (52/58)2015-09-30 20:22:53

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-51

The Java Collection�s Framework
List Interface

•  Methods (continued)
–  boolean isEmpty()
–  Iterator<E> iterator()
–  ListIterator<E> listIterator()
–  ListIterator<E> listIterator(int
index)

–  E remove(int index)
–  boolean remove(Object o)

53/58 Chapter-05.pdf (53/58)2015-09-30 20:22:53

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-52

The Java Collection�s Framework
List Interface

•  Methods (continued)
–  E set(int index, E element)
–  int size()
–  List<E> subList(int fromIndex, int
toIndex)

–  Object[] toArray()

54/58 Chapter-05.pdf (54/58)2015-09-30 20:22:53

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-53

Summary

•  Reference variables can be used to implement the
data structure known as a linked list!

•  Each reference in a linked list is a reference to the
next node in the list!

•  Algorithms for insertions and deletions in a linked
list involve!
–  Traversing the list from the beginning until you reach

the appropriate position!
–  Performing reference changes to alter the structure of

the list !

55/58 Chapter-05.pdf (55/58)2015-09-30 20:22:53

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-54

Summary

•  Inserting a new node at the beginning of a linked
list and deleting the first node of a linked list are
special cases!

•  An array-based implementation uses an implicit
ordering scheme; a reference-based
implementation uses an explicit ordering scheme!

•  Any element in an array can be accessed directly;
you must traverse a linked list to access a
particular node!

•  Items can be inserted into and deleted from a
reference-based linked list without shifting data!

56/58 Chapter-05.pdf (56/58)2015-09-30 20:22:53

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-55

Summary

•  The new operator can be used to allocate memory
dynamically for both an array and a linked list!
–  The size of a linked list can be increased one node at a

time more efficiently than that of an array!
•  A binary search of a linked list is impractical!
•  Recursion can be used to perform operations on a

linked list!
•  The recursive insertion algorithm for a sorted

linked list works because each smaller linked list
is also sorted!

57/58 Chapter-05.pdf (57/58)2015-09-30 20:22:53

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-56

Summary

•  A tail reference can be used to facilitate locating
the end of a list!

•  In a circular linked list, the last node references
the first node!

•  Dummy head nodes eliminate the special cases for
insertion into and deletion from the beginning of a
linked list!

•  A head record contains global information about a
linked list!

•  A doubly linked list allows you to traverse the list
in either direction!

58/58 Chapter-05.pdf (58/58)2015-09-30 20:22:53

© 2011 Pearson Addison-Wesley. All rights reserved 5 B-57

 Summary

•  Generic class or interface
–  Enables you to defer the choice of certain data-type

information until its use
•  Java Collections Framework

–  Contains interfaces, implementations, and algorithms
for many common ADTs

•  Collection
–  Object that holds other objects
–  Iterator cycles through its contents

