Pattern Matching

Strings

- A string is a sequence of characters
- Examples of strings:
 - Python program
 - HTML document
 - DNA sequence
 - Digitized image
- An alphabet Σ is the set of possible characters for a family of strings
- Example of alphabets:
 - ASCII
 - Unicode
 - $\{0, 1\}$
 - $\{A, C, G, T\}$

Let P be a string of size m
- A substring $P[i..j]$ of P is the subsequence of P consisting of the characters with ranks between i and j
- A prefix of P is a substring of the type $P[0..i]$
- A suffix of P is a substring of the type $P[i..m-1]$
- Given strings T (text) and P (pattern), the pattern matching problem consists of finding a substring of T equal to P
- Applications:
 - Text editors
 - Search engines
 - Biological research
Brute-Force Pattern Matching

- The brute-force pattern matching algorithm compares the pattern P with the text T for each possible shift of P relative to T, until either
 - a match is found, or
 - all placements of the pattern have been tried
- Brute-force pattern matching runs in time $O(nm)$
- Example of worst case:
 - $T = \text{aaa ... ah}$
 - $P = \text{aaah}$
 - may occur in images and DNA sequences
 - unlikely in English text

Algorithm $\text{BruteForceMatch}(T, P)$

Input
- text T of size n
- pattern P of size m

Output
- starting index of a substring of T equal to P or -1 if no such substring exists

for $i \leftarrow 0$ to $n - m$

{ test shift i of the pattern }

$j \leftarrow 0$

while $j < m$ ∧ $T[i + j] = P[j]$

$j \leftarrow j + 1$

if $j = m$

return i {match at i}

else

break while loop {mismatch}

return -1 {no match anywhere}

Boyer-Moore Heuristics

- The Boyer-Moore's pattern matching algorithm is based on two heuristics
 - **Looking-glass heuristic:** Compare P with a subsequence of T moving backwards
 - **Character-jump heuristic:** When a mismatch occurs at $T[i] = c$
 - If P contains c, shift P to align the last occurrence of c in P with $T[i]$
 - Else, shift P to align $P[0]$ with $T[i + 1]$

- Example

```
1 3 5 11 10 9 8 7
```

© 2014 Goodrich, Tamassia, Goldwasser
Last-Occurrence Function

- Boyer-Moore’s algorithm preprocesses the pattern P and the alphabet Σ to build the last-occurrence function L mapping Σ to integers, where $L(c)$ is defined as
 - the largest index i such that $P[i] = c$ or
 - -1 if no such index exists

- **Example:**
 - $\Sigma = \{a, b, c, d\}$
 - $P = abacab$
 - The last-occurrence function can be represented by an array indexed by the numeric codes of the characters
 - The last-occurrence function can be computed in time $O(m + s)$, where m is the size of P and s is the size of Σ

The Boyer-Moore Algorithm

```plaintext
Algorithm BoyerMooreMatch(T, P, \Sigma)

1. $L \leftarrow$ lastOccurrenceFunction($P$, $\Sigma$)
2. $i \leftarrow m - 1$
3. $j \leftarrow m - 1$
4. repeat
   1. if $T[i] = P[j]$
      1. if $j = 0$
         1. return $i$ { match at $i$ }
      2. else
         1. $i \leftarrow i - 1$
         2. $j \leftarrow j - 1$
   2. else { character-jump }
      1. $l \leftarrow L[T[i]]$
      2. $i \leftarrow i + m - \min(j, 1 + l)$
      3. $j \leftarrow m - 1$
6. until $i > n - 1$
7. return $-1$ { no match }
```

Case 1: $j \leq 1 + l$

```
... a ... i ...
... b a ...
... j I ...
... m - j ...
... b a ...
```

Case 2: $1 + l \leq j$

```
... a ... i ...
... b ...
... j I ...
... m - (1 + l) ...
... a ... b ...
```

© 2014 Goodrich, Tamassia, Goldwasser Pattern Matching
Example

```
   string S = a b a c a a b a d c a b a c a b a a b b
   pattern P = a b a c a
```

Analysis

- **Boyer-Moore**'s algorithm runs in time $O(nm + s)$
- Example of worst case:
 - $T = \text{aaa ... a}$
 - $P = \text{baaa}$
- The worst case may occur in images and DNA sequences but is unlikely in English text
- **Boyer-Moore**'s algorithm is significantly faster than the brute-force algorithm on English text
The KMP Algorithm

- Knuth-Morris-Pratt’s algorithm compares the pattern to the text in left-to-right, but shifts the pattern more intelligently than the brute-force algorithm.
- When a mismatch occurs, what is the most we can shift the pattern so as to avoid redundant comparisons?
- Answer: the largest prefix of $P[0..j]$ that is a suffix of $P[1..j]$.

No need to repeat these comparisons
Resume comparing here
KMP Failure Function

- Knuth-Morris-Pratt’s algorithm preprocesses the pattern to find matches of prefixes of the pattern with the pattern itself.
- The failure function $F(j)$ is defined as the size of the largest prefix of $P[0..j]$ that is also a suffix of $P[1..j]$.
- Knuth-Morris-Pratt’s algorithm modifies the brute-force algorithm so that if a mismatch occurs at $P[j] \neq T[i]$ we set $j \leftarrow F(j - 1)$.

The KMP Algorithm

- The failure function can be represented by an array and can be computed in $O(m)$ time.
- At each iteration of the while-loop, either:
 - i increases by one, or
 - the shift amount $i - j$ increases by at least one (observe that $F(j - 1) < j$).
- Hence, there are no more than $2n$ iterations of the while-loop.
- Thus, KMP’s algorithm runs in optimal time $O(m + n)$.

Algorithm KMPMatch(T, P)

```plaintext
F \leftarrow \text{failureFunction}(P)
i \leftarrow 0
j \leftarrow 0
while i < n
  if $T[i] = P[j]$
    if $j = m - 1$
      return $i - j$ { match }
    else
      $i \leftarrow i + 1$
      $j \leftarrow j + 1$
  else
    if $j > 0$
      $j \leftarrow F(j - 1)$
    else
      $i \leftarrow i + 1$
return -1 { no match }
```
Computing the Failure Function

- The failure function can be represented by an array and can be computed in $O(m)$ time.
- The construction is similar to the KMP algorithm itself.
- At each iteration of the while-loop, either
 - i increases by one, or
 - the shift amount $i - j$ increases by at least one (observe that $F(j - 1) < j$).
- Hence, there are no more than $2m$ iterations of the while-loop.

Algorithm $\text{failureFunction}(P)$

```
F[0] ← 0
i ← 1
j ← 0
while $i < m$
    if $P[i] = P[j]$
        {we have matched $j + 1$ chars}
        $F[i] ← j + 1$
        $i ← i + 1$
        $j ← j + 1$
    else if $j > 0$
        {use failure function to shift $P$}
        $j ← F[j - 1]$
    else
        $F[i] ← 0$ { no match }
        $i ← i + 1$
```

Example

```
Array P:
a b a c a a b a c a b a a b b

<table>
<thead>
<tr>
<th>j</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>P[j]</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>F(j)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
```

```
Java Implementation

```java
/** Returns the lowest index at which substring pattern begins in text (or else -1). */
public static int findKMP(char[] text, char[] pattern) {
 int n = text.length;
 int m = pattern.length;
 int fail[] = computeFailKMP(pattern); // computed by private utility
 int j = 0;
 int k = 0;
 while (j < n) {
 if (text[j] == pattern[k]) { // pattern[0..k] matched thus far
 j++; k++;
 if (k == m - 1) return j - m + 1; // match is complete
 } else if (k > 0) k = fail[k-1]; // otherwise, try to extend match
 }
 return -1; // reached end without match
}
```

---

Java Implementation, 2

```java
private static int[] computeFailKMP(char[] pattern) {
 int m = pattern.length;
 int fail[] = new int[m]; // by default, all overlaps are zero
 int j = 1;
 int k = 0;
 while (j < m) {
 if (pattern[j] == pattern[k]) { // k + 1 characters match thus far
 fail[j] = k + 1;
 j++; k++;
 } else if (k > 0) k = fail[k-1]; // k follows a matching prefix
 }
 return fail; // no match found starting at j
}
```