Bucket-Sort and Radix-Sort

Presentation for use with the textbook Data Structures and

and M. H. Goldwasser, Wiley, 2014

~

Algorithms in Java, 6 edition, by M. T. Goodrich, R. Tamassia,

N>

Bucket-Sort and Radix-Sort

~ED-E_

7.dH7.gH7. ]

s 12]* o]t o]e|o] {o]o]

0123 456 789

© 2014 Goodrich, Tamassia, Goldwasser Bucket-Sort and Radix-Sort 1

Bucket-Sort

@ Let be S be a sequence of n
(key, element) items with keys
in the range [0, N - 1]

@ Bucket-sort uses the keys as
indices into an auxiliary array B
of sequences (buckets)

Phase 1: Empty sequence S by
moving each entry (k, o) into its
bucket B[k]

Phase 2: Fori=0, ..., N- 1, move
the entries of bucket B[i] to the
end of sequence S

@ Analysis:
= Phase 1 takes O(n) time
= Phase 2 takes O(n + N) time
Bucket-sort takes O(n + N) time

«

Algorithm bucketSort(S):
Input: Sequence S of entries with
integer keys in the range [0, N — 1]
Output: Sequence S sorted in
nondecreasing order of the keys
let B be an array of N sequences,
each of which is initially empty
for each entry e in S do
k = the key of e
remove e from S
insert e at the end of bucket B[k]
fori=0toN-1do
for each entry e in B[i] do
remove e from B[i]
insert e at the end of S

© 2014 Goodrich, Tamassia, Goldwasser Bucket-Sort and Radix-Sort 2

3/29/14 21:33



Bucket-Sort and Radix-Sort

Example

@ Key range [0, 9]

(7,d}—1,¢ }—{3, 4]

B lol|d|o

o 1 2 3 4 5 6

(1e—3,a}—{3,5]

© 2014 Goodrich, Tamassia, Goldwasser Bucket-So

rt and Radix-Sort 3

Properties and

@ Key-type Property
= The keys are used as
indices into an array
and cannot be arbitrary
objects

= No external comparator

@ Stable Sort Property
= The relative order of
any two items with the
same key is preserved

Extensions

Extensions
= Integer keys in the range [a, b]
+ Put entry (k, o) into bucket
B[k — a]
= String keys from a set D of
possible strings, where D has
constant size (e.g., names of
the 50 U.S. states)

+ Sort D and compute the rank
r(k) of each string k of D in
the sorted sequence

+ Put entry (k, o) into bucket

after the execution of B[r(k)]
the algorithm
© 2014 Goodrich, Tamassia, Goldwasser Bucket-Sort and Radix-Sort 4

3/29/14 21:33



Bucket-Sort and Radix-Sort

Lexicographic Order

@ A d-tuple is a sequence of d keys (k,, k,, ..., k;), where
key k; is said to be the i-th dimension of the tuple

4 Example:

= The Cartesian coordinates of a point in space are a 3-tuple
# The lexicographic order of two d-tuples is recursively

defined as follows

(X1, X5, o0 X)) < V1, V25 w05 V)

<=

X <PV oX =P A (X eees X)) < (P25 000, V)
I.e., the tuples are compared by the first dimension,
then by the second dimension, etc.

© 2014 Goodrich, Tamassia, Goldwasser Bucket-Sort and Radix-Sort 5

‘Lexicographic-Sort

@ Let C; be the comparator

that compares two tuples by

their i-th dimension

@ Let stableSort(S, C) be a
stable sorting algorithm that
uses comparator C

@ Lexicographic-sort sorts a
sequence of d-tuples in
lexicographic order by
executing d times algorithm
stableSort, one per
dimension

@ Lexicographic-sort runs in
O(dT(n)) time, where T(n) is
the running time of
stableSort

Algorithm lexicographicSort(S)

Input sequence S of d-tuples
Output sequence S sorted in
lexicographic order

for i < d downto 1
stableSort(S, C,)

Example:

(7.4,6) (5,1,5) (2,4,6) (2, 1,4) (3,2, 4)
(2,1,4) (3,2,4) (5,1,5) (7,4,6) (2,4,6)
(2, 1,4) (5,1,5) (3, 2, 4) (7,4,6) (2,4,6)
(2, 1,4) (2.4,6) (3,2, 4) (5,1,5) (7,4,6)

© 2014 Goodrich, Tamassia, Goldwasser Bucket-Sort and Radix-Sort 6

3/29/14 21:33



Bucket-Sort and Radix-Sort

Radix-Sort

4 Radix-sort is a
specialization of
lexicographic-sort that
uses bucket-sort as the
stable sorting algorithm

in each dimension Algorithm radixSort(S, N)

@ Radix-sort is applicable Input sequence S of d-tuples such
to tuples where the that (0, ..., 0) =< (x, ..., x,) and
keys in each dimension i (e x) s(V-1, .., N- 1)
are integers in the for each tuple (x;, ..., x,) in.§

Output sequence .S sorted in
lexicographic order

for i < d downto |
O(d( n + N)) bucketSort(S, N)

range [0, N - 1]
€ Radix-sort runs in time

© 2014 Goodrich, Tamassia, Goldwasser Bucket-Sort and Radix-Sort 7

Radix-Sort for
Binary Numbers A
/ # Consider a sequence of n

b-bit integers
X =xb_1 cee xlxo

Cd

# We represent each element | Algorithm binaryRadixSort(S)
as a b-tuple of integers in I“Pi‘r‘liesgeeqr‘;ences of b:bit
Fggl)l;aggr? \[/\(I)i,t%]]\?ndZapply Output sequence S sorted

replace each element x

@ This application of the of § with the item (0, x)
radix-sort algorithm runs in fori< Otoh -1
O(bn) time replace the key k of

each item (k, x) of S
with bit x; of x

bucketSort(S, 2)

@ For example, we can sort a
sequence of 32-bit integers

in linear time

© 2014 Goodrich, Tamassia, Goldwasser Bucket-Sort and Radix-Sort 8

3/29/14 21:33



Bucket-Sort and Radix-Sort 3/29/14 21:33

Example

# Sorting a sequence of 4-bit integers

© 2014 Goodrich, Tamassia, Goldwasser Bucket-Sort and Radix-Sort 9




