Divide-and-Conquer

Divide-and conquer is a general algorithm design paradigm:

- **Divide**: divide the input data S in two or more disjoint subsets S_1, S_2, ...
- **Conquer**: solve the subproblems recursively
- **Combine**: combine the solutions for S_1, S_2, ..., into a solution for S

The base case for the recursion are subproblems of constant size

Analysis can be done using recurrence equations
Merge-Sort Review

- Merge-sort on an input sequence S with n elements consists of three steps:
 - *Divide:* partition S into two sequences S_1 and S_2 of about $n/2$ elements each
 - *Conquer:* recursively sort S_1 and S_2
 - *Combine:* merge S_1 and S_2 into a unique sorted sequence

Algorithm $\text{mergeSort}(S)$

<table>
<thead>
<tr>
<th>Input</th>
<th>sequence S with n elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>sequence S sorted according to C</td>
</tr>
</tbody>
</table>

if $S.size() > 1$

$(S_1, S_2) \leftarrow \text{partition}(S, n/2)$

$\text{mergeSort}(S_1)$

$\text{mergeSort}(S_2)$

$S \leftarrow \text{merge}(S_1, S_2)$

Recurrence Equation Analysis

- The conquer step of merge-sort consists of merging two sorted sequences, each with $n/2$ elements and implemented by means of a doubly linked list, takes at most bn steps, for some constant b.
- Likewise, the basis case ($n < 2$) will take at most b most steps.
- Therefore, if we let $T(n)$ denote the running time of merge-sort:

$$T(n) = \begin{cases}
 b & \text{if } n < 2 \\
 2T(n/2) + bn & \text{if } n \geq 2
\end{cases}$$

- We can therefore analyze the running time of merge-sort by finding a closed form solution to the above equation.
 - That is, a solution that has $T(n)$ only on the left-hand side.
Iterative Substitution

In the iterative substitution, or “plug-and-chug,” technique, we iteratively apply the recurrence equation to itself and see if we can find a pattern:

\[T(n) = 2T(n/2) + bn \]

\[= 2(2T(n/2^2) + b(n/2)) + bn \]
\[= 2^2 T(n/2^2) + 2bn \]
\[= 2^i T(n/2^i) + ibn \]
\[= 2^i T(n/2^i) + 4bn \]
\[= ... \]
\[= 2^i T(n/2^i) + ibn \]

Note that base, \(T(n) = b \), case occurs when \(2^i = n \). That is, \(i = \log n \).

So, \(T(n) = bn + bn \log n \)

Thus, \(T(n) \) is \(O(n \log n) \).

The Recursion Tree

Draw the recursion tree for the recurrence relation and look for a pattern:

\[T(n) = \begin{cases}
 b & \text{if } n < 2 \\
 2T(n/2) + bn & \text{if } n \geq 2
\end{cases} \]

<table>
<thead>
<tr>
<th>depth</th>
<th>T’s size</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1 n</td>
<td>(bn)</td>
</tr>
<tr>
<td>1</td>
<td>2 (n/2)</td>
<td>(bn)</td>
</tr>
<tr>
<td>(i)</td>
<td>(2^i) (n/2^i)</td>
<td>(bn)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Total time = \(bn + bn \log n \)
(last level plus all previous levels)
Guess-and-Test Method

In the guess-and-test method, we guess a closed form solution and then try to prove it is true by induction:

\[T(n) = \begin{cases}
 b & \text{if } n < 2 \\
 2T(n/2) + bn \log n & \text{if } n \geq 2
\end{cases} \]

Guess: \(T(n) < cn \log n \)

Wrong: we cannot make this last line be less than \(cn \log n \)

\[T(n) = 2T(n/2) + bn \log n \\ = 2(c(n/2)\log(n/2)) + bn \log n \\ = cn(\log n - \log 2) + bn \log n \\ = cn \log n - cn + bn \log n \]

Guess-and-Test Method, (cont.)

Recall the recurrence equation:

\[T(n) = \begin{cases}
 b & \text{if } n < 2 \\
 2T(n/2) + bn \log n & \text{if } n \geq 2
\end{cases} \]

Guess #2: \(T(n) < cn \log^2 n \)

\[T(n) = 2T(n/2) + bn \log n \\ = 2(c(n/2)\log^2(n/2)) + bn \log n \\ = cn(\log n - \log 2)^2 + bn \log n \\ = cn \log^2 n - 2cn \log n + cn + bn \log n \leq cn \log^2 n \]

- if \(c > b \).
- So, \(T(n) \) is \(O(n \log^2 n) \).
- In general, to use this method, you need to have a good guess and you need to be good at induction proofs.
Master Method (Appendix)

Many divide-and-conquer recurrence equations have the form:

\[T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
\end{cases} \]

The Master Theorem:

1. if \(f(n) = \Theta(n^{\log_b a - \epsilon}) \), then \(T(n) = \Theta(n^{\log_b a}) \)
2. if \(f(n) = \Theta(n^{\log_b a \log^k n}) \), then \(T(n) = \Theta(n^{\log_b a \log^{k+1} n}) \)
3. if \(f(n) = \Omega(n^{\log_b a + \epsilon}) \), then \(T(n) = \Theta(f(n)) \), provided \(af(n/b) \leq \delta f(n) \) for some \(\delta < 1 \).

Master Method, Example 1

The form:

\[T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
\end{cases} \]

The Master Theorem:

1. if \(f(n) = \Theta(n^{\log_b a - \epsilon}) \), then \(T(n) = \Theta(n^{\log_b a}) \)
2. if \(f(n) = \Theta(n^{\log_b a \log^k n}) \), then \(T(n) = \Theta(n^{\log_b a \log^{k+1} n}) \)
3. if \(f(n) = \Omega(n^{\log_b a + \epsilon}) \), then \(T(n) = \Theta(f(n)) \), provided \(af(n/b) \leq \delta f(n) \) for some \(\delta < 1 \).

Example:

\[T(n) = 4T(n/2) + n \]

Solution: \(\log_b a = 2 \), so case 1 says \(T(n) = \Theta(n^2) \).
Master Method, Example 2

- The form: \(T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \geq d \end{cases} \)

- The Master Theorem:
 1. if \(f(n) = O(n^{\log_b a - \epsilon}) \), then \(T(n) = \Theta(n^{\log_b a}) \)
 2. if \(f(n) = \Theta(n^{\log_b a \log \log n}) \), then \(T(n) = \Theta(n^{\log_b a \log \log n}) \)
 3. if \(f(n) = \Omega(n^{\log_b a + \epsilon}) \), then \(T(n) = \Theta(f(n)) \), provided \(af(n/b) \leq \delta f(n) \) for some \(\delta < 1 \).

- Example:
 \(T(n) = 2T(n/2) + n \log n \)

 Solution: \(\log_b a = 1 \), so case 2 says \(T(n) = O(n \log^2 n) \).

Master Method, Example 3

- The form: \(T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \geq d \end{cases} \)

- The Master Theorem:
 1. if \(f(n) = O(n^{\log_b a - \epsilon}) \), then \(T(n) = \Theta(n^{\log_b a}) \)
 2. if \(f(n) = \Theta(n^{\log_b a \log \log n}) \), then \(T(n) = \Theta(n^{\log_b a \log \log n}) \)
 3. if \(f(n) = \Omega(n^{\log_b a + \epsilon}) \), then \(T(n) = \Theta(f(n)) \), provided \(af(n/b) \leq \delta f(n) \) for some \(\delta < 1 \).

- Example:
 \(T(n) = T(n/3) + n \log n \)

 Solution: \(\log_b a = 0 \), so case 3 says \(T(n) = O(n \log n) \).
Master Method, Example 4

The form:
\[T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
\end{cases} \]

The Master Theorem:
1. If \(f(n) \) is \(O(n^{\log_b a - \epsilon}) \), then \(T(n) \) is \(\Theta(n^{\log_b a}) \)
2. If \(f(n) \) is \(\Theta(n^{\log_b a \log^k n}) \), then \(T(n) \) is \(\Theta(n^{\log_b a \log^{k+1} n}) \)
3. If \(f(n) \) is \(\Omega(n^{\log_b a + \epsilon}) \), then \(T(n) \) is \(\Theta(f(n)) \), provided \(af(n/b) \leq f(n) \) for some \(\delta < 1 \).

Example:
\[T(n) = 8T(n/2) + n^2 \]
Solution: \(\log_b a = 3 \), so case 1 says \(T(n) \) is \(O(n^3) \).

Master Method, Example 5

The form:
\[T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
\end{cases} \]

The Master Theorem:
1. If \(f(n) \) is \(O(n^{\log_b a - \epsilon}) \), then \(T(n) \) is \(\Theta(n^{\log_b a}) \)
2. If \(f(n) \) is \(\Theta(n^{\log_b a \log^k n}) \), then \(T(n) \) is \(\Theta(n^{\log_b a \log^{k+1} n}) \)
3. If \(f(n) \) is \(\Omega(n^{\log_b a + \epsilon}) \), then \(T(n) \) is \(\Theta(f(n)) \), provided \(af(n/b) \leq f(n) \) for some \(\delta < 1 \).

Example:
\[T(n) = 9T(n/3) + n^3 \]
Solution: \(\log_b a = 2 \), so case 3 says \(T(n) \) is \(O(n^3) \).
Master Method, Example 6

The form:

\[
T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
\end{cases}
\]

The Master Theorem:

1. If \(f(n) = O(n^{log_b a - \epsilon}) \), then \(T(n) = \Theta(n^{log_b a}) \)
2. If \(f(n) = \Theta(n^{log_b a \log^k n}) \), then \(T(n) = \Theta(n^{log_b a \log^{k+1} n}) \)
3. If \(f(n) = \Omega(n^{log_b a + \epsilon}) \), then \(T(n) = \Theta(f(n)) \), provided \(af(n/b) \leq \delta f(n) \) for some \(\delta < 1 \).

Example:

\[
T(n) = T(n/2) + 1 \quad \text{(binary search)}
\]

Solution: \(\log_b a = 0 \), so case 2 says \(T(n) = O(\log n) \).

Master Method, Example 7

The form:

\[
T(n) = \begin{cases}
 c & \text{if } n < d \\
 aT(n/b) + f(n) & \text{if } n \geq d
\end{cases}
\]

The Master Theorem:

1. If \(f(n) = O(n^{log_b a - \epsilon}) \), then \(T(n) = \Theta(n^{log_b a}) \)
2. If \(f(n) = \Theta(n^{log_b a \log^k n}) \), then \(T(n) = \Theta(n^{log_b a \log^{k+1} n}) \)
3. If \(f(n) = \Omega(n^{log_b a + \epsilon}) \), then \(T(n) = \Theta(f(n)) \), provided \(af(n/b) \leq \delta f(n) \) for some \(\delta < 1 \).

Example:

\[
T(n) = 2T(n/2) + \log n \quad \text{(heap construction)}
\]

Solution: \(\log_b a = 1 \), so case 1 says \(T(n) = O(n) \).
Iterative “Proof” of the Master Theorem

Using iterative substitution, let us see if we can find a pattern:

\[T(n) = aT\left(\frac{n}{b}\right) + f(n) \]

\[= a(aT\left(\frac{n}{b^2}\right) + f\left(\frac{n}{b}\right)) + bn \]

\[= a^2T\left(\frac{n}{b^2}\right) + af\left(\frac{n}{b}\right) + f(n) \]

\[= a^3T\left(\frac{n}{b^3}\right) + a^2f\left(\frac{n}{b^2}\right) + af\left(\frac{n}{b}\right) + f(n) \]

\[= \ldots \]

\[= a^{\log_b n}T(1) + \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right) \]

\[= n^{\log_b a}T(1) + \sum_{i=0}^{\log_b n-1} a^i f\left(\frac{n}{b^i}\right) \]

We then distinguish the three cases as

- The first term is dominant
- Each part of the summation is equally dominant
- The summation is a geometric series

Integer Multiplication

Algorithm: Multiply two n-bit integers I and J.

- Divide step: Split I and J into high-order and low-order bits

\[I = I_h 2^{n/2} + I_l \]

\[J = J_h 2^{n/2} + J_l \]

- We can then define I*J by multiplying the parts and adding:

\[I \times J = (I_h 2^{n/2} + I_l) \times (J_h 2^{n/2} + J_l) \]

\[= I_h J_h 2^n + I_h J_l 2^{n/2} + I_l J_h 2^{n/2} + I_l J_l \]

- So, T(n) = 4T(n/2) + n, which implies T(n) is O(n^2).

- But that is no better than the algorithm we learned in grade school.
An Improved Integer Multiplication Algorithm

Algorithm: Multiply two n-bit integers I and J.

- Divide step: Split I and J into high-order and low-order bits
 \[I = I_h 2^{n/2} + I_l \]
 \[J = J_h 2^{n/2} + J_l \]

- Observe that there is a different way to multiply parts:
 \[I \times J = I_h J_h 2^n + [(I_h - I_l)(J_l - J_h) + I_h J_h + I_l J_h] 2^{n/2} + I_l J_l \]
 \[= I_h J_h 2^n + [(I_h J_l - I_l J_l - I_h J_h + I_l J_h) + I_h J_h + I_l J_h] 2^{n/2} + I_l J_l \]
 \[= I_h J_h 2^n + (I_h J_l + I_l J_h) 2^{n/2} + I_l J_l \]

- So, \(T(n) = 3T(n/2) + n \), which implies \(T(n) \) is \(O(n^{\log_2 3}) \), by the Master Theorem.

- Thus, \(T(n) \) is \(O(n^{1.585}) \).