From (2,4) to Red-Black Trees

- A red-black tree is a representation of a (2,4) tree by means of a binary tree whose nodes are colored red or black.
- In comparison with its associated (2,4) tree, a red-black tree has:
 - same logarithmic time performance
 - simpler implementation with a single node type
Red-Black Trees

A red-black tree can also be defined as a binary search tree that satisfies the following properties:

- **Root Property**: the root is black
- **External Property**: every leaf is black
- **Internal Property**: the children of a red node are black
- **Depth Property**: all the leaves have the same black depth

The search algorithm for a binary search tree is the same as that for a binary search tree.

By the above theorem, searching in a red-black tree takes \(O(\log n) \) time.
Insertion

To insert \((k, o)\), we execute the insertion algorithm for binary search trees and color red the newly inserted node \(z\) unless it is the root.

- We preserve the root, external, and depth properties.
- If the parent \(v\) of \(z\) is black, we also preserve the internal property and we are done.
- Else (\(v\) is red) we have a double red (i.e., a violation of the internal property), which requires a reorganization of the tree.

Example where the insertion of 4 causes a double red:

Remedying a Double Red

Consider a double red with child \(z\) and parent \(v\), and let \(w\) be the sibling of \(v\).

Case 1: \(w\) is black
- The double red is an incorrect replacement of a 4-node
- **Restructuring:** we change the 4-node replacement

Case 2: \(w\) is red
- The double red corresponds to an overflow
- **Recoloring:** we perform the equivalent of a split
Restructuring

- A restructuring remedies a child-parent double red when the parent red node has a black sibling.
- It is equivalent to restoring the correct replacement of a 4-node.
- The internal property is restored and the other properties are preserved.

Restructuring (cont.)

- There are four restructuring configurations depending on whether the double red nodes are left or right children.
Recoloring

- A recoloring remedies a child-parent double red when the parent red node has a red sibling.
- The parent v and its sibling w become black and the grandparent u becomes red, unless it is the root.
- It is equivalent to performing a split on a 5-node.
- The double red violation may propagate to the grandparent u.

![Diagram of recoloring](image)

Analysis of Insertion

- Recall that a red-black tree has $O(\log n)$ height.
- Step 1 takes $O(\log n)$ time because we visit $O(\log n)$ nodes.
- Step 2 takes $O(1)$ time.
- Step 3 takes $O(\log n)$ time because we perform
 - $O(\log n)$ recolorings, each taking $O(1)$ time, and
 - at most one restructuring taking $O(1)$ time.
- Thus, an insertion in a red-black tree takes $O(\log n)$ time.

Algorithm `insert(k, o)`

1. We search for key k to locate the insertion node z.
2. We add the new entry (k, o) at node z and color z red.
3. while `doubleRed(z)`
 if `isBlack(sibling(parent(z)))`
 $z \leftarrow $ `restructure(z)`
 return
 else { `sibling(parent(z))` is red }
 $z \leftarrow $ `recolor(z)`
Deletion

To perform operation remove(k), we first execute the deletion algorithm for binary search trees.

Let v be the internal node removed, w the external node removed, and r the sibling of w.

- If either v or r was red, we color r black and we are done.
- Else (v and r were both black) we color r double black, which is a violation of the internal property requiring a reorganization of the tree.

Example where the deletion of 8 causes a double black:

```
       6
      / \
     3   8
    /   /\n   4   4
```

Remedying a Double Black

The algorithm for remedying a double black node w with sibling y considers three cases:

- **Case 1:** y is black and has a red child
 - We perform a restructuring, equivalent to a transfer, and we are done.
- **Case 2:** y is black and its children are both black
 - We perform a recoloring, equivalent to a fusion, which may propagate up the double black violation.
- **Case 3:** y is red
 - We perform an adjustment, equivalent to choosing a different representation of a 3-node, after which either Case 1 or Case 2 applies.

Deletion in a red-black tree takes $O(\log n)$ time.
Red-Black Tree Reorganization

Insertion remedy double red

<table>
<thead>
<tr>
<th>Red-black tree action</th>
<th>(2,4) tree action</th>
<th>result</th>
</tr>
</thead>
<tbody>
<tr>
<td>restructuring</td>
<td>change of 4-node representation</td>
<td>double red removed</td>
</tr>
<tr>
<td>recoloring</td>
<td>split</td>
<td>double red removed or propagated up</td>
</tr>
</tbody>
</table>

Deletion remedy double black

<table>
<thead>
<tr>
<th>Red-black tree action</th>
<th>(2,4) tree action</th>
<th>result</th>
</tr>
</thead>
<tbody>
<tr>
<td>restructuring</td>
<td>transfer</td>
<td>double black removed</td>
</tr>
<tr>
<td>recoloring</td>
<td>fusion</td>
<td>double black removed or propagated up</td>
</tr>
<tr>
<td>adjustment</td>
<td>change of 3-node representation</td>
<td>restructuring or recoloring follows</td>
</tr>
</tbody>
</table>

Java Implementation

```java
/** An implementation of a sorted map using a red-black tree. */
public class RBTreeMap<K, V> extends TreeMap<K, V> {
    /** Constructs an empty map using the natural ordering of keys. */
    public RBTreeMap() { super(); }
    /** Constructs an empty map using the given comparator to order keys. */
    public RBTreeMap(Comparator<K> comp) { super(comp); }
    // we use the inherited aux field with convention that 0=black and 1=red
    // (note that new leaves will be black by default, as aux==0)
    private boolean isBlack(Position<Entry<K, V>> p) { return tree.getAux(p)==0; }
    private boolean isRed(Position<Entry<K, V>> p) { return tree.getAux(p)==1; }
    private void makeBlack(Position<Entry<K, V>> p) { tree.setAux(p, 0); }
    private void makeRed(Position<Entry<K, V>> p) { tree.setAux(p, 1); }
    private void setColor(Position<Entry<K, V>> p, boolean toRed) {
        tree.setAux(p, toRed ? 1 : 0);
    }
    /** Overrides the TreeMap rebalancing hook that is called after an insertion. */
    protected void rebalanceInsert(Position<Entry<K, V>> p) {
        if (thisRoot(p)) {
            makeRed(p); // the new internal node is initially colored red
            resolveRed(p); // but this may cause a double-red problem
        }
    }
}
```

© 2014 Goodrich, Tamassia, Goldwasser
Java Implementation, 2

```java
/** Remedies potential double-red violation above red position p. */
private void resolveRed(Position<Entry<K,V>> p) {
    Position<Entry<K,V>> parent = parent(p);
    if (isRed(parent)) {
        // double-red problem exists
        uncle = sibling(p);
        if (isBlack(uncle)) {
            // Case 1: misshapen 4-node
            middle = restructure(p);
            makeBlack(middle);
            makeRed(left(middle));
            makeRed(right(middle));
        } else {
            // Case 2: overfull 5-node
            makeBlack(parent);
            makeBlack(uncle);
            grand = parent(p);
            if (isRoot(grand)) {
                makeRed(grand);
                resolveRed(grand);
            }
        }
    }
}
```

Java Implementation, 3

```java
/** Overrides the TreeMap rebalancing hook that is called after a deletion. */
protected void rebalanceDelete(Position<Entry<K,V>> p) {
    if (isRed(p)) {
        makeBlack(p);
        // deleted parent was black
        else if (isRoot(p)) {
            // so this restores black depth
            Position<Entry<K,V>> sibling = sibling(p);
            if (isInternal(sibling) && isBlack(sibling) || isInternal(left(sibling)))
                remedyDoubleBlack(p);
                // sibling's subtree has nonzero black height
        }
    }
```
```java
// Remedies a presumed double-black violation at the given (nonroot) position. */
private void remedyDoubleBlack(Position<Entry<K,V>> p) {
    Position<Entry<K,V>> z = parent(p);
    Position<Entry<K,V>> y = sibling(p);
    if (isBlack(y)) { // Case 1: trinode restructuring
        Position<Entry<K,V>> x = (isRed(left(y)) ? left(y) : right(y));
        setColor(middle, isRed(z)); // root of restructured subtree gets z's old color
        makeBlack(left(middle));
        makeBlack(right(middle));
    } else { // Case 2: recoloring
        makeRed(y);
        if (isRed(z))
            makeBlack(z); // problem is resolved
        else if (isRed(z))
            remedyDoubleBlack(z); // propagate the problem
        rotate(y);
        makeBlack(y);
        makeRed(z);
        remedyDoubleBlack(p); // restart the process at p
    }
}
```