
1/30/16, 11:05 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 1 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/18/print

Chapter 18 - Additional Material

Section 18.1 - Do-while loops
A do-while loop is a loop construct that first executes the loop body's statements, then checks the
loop condition.

Versus a while loop, a do-while loop is useful when the loop should iterate at least once.

Construct 18.1.1: Do-while loop.
do {
 // Loop body
} while (loopExpression);

1/30/16, 11:05 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 2 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/18/print

Participation
ActivityP 18.1.1: Do-while loop.

Start

Enter char (q to quit:) X

XXX
XXX
XXX
Enter char (q to quit:) q

(program done)

import java.util.Scanner;

public class DoWhile {
 public static void main(String[] args) {
 String fill = "*";
 Scanner in = new Scanner(System.in);

 do {
 System.out.print("\n");
 System.out.println(fill + fill + fill);
 System.out.println(fill + fill + fill);
 System.out.println(fill + fill + fill);
 System.out.print("Enter char (q to quit): ");
 fill = in.next();
 } while (!fill.equals("q"));

 return;
 }
}

1/30/16, 11:05 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 3 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/18/print

Participation
ActivityP 18.1.2: Do-while loop.

Consider the following loop:

int count = 0;
int num = 6;
do {
 num = num - 1;
 count = count + 1;
} while (num > 4);

Question Your answer

1

What is the value of count after the loop? 0

1

2

2

What initial value of num would prevent count from being
incremented?

4

0

No such value.

1/30/16, 11:05 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 4 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/18/print

Challenge
ActivityC 18.1.1: Basic do-while loop with user input.

Complete the do-while loop to output 0 to countLimit. Assume the user will only input a positive number.

Run

public class CountToLimit {
 public static void main (String [] args) {
 Scanner scnr = new Scanner(System.in);
 int countLimit = 0;
 int printVal = 0;

 // Get user input
 countLimit = scnr.nextInt();

 printVal = 0;
 do {
 System.out.print(printVal + " ");
 printVal = printVal + 1;
 } while (/* Your solution goes here */);
 System.out.println("");

 return;
 }
}

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

1/30/16, 11:05 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 5 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/18/print

Section 18.2 - Engineering examples
Arrays can be useful in solving various engineering problems. One problem is computing the voltage
drop across a series of resistors. If the total voltage across the resistors is V, then the current through
the resistors will be I = V/R, where R is the sum of the resistances. The voltage drop Vx across resistor
x is then Vx = I · Rx. The following program uses an array to store a user-entered set of resistance

Challenge
ActivityC 18.1.2: Do-while loop to prompt user input.

Write a do-while loop that continues to prompt a user to enter a number less than 100, until the entered number is actually less than 100.
End each prompt with newline Ex: For the user input 123, 395, 25, the expected output is:

Enter a number (<100):
Enter a number (<100):
Enter a number (<100):
Your number < 100 is: 25

Run

import java.util.Scanner;

public class NumberPrompt {
 public static void main (String [] args) {
 Scanner scnr = new Scanner(System.in);
 int userInput = 0;

 /* Your solution goes here */

 System.out.println("Your number < 100 is: " + userInput);

 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14

1/30/16, 11:05 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 6 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/18/print

values, computes I, then computes the voltage drop across each resistor and stores each in another
array, and finally prints the results.

Figure 18.2.1: Calculate voltage drops across series of resistors.

import java.util.Scanner;

public class ResistorVoltage {
 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 final int NUM_RES = 5; // Number of resistors
 double[] resVals = new double[NUM_RES]; // Ohms
 double circVolt = 0; // Volts
 double[] vDrop = new double[NUM_RES]; // Volts
 double currentVal = 0; // Amps
 double sumRes = 0; // Ohms
 int i = 0; // Loop index

 System.out.println("5 resistors are in series.");
 System.out.println("This program calculates the");
 System.out.println("voltage drop across each resistor.\n");

 System.out.print("Input voltage applied to circuit: ");
 circVolt = scnr.nextDouble();

 System.out.println("Input ohms of " + NUM_RES + " resistors:");
 for (i = 0; i < NUM_RES; ++i) {
 System.out.print((i + 1) + ") ");
 resVals[i] = scnr.nextDouble();
 }

 // Calculate current
 for (i = 0; i < NUM_RES; ++i) {
 sumRes = sumRes + resVals[i];
 }
 currentVal = circVolt / sumRes; // I = V/R

 for (i = 0; i < NUM_RES; ++i) {
 vDrop[i] = currentVal * resVals[i]; // V = IR
 }

 System.out.println("\nVoltage drop per resistor is:");
 for (i = 0; i < NUM_RES; ++i) {
 System.out.println((i + 1) + ") "
 + "" + vDrop[i] + " V");
 }

 return;
 }
}

5 resistors are in series.
This program calculates the
voltage drop across each resistor.

Input voltage applied to circuit: 12
Input ohms of 5 resistors:
1) 3.3
2) 1.5
3) 2
4) 4
5) 2.2

Voltage drop per resistor is:
1) 3.046153846153846 V
2) 1.3846153846153846 V
3) 1.8461538461538463 V
4) 3.6923076923076925 V
5) 2.030769230769231 V

Participation
ActivityP 18.2.1: Voltage drop program.

1/30/16, 11:05 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 7 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/18/print

Question Your answer

1

What does variable circVolt store? Multiple voltages, one
for each resistor.

The resistance of each
resistor.

The total voltage
across the series of
resistors.

2

What does the first for loop do? Gets the voltage of
each resistor and
stores each in an
array.

Gets the resistance of
each resistor and
stores each in an
array.

Adds the resistances
into a total value.

3

What does the second for loop do? Adds the resistances
into a single value, so
that I = V/R can be
computed.

Computes the voltage
across each resistor.

4

What does the third for loop do? Update the
resistances array with
new resistor values.

Sum the voltages
across each resistor
into a total voltage.

Determines the
voltage drop across
each resistor and
stores each voltage in
another array.

Could the fourth loop's statement have been incorporated
into the third loop, thus eliminating the fourth loop?

No, a resistor's
voltage drop isn't

1/30/16, 11:05 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 8 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/18/print

Engineering problems commonly involve matrix representation and manipulation. A matrix can be
captured using a two-dimensional array. Then matrix operations can be defined on such arrays. The
following illustrates matrix multiplication for 4x2 and 2x3 matrices captured as two-dimensional arrays.

5

into the third loop, thus eliminating the fourth loop? voltage drop isn't
known until the entire
loop has finished.

Yes, but keeping the
loops separate is
better style.

1/30/16, 11:05 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 9 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/18/print

Figure 18.2.2: Matrix multiplication of 4x2 and 2x3 matrices.

public class MatrixMult {

 public static void main(String[] args) {
 final int M1_ROWS = 4; // Matrix 1 rows
 final int M1_COLS = 2; // Matrix 2 cols
 final int M2_ROWS = M1_COLS; // Matrix 2 rows (must have same value)
 final int M2_COLS = 3; // Matrix 2 cols
 int rowIndex = 0; // Loop index
 int colIndex = 0; // Loop index
 int elemIndex = 0; // Loop index
 int dotProd = 0; // Dot product

 // M1_ROWS by M1_COLS
 int[][] m1 = {{3, 4},
 {2, 3},
 {1, 5},
 {0, 2}};

 // M2_ROWS by M2_COLS
 int[][] m2 = {{5, 4, 4},
 {0, 2, 3}};

 // M1_ROWS by M2_COLS
 int[][] m3 = {{0, 0, 0},
 {0, 0, 0},
 {0, 0, 0},
 {0, 0, 0}};

 // m1 * m2 = m3
 for (rowIndex = 0; rowIndex < M1_ROWS; ++rowIndex) {
 for (colIndex = 0; colIndex < M2_COLS; ++colIndex) {
 // Compute dot product
 dotProd = 0;
 for (elemIndex = 0; elemIndex < M2_ROWS; ++elemIndex) {
 dotProd = dotProd + (m1[rowIndex][elemIndex] * m2[elemIndex][colIndex
 }

 m3[rowIndex][colIndex] = dotProd;
 }
 }

 // Print m3 result
 for (rowIndex = 0; rowIndex < M1_ROWS; ++rowIndex) {
 for (colIndex = 0; colIndex < M2_COLS; ++colIndex) {
 System.out.print(m3[rowIndex][colIndex] + " ");
 }
 System.out.println();
 }

 return;
 }
}

15 20 24
10 14 17
5 14 19
0 4 6

1/30/16, 11:05 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 10 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/18/print

Section 18.3 - Engineering examples using methods
This section contains examples of methods for various engineering calculations.

Gas equation
An equation used in physics and chemistry that relates pressure, volume, and temperature of a gas is
PV = nRT. P is the pressure, V the volume, T the temperature, n the number of moles, and R a
constant. The method below outputs the temperature of a gas given the other values.

Participation
ActivityP 18.2.2: Matrix multiplication program.

Question Your answer

1

For the first set of for loops, how many dot products
are computed? (In other words, how many iterations
are due to the outer two for loops?)

2

For the first set of for loops, the inner-most loop
computes a dot product. Each time that inner-most
loop is reached, how many times will it iterate?

1/30/16, 11:05 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 11 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/18/print

Figure 18.3.1: PV = nRT. Compute the temperature of a gas.

import java.util.Scanner;

public class GasTemperature {

 final static double GAS_CONSTANT = 8.3144621; // J / (mol*K)

 /* Converts a pressure, volume, and number of moles
 of a gas to a temperature. */
 public static double pvnToTemp(double gasPressure, double gasVolume,
 double numMoles) {
 return (gasPressure * gasVolume) / (numMoles * GAS_CONSTANT);
 }

 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 double gasPress = 0.0; // User defined pressure
 double gasVol = 0.0; // User defined volume
 double gasMoles = 0.0; // User defined moles

 // Prompt user for input parameteres
 System.out.print("Enter pressure (in Pascals): ");
 gasPress = scnr.nextDouble();

 System.out.print("Enter volume (in cubic meters): ");
 gasVol = scnr.nextDouble();

 System.out.print("Enter number of moles: ");
 gasMoles = scnr.nextDouble();

 // Call method to calculate temperature
 System.out.print("Temperature = ");
 System.out.println(pvnToTemp(gasPress, gasVol, gasMoles) + " K");

 return;
 }
}

Enter pressure (in Pascals): 2500
Enter volume (in cubic meters): 35.5
Enter number of moles: 18
Temperature = 593.0095652917289 K

1/30/16, 11:05 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 12 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/18/print

Projectile location
Common physics equations determine the x and y coordinates of a projectile object at any time, given
the object's initial velocity and angle at time 0 with initial position x = 0 and y = 0. The equation for x is
v * t * cos(a). The equation for y is v * t * sin(a) - 0.5 * g * t * t. The following provides a single method
to compute an object's position; because position consists of two values (x and y), the method uses
two array parameters to return values for x and y. The program's main method asks the user for the
object's initial velocity, angle, and height (y position), and then prints the object's position for every
second until the object's y position is no longer greater than 0 (meaning the object fell back to earth).

Participation
ActivityP 18.3.1: PV = nRT calculation.

Questions refer to pVnToTemp() above.

Question Your answer

1

pVnToTemp() uses a rewritten form of PV = nRT to solve for T,
namely T = PV/nR.

True

False

2

pVnToTemp() uses a constant variable for the gas constant R. True

False

3

tempVolMolesToPressure() would likely return (temp * vlm) /
(mols * GAS_CONSTANT).

True

False

Figure 18.3.2: Trajectory of object on Earth.
import java.util.Scanner;

// Note: 1-letter variable names are typically avoided,
// but used below where standard in physics.
public class ObjectTrajectory {
 final static double PI_CONST = 3.14159265;

1/30/16, 11:05 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 13 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/18/print

 final static double PI_CONST = 3.14159265;

 // Given time, angle, velocity, and gravity
 // Update x and y values
 public static void objectTrajectory(double t, double a, double v,
 double g, double[] x, double[] y) {
 x[0] = v * t * Math.cos(a);
 y[0] = v * t * Math.sin(a) - 0.5 * g * t * t;
 return;
 }

 // convert degree value to radians
 public static double degToRad(double deg) {
 return ((deg * PI_CONST) / 180.0);
 }

 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 final double GRAVITY = 9.8; // Earth gravity (m/s^2)
 double launchAngle = 0.0; // Angle of launch (rad)
 double launchVelocity = 0.0; // Velocity (m/s)
 double elapsedTime = 1.0; // Time (s)

 double[] xLoc = new double[1]; // Object's height above ground (m)
 double[] yLoc = new double[1]; // Object's'horiz. dist. from start (m)

 xLoc[0] = -1.0;
 yLoc[0] = 0.0;

 System.out.print("Launch angle (deg): ");
 launchAngle = scnr.nextDouble();
 launchAngle = degToRad(launchAngle); // To radians

 System.out.print("Launch velocity (m/s): ");
 launchVelocity = scnr.nextDouble();

 System.out.print("Initial height (m): ");
 yLoc[0] = scnr.nextDouble();

 while (yLoc[0] > 0.0) { // While above ground
 System.out.println("Time " + elapsedTime + " x = " + xLoc[0]
 + " y = " + yLoc[0]);
 objectTrajectory(elapsedTime, launchAngle, launchVelocity,
 GRAVITY, xLoc, yLoc);
 elapsedTime = elapsedTime + 1.0;
 }

 return;
 }
}

Launch angle (deg): 45
Launch velocity (m/s): 100
Initial height (m): 3
Time 1.0 x = -1.0 y = 3.0
Time 2.0 x = 70.71067818211394 y = 65.81067805519557
Time 3.0 x = 141.42135636422788 y = 121.82135611039115
Time 4.0 x = 212.13203454634183 y = 168.03203416558674
Time 5.0 x = 282.84271272845575 y = 204.44271222078228
Time 6.0 x = 353.5533909105697 y = 231.05339027597785
Time 7.0 x = 424.26406909268366 y = 247.86406833117346
Time 8.0 x = 494.97474727479755 y = 254.874746386369

1/30/16, 11:05 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 14 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/18/print

Time 8.0 x = 494.97474727479755 y = 254.874746386369
Time 9.0 x = 565.6854254569115 y = 252.08542444156456
Time 10.0 x = 636.3961036390255 y = 239.4961024967601
Time 11.0 x = 707.1067818211394 y = 217.1067805519557
Time 12.0 x = 777.8174600032534 y = 184.91745860715127
Time 13.0 x = 848.5281381853673 y = 142.9281366623469
Time 14.0 x = 919.2388163674813 y = 91.13881471754246
Time 15.0 x = 989.9494945495951 y = 29.54949277273795

Participation
ActivityP 18.3.2: Projective location.

Questions refer to objectTrajectory() above.

Question Your answer

1

objectTrajectory() cannot return two values (for x and y), so
instead takes x and y as modifiable parameters and changes
their values.

True

False

2

objectTrajectory() could replace double types by int types
without causing much change in computed values.

True

False

3

Each iteration of the loop will see yLoc increase. True

False

4

Assuming the launch angle is less than 90 degrees, each
iteration of the loop will see xLoc increase.

True

False

1/30/16, 11:05 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 15 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/18/print

Section 18.4 - Command-line arguments
Command-line arguments are values entered by a user when running a program from a command
line. A command line exists in some program execution environments, wherein a user types a
program's name and any arguments at a command prompt. To access those arguments, main() can
be defined with a special parameter args, as shown below. The program prints provided command-
line arguments. (The "for" loop is not critical to understanding the point, in case you haven't studied
for loops yet).

Challenge
ActivityC 18.3.1: Method to compute gas volume.

Define a method computeGasVolume that returns the volume of a gas given parameters pressure, temperature, and moles. Use the gas
equation PV = nRT, where P is pressure in Pascals, V is volume in cubic meters, n is number of moles, R is the gas constant 8.3144621 (J
/ (mol*K)), and T is temperature in Kelvin. All parameter types and the return type are double.

Run

 /* Your solution goes here */

 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 double gasPressure = 0.0;
 double gasMoles = 0.0;
 double gasTemperature = 0.0;
 double gasVolume = 0.0;

 gasPressure = 100;
 gasMoles = 1 ;
 gasTemperature = 273;

 gasVolume = computeGasVolume(gasPressure, gasTemperature, gasMoles);
 System.out.println("Gas volume: " + gasVolume + " m^3");

 return;
 }
}

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

1/30/16, 11:05 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 16 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/18/print

Then, when a program is run, the system passes the parameter args to main(), defined as an array of
Strings. args is known as the arguments array and has one String for each command-line argument. A
program can determine the number of command-line arguments by accessing args' length field, as in:
int argc = args.length;.

Figure 18.4.1: Printing command-line arguments.

public class ArgTest {
 public static void main(String[] args) {
 int i = 0;
 int argc = args.length;

 System.out.println("args.length: " + argc);

 for (i = 0; i < argc; ++i) {
 System.out.println("args[" + i + "]: " + args[i]);
 }

 return;
 }
}

> java ArgTest
args.length: 0

> java ArgTest Hello
args.length: 1
args[0]: Hello

> java ArgTest Hey ABC 99 -5
args.length: 4
args[0]: Hey
args[1]: ABC
args[2]: 99
args[3]: -5

Participation
ActivityP 18.4.1: Command-line arguments.

keyboard

> java MyProg userArg1 userArg2

User text typed on the command
line is passed to the main() method

using input parameter:
String [] args

args[0] =
args[1] =

"userArg1"
"userArg2"

Name of program
executable is not stored

into args

1/30/16, 11:05 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 17 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/18/print

The following program, named NameAgeParser, expects two command-line arguments.

However, there is no guarantee a user will type two command-line arguments. Extra arguments, like
"HEY" above, are ignored. Conversely, too few arguments can cause a problem. In particular, a

Participation
ActivityP 18.4.2: Command-line arguments.

Question Your answer

1
What is args.length for:
java MyProg 13 14 smith

2
What is the value of args.length for:
java MyProg 12:55 PM

3
What is the string in args[1] for:
java MyProg Jan Feb Mar

Figure 18.4.2: Simple use of command-line arguments.

public class NameAgeParser {
 public static void main(String[] args) {
 String nameStr = ""; // User name
 String ageStr = ""; // User age

 // Get inputs from command line
 nameStr = args[0];
 ageStr = args[1];

 // Output result
 System.out.print("Hello " + nameStr + ". ");
 System.out.println(ageStr + " is a great age.");

 return;
 }
}

> java NameAgeParser Amy 12
Hello Amy. 12 is a great age.

> java NameAgeParser Rajeev 44 HEY
Hello Rajeev. 44 is a great age.

> java NameAgeParser Denming
Exception in thread "main"
 java.lang.ArrayIndexOutOfBoundsException: 1
 at NameAgeParser.main(NameAgeParser.java:8)

1/30/16, 11:05 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 18 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/18/print

common error is to access elements in args without first checking args.length to ensure the user
entered enough arguments, resulting in an out-of-range array access. In the last run above, the user
typed too few arguments, causing an out-of-range array access.

When a program uses command-line arguments, good practice is to check args.length for the correct
number of arguments. If the number of command-line arguments is incorrect, good practice is to print
a usage message. A usage message lists a program's expected command-line arguments.

Figure 18.4.3: Checking for proper number of command-line arguments.

public class NameAgeParser {
 public static void main(String[] args) {
 String nameStr = ""; // User name
 String ageStr = ""; // User age

 // Check if correct number of arguments provided
 if (args.length != 2) {
 System.out.println("Usage: java NameAgeParser name age");
 return;
 }

 // Grab inputs from command line
 nameStr = args[0];
 ageStr = args[1];

 // Output result
 System.out.print("Hello " + nameStr + ". ");
 System.out.println(ageStr + " is a great age.");

 return;
 }
}

> java NameAgeParser Amy 12
Hello Amy. 12 is a great age.

...

> java NameAgeParser Denming
Usage: myprog.exe name age

...

> java NameAgeParser Alex 26 pizza
Usage: myprog.exe name age

1/30/16, 11:05 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 19 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/18/print

All command-line arguments are Strings. The (rather cumbersome) statement
age = Integer.parseInt(ageStr); converts the ageStr String into an integer, assigning the
result into int variable age. So string "12" becomes integer 12. parseInt() is a static method of the
Integer class that returns the integer value of the input string.

Putting quotes around an argument allows an argument's string to have any number of spaces.

Participation
ActivityP 18.4.3: Checking the number of command-line arguments.

Question Your answer

1

If a user types the wrong number of command-line
arguments, good practice is to print a usage message.

True

False

2

If a user types too many arguments but a program doesn't
check for that, the program typically crashes.

True

False

3

If a user types too few arguments but a program doesn't
check for that, the program typically crashes.

True

False

Figure 18.4.4: Quotes surround the single argument 'Mary Jo'.

java MyProg "Mary Jo" 50

1/30/16, 11:05 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 20 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/18/print

Section 18.5 - Command-line arguments and files
The location of an input file or output file may not be known before writing a program. Instead, a
program can use command-line arguments to allow the user to specify the location of an input file as
shown in the following program. Assume two text files exist named "myfile1.txt" and "myfile2.txt" with
the contents shown. The sample output shows the results when executing the program for each input
file and for an input file that does not exist.

Participation
ActivityP 18.4.4: String and integer command-line arguments.

Question Your answer

1
What is the string in args[0] for the following:
java MyProg Amy Smith 19

2
What is the string in args[0] for the following:
java MyProg "Amy Smith" 19

3

Given the following code snippet, complete
the assignment of userNum with args[0].
public static void main(String[] args)
{
 int userNum = 0;

userNum = ;

Exploring further:
Command-line arguments from Oracle's Java tutorials

Figure 18.5.1: Using command-line arguments to specify the name of an input

http://docs.oracle.com/javase/tutorial/essential/environment/cmdLineArgs.html

1/30/16, 11:05 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 21 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/18/print

file.

import java.util.Scanner;
import java.io.FileInputStream;
import java.io.IOException;

public class FileReadNums {
 public static void main(String[] args) throws IOException {
 FileInputStream fileByteStream = null; // File input stream
 Scanner inFS = null; // Scanner object
 int fileNum1 = 0; // Data value from file
 int fileNum2 = 0; // Data value from file

 // Check number of arguments
 if (args.length != 1) {
 System.out.println("Usage: java FileReadNums inputFileName");
 return;
 }

 // Try to open the file
 System.out.println("Opening file " + args[0] + ".");

 fileByteStream = new FileInputStream(args[0]);
 inFS = new Scanner(fileByteStream);

 // File is open and valid if we got this far
 // myfile.txt should contain two integers, else problems
 System.out.println("Reading two integers.");
 fileNum1 = inFS.nextInt();
 fileNum2 = inFS.nextInt();

 // Done with file, so try to close it
 System.out.println("Closing file " + args[0] + "\n");
 fileByteStream.close(); // close() may throw IOException if fails

 // Output values read from file
 System.out.println("num1: " + fileNum1);
 System.out.println("num2: " + fileNum2);
 System.out.println("num1 + num2: " + (fileNum1 + fileNum2));

 return;
 }
}

> java FileReadNums myfile1.txt
Opening file myfile1.txt.
Reading two integers.
Closing file myfile1.txt.

num1: 5
num2: 10
num1 + num2: 15

...

> java FileReadNums myfile2.txt
Opening file myfile2.txt.
Reading two integers.

1/30/16, 11:05 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 22 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/18/print

Section 18.6 - Additional practice: Output art
The following is a sample programming lab activity; not all classes using a zyBook require students to

fully complete this activity. No auto-checking is performed. Users planning to fully complete this

program may consider first developing their code in a separate programming environment.

Reading two integers.
Closing file myfile2.txt.

num1: -34
num2: 7
num1 + num2: -27

...

> java FileReadNums myfile3.txt
Opening file myfile3.txt.
Exception in thread "main" java.io.FileNotFoundException: myfile3.txt (No such file or directory)
 at java.io.FileInputStream.open(Native Method)
 at java.io.FileInputStream.(FileInputStream.java:137)
 at java.io.FileInputStream.(FileInputStream.java:96)
 at FileReadNums.main(FileReadNums.java:18)

Participation
ActivityP 18.5.1: Filename command-line arguments.

Question Your answer

1

Assume a program has a single class called
"MyProg", which contains main(). It takes in two
command-line arguments, one for an input file and a
second for an output file. Type a command to run
the program with input file "infile.txt" and output file
"out".

2

For a program run as
java ProgName data.txt, what is args[0]?
Don't use quotes in your answer.

1/30/16, 11:05 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 23 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/18/print

The following program prints a simple triangle.

Create different versions of the program:

1. Print a tree by adding a base under a 4-level triangle:

 *

2. Print the following "cat":

 ^ ^
 o o
 = =

Participation
ActivityP 18.6.1: Create ASCII art.

Pre-enter any input for program, then press run
public class PrintTriangle {
 public static void main (String [] args) {
 System.out.println(" * ");
 System.out.println(" *** ");
 System.out.println("*****");

 return;
 }
}

Run

1
2
3
4
5
6
7
8
9

10
11

1/30/16, 11:05 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 24 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/18/print

3. Allow a user to enter a number, and then print the original triangle using that number
instead of asterisks, as in:

 9
 999
 99999

Pictures made from keyboard characters are known as ASCII art. ASCII art can be quite intricate, and
fun to make and view. Wikipedia: ASCII art provides examples. Doing a web search for "ASCII art
(someitem)" can find ASCII art versions of an item. For example, searching for "ASCII art cat" turns up
thousands of examples of cats, most much more clever than the cat above.

Section 18.7 - Additional practice: Grade calculation
The following is a sample programming lab activity; not all classes using a zyBook require students to

fully complete this activity. No auto-checking is performed. Users planning to fully complete this

program may consider first developing their code in a separate programming environment.

Participation
ActivityP 18.7.1: Grade calculator.

The following incomplete program should compute a student's total course percentage based on
scores on three items of different weights (%s):

20% Homeworks (out of 80 points)
30% Midterm exam (out of 40 points)
50% Final exam (out of 70 points)

Suggested (incremental) steps to finish the program:
1. First run it.
2. Next, complete the midterm exam calculation and run the program again. Use the

constant variables where appropriate.
3. Then, complete the final exam calculation and run the program. Use the constant

variables where appropriate.
4. Modify the program to include a quiz score out of 20 points. New weights: 10%

homework, 15% quizzes, 30% midterm, 45% final. Run the program again.
5. To avoid having one large expression, introduce variables homeworkPart, quizPart,

midtermPart, and finalPart. Compute each part first; each will be a number

http://en.wikipedia.org/wiki/ASCII_art

1/30/16, 11:05 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 25 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/18/print

Section 18.8 - Additional practice: Health data

midtermPart, and finalPart. Compute each part first; each will be a number
between 0 and 1. Then combine the parts using the weights into the course value.
Run the program again.

Reset

 78 36 62

import java.util.Scanner;

public class GradeCalculator {
 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 final double HOMEWORK_MAX = 80.0;
 final double MIDTERM_MAX = 40.0;
 final double FINAL_MAX = 70.0;
 final double HOMEWORK_WEIGHT = 0.20; // 20%
 final double MIDTERM_WEIGHT = 0.30;
 final double FINAL_WEIGHT = 0.50;

 double homeworkScore = 0.0;
 double midtermScore = 0.0;
 double finalScore = 0.0;
 double coursePercentage = 0.0;

 System.out.println("Enter homework score:");

Run

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 11:05 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 26 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/18/print

The following is a sample programming lab activity; not all classes using a zyBook require students to

fully complete this activity. No auto-checking is performed. Users planning to fully complete this

program may consider first developing their code in a separate programming environment.

The following calculates a user's age in days based on the user's age in years.

1/30/16, 11:05 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 27 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/18/print

Create different versions of the program that:

1. Calculates the user's age in minutes and seconds.

Participation
ActivityP 18.8.1: Calculating user health data.

Reset

19

import java.util.Scanner;

public class HealthData {
 public static void main (String[] args) {
 Scanner scnr = new Scanner(System.in);
 int userAgeYears = 0;
 int userAgeDays = 0;

 System.out.println("Enter your age in years: ");
 userAgeYears = scnr.nextInt();

 userAgeDays = userAgeYears * 365;

 System.out.println("You are " + userAgeDays + " days old.");

 return;
 }
}

Run

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 11:05 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 28 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/18/print

2. Estimates the approximate number of times the user's heart has beat in his/her
lifetime using an average heart rate of 72 beats per minutes.

3. Estimates the number of times the person has sneezed in his/her lifetime (research on
the Internet to obtain a daily estimate).

4. Estimates the number of calories that the person has expended in his/her lifetime
(research on the Internet to obtain a daily estimate). Also calculate the number of
sandwiches (or other common food item) that equals that number of calories.

5. Be creative: Pick other health-related statistic. Try searching the Internet to determine
how to calculate that data, and create a program to perform that calculation. The
program can ask the user to enter any information needed to perform the calculation.

Section 18.9 - Additional practice: Tweet decoder
The following is a sample programming lab activity; not all classes using a zyBook require students to

fully complete this activity. No auto-checking is performed. Users planning to fully complete this

program may consider first developing their code in a separate programming environment.

The following program decodes a few common abbreviations in online communication as
communications in Twitter ("tweets") or email, and provides the corresponding English phrase.

1/30/16, 11:05 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 29 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/18/print

Create different versions of the program that:

1. Expands the number of abbreviations that can be decoded. Add support for
abbreviations you commonly use or search the Internet to find a list of common
abbreviations.

2. For abbreviations that do not match the supported abbreviations, check for common
misspellings. Provide a suggestion for correct abbreviation along with the decoded
meaning. For example, if the user enters "LLO", your program can output "Did you
mean LOL? LOL = laughing out loud".

3. Allows the user to enter a complete tweet (140 characters or less) as a single line of
text. Search the resulting string for those common abbreviations and print a list of
each abbreviation along with its decoded meaning.

4. Convert the user's tweet to a decoded tweet, replacing the abbreviations directly
within the tweet.

Section 18.10 - Additional practice: Dice statistics

Participation
ActivityP 18.9.1:

LOL
import java.util.Scanner;

public class TweetDecoder {
 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 String origTweet = "";

 System.out.println("Enter abbreviation from tweet: "
 origTweet = scnr.next();

 if (origTweet.equals("LOL")) {
 System.out.println("LOL = laughing out loud");
 }
 else if (origTweet.equals("BFN")) {
 System.out.println("BFN = bye for now");
 }
 else if (origTweet.equals("FTW")) {
 System.out.println("FTW = for the win");

Run

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 11:05 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 30 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/18/print

The following is a sample programming lab activity; not all classes using a zyBook require students to

fully complete this activity. No auto-checking is performed. Users planning to fully complete this

program may consider first developing their code in a separate programming environment.

Analyzing dice rolls is a common example in understanding probability and statistics. The following
calculates the number of times the sum of two dice (randomly rolled) equals six or seven.

Create different versions of the program that:

1. Calculates the number of times the sum of the randomly rolled dice equals each
possible value from 2 to 12.

2. Repeatedly asks the user for the number of times to roll the dice, quitting only when
the user-entered number is less than 1. Hint: Use a while loop that will execute as
long as numRolls is greater than 1. Be sure to initialize numRolls correctly.

3. Prints a histogram in which the total number of times the dice rolls equals each
possible value is displayed by printing a character like * that number of times, as
shown below.

P Participation
Activity

18.10.1: Dice rolls: Counting number of rolls that equals six or
seven.

 10
import java.util.Scanner;
import java.util.Random;

public class DiceStats {
 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 Random randGen = new Random();
 int i = 0; // Loop counter iterates numRolls times
 int numRolls = 0; // User defined number of rolls
 int numSixes = 0; // Tracks number of 6s found
 int numSevens = 0; // Tracks number of 7s found
 int die1 = 0; // Dice values
 int die2 = 0; // Dice values
 int rollTotal = 0; // Sum of dice values

 System.out.println("Enter number of rolls: ");
 numRolls = scnr.nextInt();

Run

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 11:05 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 31 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/18/print

Figure 18.10.1: Histogram showing total number of dice rolls for each possible
value.

Dice roll histogram:

2: ******
3: ****
4: ***
5: ********
6: *******************
7: *************
8: *************
9: **************
10: ***********
11: *****
12: ****

