Lehman College City University of New York CMP 167 Spring 2016: Programming in Java 1/30/16, 11:03 AM

Error-checking code is code a programmer writes to detect and handle errors that occur during
program execution. An exception is a circumstance that a program was not designed to handle,
such as if the user enters a negative height.

The following program, given a person's weight and height, outputs a person's body-mass index
(BMI), which is used to determine normal weight for a given height. The program has no error
checking.

https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print Page 1 of 31

Lehman College City University of New York CMP 167 Spring 2016: Programming in Java

import java.util.Scanner;

public class BMINoErrorCheck {
public static void main(String[] args) {

Scanner scnr =
int weightval
int heightval
float bmiCalc =
char quitCmd = 'a'; //

while (quitCmd !=

}

new Scanner(System.in);
0; //
0; //
0.0f; //

Resulting BMI
Indicates quit/continu

'a') |

// Get user data
System.out.print("Enter weight (in pounds):
weightval = scnr.nextInt();

System.out.print("Enter height (in inches):
heightval = scnr.nextInt();

// Calculate BMI value
bmiCalc = ((float) weightval /
(float) (heightval * heightVval))

//Print user health info

// Source: http://www.cdc.gov/
System.out.println("BMI: " + bmiCalc);
System.out.println("(CDC: 18.6-24.9 normal)"

1/30/16, 11:03 AM

User defined weight (1lbs)
User defined height (in)

// Prompt user to continue/quit

Enter weight (in pounds): 150
Enter height (in inches): 66
BMI: 24.207989

(CDC: 18.6-24.9 normal)

Enter any key ('qgq' to quit):

Enter weight (in pounds): -1
Enter height (in inches): 66
BMI: -0.1613866

(CDC: 18.6-24.9 normal)

Enter any key ('q' to quit):
Enter weight (in pounds): 150
Enter height (in inches): -1
BMI: 105450.0

(CDC: 18.6-24.9 normal)

Enter any key ('q' to quit):

System.out.print("\nEnter any key ('q' to quit): ");

quitCmd = scnr.next().charAt(0);

return;

Naively adding error-checking code using if-else statements obscures the normal code. And
redundant checks are ripe for errors if accidentally made inconsistent with normal code. Problematic
code is highlighted.

https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print

Page 2 of 31

Lehman College City University of New York CMP 167 Spring 2016: Programming in Java

import java.util.Scanner;

public class BMINaiveErrorCheck {
public static void main(String[] args) {

Scanner scnr =
int weightval = 0;
int heightval

new Scanner (System.in);
// User defined weight (1lbs)
0; // User defined height (in)

float bmiCalc = 0.0f; // Resulting BMI
char quitCmd = 'a'; // Indicates quit/continue
while (quitCmd != 'q') {

}

// Get user data
System.out.print("Enter weight (in pounds):
weightvVal = scnr.nextInt();

")

// Error checking, non-negative weight
if (weightval < 0) {
System.out.println("Invalid weight.");

}
else {
System.out.print("Enter height (in inches): ");
heightval = scnr.nextInt();
// Error checking, non-negative height
if (heightval < 0) {
System.out.println("Invalid height.");
}
}

// Calculate BMI and print user health info if no inp

// Source: http://www.cdc.gov/

if ((weightval <= 0) || (heightval <= 0)) {
System.out.println("Cannot compute info.");

1/30/16, 11:03 AM

}
else {
bmiCalc = ((float) weightval /

(float) (heightval * heightVval))

System.out.println("BMI: " + bmiCalc);
System.out.println("(CDC: 18.6-24.9 normal)");
// Source: http://www.cdc.gov/

}

// Prompt user to continue/quit
System.out.print("\nEnter any key ('q' to quit): ");
quitCmd = scnr.next().charAt(0);

return;

https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print

Enter weight (in pou
Enter height (in inc]
BMI: 24.207989

(CDC: 18.6-24.9 norm

Enter any key ('q' t«
Enter weight (in pou
Invalid weight.

Cannot compute info.

Enter any key ('q' t«
Enter weight (in pou
Enter height (in incl
Invalid height.

Cannot compute info.

Enter any key ('q' t«

* 703.0f;

Page 3 of 31

Lehman College City University of New York CMP 167 Spring 2016: Programming in Java 1/30/16, 11:03 AM

The language has special constructs, try, throw, and catch, known as exception-handling
constructs, to keep error-checking code separate and to reduce redundant checks.

// ... means normal code
try {
// If error detected
throw objectOfExceptionType;

}
catch (exceptionType excptObj) {
// Handle exception, e.g., print message

}

https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print Page 4 of 31

Lehman College City University of New York CMP 167 Spring 2016: Programming in Java 1/30/16, 11:03 AM

Participation | 13.1.1: How try, throw, and catch

Activity handle exceptions.
~
// ... means normal code
try {

// 1f error detected
throw objectOfExceptionType;

}
catch (exceptionType excptObj) {
// Handle exception, e.g., print message

}

// Resume normal code below catch

[Error message... }

|G

e A try block surrounds normal code, which is exited immediately if a throw statement
executes.

e A throw statement appears within a try block; if reached, execution jumps
immediately to the end of the try block. The code is written so only error situations
lead to reaching a throw. The throw statement provides an object of type Throwable,
such as an object of type Exception or its subclasses. The statement is said to throw
an exception of the particular type. A throw statement's syntax is similar to a return
statement.

e A catch clause immediately follows a try block; if the catch was reached due to an
exception thrown of the catch clause's parameter type, the clause executes. The
clause is said to catch the thrown exception. A catch block is called a handler
because it handles an exception.

https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print Page 5 of 31

Lehman College City University of New York CMP 167 Spring 2016: Programming in Java 1/30/16, 11:03 AM
The following shows the earlier BMI program using exception-handling constructs. Notice that the

normal code flow is not obscured by error-checking/handling if-else statements. The flow is clearly:
Get weight, then get height, then print BMI.

https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print Page 6 of 31

Lehman College City University of New York CMP 167 Spring 2016: Programming in Java

import java.util.Scanner;

public class BMIExceptHandling {
public static void main(String[] args) {
Scanner scnr = new Scanner (System.in);

int weightval = 0; // User defined weight (1lbs)
int heightval = 0; // User defined height (in)
float bmiCalc = 0.0f; // Resulting BMI

char quitCmd = 'a'; // Indicates quit/continue

while (quitCmd != 'g') {

try {
// Get user data

System.out.print("Enter weight (in pounds):
weightval = scnr.nextInt();

"):

// Error checking, non-negative weight
if (weightval < 0) {
throw new Exception("Invalid weight.");

}

n);

System.out.print("Enter height (in inches):
heightval = scnr.nextInt();

// Error checking, non-negative height
if (heightval < 0) {
throw new Exception("Invalid height.");

}
// Calculate BMI and print user health info if no
// Source: http://www.cdc.gov/
bmiCalc = ((float) weightval
/ (float) (heightval * heightval)) * 703.0

" + bmiCalc);
18.6-24.9 normal)");

System.out.println("BMI:
System.out.println(" (CDC:
}

catch (Exception excpt) {

1/30/16, 11:03 AM

Enter weight (in pou
Enter height (in inc]
BMI: 24.208

(CDC: 18.6-24.9 norm

Enter any key ('q' t«
Enter weight (in pou
Invalid weight.

Cannot compute healtl]

Enter any key ('q' t«
Enter weight (in pou
Enter height (in incl
Invalid height.

Cannot compute healtl]

Enter any key ('q' t«

// Prints the error message passed by throw statement

System.out.println(excpt.getMessage());
System.out.println("Cannot compute health info");

}

// Prompt user to continue/quit
System.out.print("\nEnter any key ('q' to quit):
quitCmd = scnr.next().charAt(0);

")
}

return;

https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print

Page 7 of 31

Lehman College City University of New York CMP 167 Spring 2016: Programming in Java 1/30/16, 11:03 AM

The object thrown and caught must be of the Throwable class type, or a class inheriting from
Throwable. As discussed elsewhere, Java offers several built-in Throwable types like Error, Exception,
and classes derived from these. The Exception class (and other Throwable types) has a constructor
that can be passed a String, as in throw new Exception("Invalid weight.");, which
allocates a new Exception object and sets an internal String value that can later be retrieved using the
getMessage() method, as in System.out.println(excpt.getMessage());.

https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print Page 8 of 31

Lehman College City University of New York CMP 167 Spring 2016: Programming in Java 1/30/16, 11:03 AM

Participation
Activity

v

13.1.2: Exceptions.

Select the one code region that is incorrect.

L

try 1 new Exception(“Invalid weight.");

1
Y Y

System.out.printin(excpt.getMessage());
System.out.printin("Cannot compute health info");

J

try {
if (weight < 0) {
throw new Exception("Invalid weight.");

//Print user health info
) /...
}

catch (Exception excpt) {

System.out.printin("Cannot compute health info");

https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print Page 9 of 31

Lehman College City University of New York CMP 167 Spring 2016: Programming in Java

Participation
Activity

v

13.1.3: Exception basics.

After an exception is thrown and a catch block executes,
execution resumes after the throw statement.

A compiler generates an error message if a try block is not
immediately followed by a catch block.

2
If no throw is executed in a try block, then the subsequent
catch block is not executed.
3
Exploring further:

e More on Exceptions from Oracle's Java Tutorials

e QOracle's Java Exception class specification

True

False

True

False

True

False

1/30/16, 11:03 AM

The power of exceptions becomes clearer when used within a method. If an exception is thrown
within a method and not caught within that method, then the method is immediately exited and the

calling method is checked for a handler, and so on up the method call hierarchy. The following

illustrates; note the clarity of the normal code.

https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print

Page 10 of 31

http://docs.oracle.com/javase/tutorial/essential/exceptions/index.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Exception.html

Lehman College City University of New York CMP 167 Spring 2016: Programming in Java

import java.util.Scanner;

public class BMIExceptHandling {

1/30/16, 11:03 AM

public static int getWeight() throws Exception {

Scanner scnr = new Scanner (System.in);

int weightParam = 0; // User defined weight (lbs)

// Get user data

System.out.print("Enter weight (in pounds): ");

weightParam = scnr.nextInt();

// Error checking, non-negative weight
if (weightParam < 0) {

throw new Exception("Invalid weight.");

}

return weightParam;

}

public static int getHeight() throws Exception {

Scanner scnr = new Scanner (System.in);

int heightParam = 0; // User defined height (in)

// Get user data

System.out.print("Enter height (in inches): ");

heightParam = scnr.nextInt();

// Error checking, non-negative height
if (heightParam < 0) {

throw new Exception("Invalid height.");

}

return heightParam;

}

public static void main(String[] args) {
Scanner scnr = new Scanner (System.in);
int weightval = 0;
int heightval
float bmiCalc

0.0f; // Resulting BMI

char quitCmd = 'a';
while (quitCmd != 'g') {
try {
//Get user data
weightVal = getWeight(

)i
heightval = getHeight();

// User defined weight (1lbs)
0; // User defined height (in)

// Indicates quit/continue

Enter weight (in pou
Enter height (in incl
BMI: 24.207989

(CDC: 18.6-24.9 normi

Enter any key ('q' t«
Enter weight (in pou
Invalid weight.

Cannot compute healt]

Enter any key ('q' t«
Enter weight (in pou
Enter height (in inc]
Invalid height.

Cannot compute healt]

Enter any key ('q' t«

// Calculate BMI and print user health info if no input error

// Source: http://www.cdc.gov/
bmiCalc = ((float) weightval /

(float) (heightval * heightVval)) * 703.0f;

System.out.println("BMI: " + bmiCalc);
System.out.println("(CDC: 18.6-24.9 normal)");

} catch (Exception excpt) {

// Prints the error message passed by throw statement

Cacml mn Arndl smamd ml T v [Acr L ~AlMAA~~A -~

https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print

Page 11 of 31

Lehman College City University of New York CMP 167 Spring 2016: Programming in Java 1/30/16, 11:03 AM

DySLTil.UUL . pLLILILLILL|TALP L. YT LIITSDDAYS |)) g

System.out.println("Cannot compute health info");

}

// Prompt user to continue/quit
System.out.print("\nEnter any key ('q' to quit): ");
quitCmd = scnr.next().charAt(0);

}

return;

Suppose GetWeight() throws an exception of type runtime_error. GetWeight() immediately exits, up to
main() where the call was in a try block, so the catch block catches the exception.

Note the clarity of the code in main(). Without exceptions, GetWeight() would have had to somehow
indicate failure, perhaps returning -1. Then main() would have needed an if-else statement to detect
such failure, obscuring the normal code.

If a method throws an exception not handled within the method, a programmer must include a
throws clause within the method declaration, by appending throws Exception before the
opening curly brace. Java requires that a programmer either provides an exception handler or
specifies that a method may throw an exception by appending a throws clause to all methods that
may throw checked exceptions. A checked exception is an exception that a programmer should be
able to anticipate and appropriately handle. Checked exceptions include Exception and several of its
subclasses, discussed elsewhere in the context of file input/output. A common error is forgetting
either to specify a throws clause or forgetting to enclose code that may throw exceptions with try-
catch constructs, which results in a compiler error such as: "unreported exception
java.lang.Exception; must be caught or declared to be thrown".

Unchecked exceptions, in contrast to checked expressions, are exceptions that result from
hardware or logic errors that typically cannot be anticipated or handled appropriately, and instead
should be eliminated from the program or at the very least should cause the program to terminate
immediately. A programmer is not required to handle unchecked exceptions or even specify that a
method may throw them. Unchecked exceptions are comprised of the Error and RuntimeException
classes and their subclasses. Examples of built-in unchecked exceptions include
NullPointerException, ArithmeticException, IndexOutOfBoundsException, and IOError, which are
automatically thrown whenever a programmer attempts to use a null reference, divides an integer by
zero, attempts to access a non-existing element within an array, or when a hardware failure causes an
I/O operation to fail, respectively. The following table provides an overview of common unchecked
exceptions with links to the corresponding class specification page from Oracle.

https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print Page 12 of 31

Lehman College City University of New York CMP 167 Spring 2016: Programming in Java 1/30/16, 11:03 AM

Unchecked exception Notes
NullPointerException Indicates a null reference.

Indicates that an index (e.g., an index for an array) is

IndexOutOfBoundsException outside the appropriate range.

Indicates the occurrence of an exceptional arithmetic

ArithmeticException condition (e.g., integer division by zero).
|OError Indicates the failure of an I/O operation.
Indicates an invalid attempt to cast an object to type of
ClassCastException which the object is not an instance (e.g., casting a Double
to a String).
llegalArgumentException Thrown by a method to indicate an illegal or inappropriate

argument.

https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print Page 13 of 31

http://docs.oracle.com/javase/7/docs/api/java/lang/NullPointerException.html
http://docs.oracle.com/javase/7/docs/api/java/lang/IndexOutOfBoundsException.html
http://docs.oracle.com/javase/7/docs/api/java/lang/ArithmeticException.html
http://docs.oracle.com/javase/7/docs/api/java/io/IOError.html
http://docs.oracle.com/javase/7/docs/api/java/lang/ClassCastException.html
http://docs.oracle.com/javase/7/docs/api/java/lang/IllegalArgumentException.html

Lehman College City University of New York CMP 167 Spring 2016: Programming in Java 1/30/16, 11:03 AM

Participation . :
Activity 13.2.1: Exceptions.
v
For a method that may contain a throw, the method's True
statements must be surrounded by a try block.
;
False
A throw executed in a method automatically causes a jump to True
the last return statement in the method.
2
False
A goal of exception handling is to avoid polluting normal code True
with distracting error-handling code.
3
False
A checked exception must either be handled via try-catch True
constructs, or the throwing method must specify that the
4 appropriate exception type may be thrown by appending a
throws clause to the method's definition. False

Different throws in a try block may throw different exception types. Multiple handlers may exist, each
handling a different type. The first matching handler executes; remaining handlers are skipped.

catch(Throwable thrwObj) is a catch-all handler that catches any error or exception as both are
derived from the Throwable class; this handler is useful when listed as the last handler.

https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print Page 14 of 31

Lehman College City University of New York CMP 167 Spring 2016: Programming in Java 1/30/16, 11:03 AM

// ... means normal code
try |
éﬁéow objOfExcptTypel;
éﬁéow objOfExcptType2;
éﬂ;ow objOfExcptType3;

}
catch (excptTypel excptObj) {

// Handle typel
}
catch (excptType2 excptObj) {
// Handle type2
}
catch (Throwable thrwObj) {
// Handle others (e.g., type3)

// Execution continues here

https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print Page 15 of 31

Lehman College City University of New York CMP 167 Spring 2016: Programming in Java 1/30/16, 11:03 AM

criepaton 1 13.3.1: Multiple handlers.

Activity
v
// ... means normal code
try {
... // no error detected
throw objOfExcptTypel;
// error detected
throw objOfEexcptType2;
Xm objOfExcptType3;
}

catch (excptTypel excptObj) {
// Handle typel, e.g., print error message 1
}

catch (excptType2 excptObj) {
// Handle type2, e.g., print error message 2

}
catch (Throwable thrwObj) { Error message 2

// Handle others (e.g., type3), print message
}

// Execution continues here

A thrown exception may also be caught by a catch block meant to handle an exception of a base
class. If in the above code, excptType? is a subclass of excptTypel, then objOfExcptType2 would
always be caught by the first catch block instead of the second catch block, which is typically not the
intended behavior. A common error is to place a catch block intended to handle exceptions of a base
class before catch blocks intended to handle exceptions of a derived class, resulting in a compiler
error with a message such as: "exception has already been caught".

https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print Page 16 of 31

Lehman College City University of New York CMP 167 Spring 2016: Programming in Java

Participation
Activity

v

Refer to the multiple handler code above.

If an object of type objOfExcptTypel is thrown, three catch
blocks will execute.

;
If an object of type objOfExcptType3 is thrown, no catch
blocks will execute.

2
A second catch block can never execute immediately after a
first one executes.

3

If excptType?2 inherits from excptTypel, then the inclusion of

the second catch block (i.e.,

catch (excptType2 excptObj)) below the first catch
4 block results in a compiler error as the second catch block

would never be executed.

13.3.2: Exceptions with multiple handlers.

True

False

True

False

True

False

True

False

1/30/16, 11:03 AM

A file input/output stream requires exception handling to ensure invalid or interrupted file operation
exceptions are appropriately caught and handled. The following naively attempts to handle exceptions

for reading and printing characters from a text file until reaching the end of the file.

https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print

Page 17 of 31

Lehman College City University of New York CMP 167 Spring 2016: Programming in Java

import
import
import

java.util.Scanner;
java.io.FileReader;
java.io.IOException;

public class FileReadChars {
public static void main(String[] args) {
Scanner scnr = new Scanner (System.in)

FileReader fileCharStream = null; //
String fileName = ""; //
int charRead = 0; //

// Get file name from user
System.out.print("Enter a valid file
fileName = scnr.next();

try {
// Prompt user for input

System.out.println("Opening file "

fileCharStream = new FileReader (fileName);

// Use file input stream

System.out.print("Reading character values:

while (charRead != -1) {
charRead = fileCharStream.read(
System.out.print(charRead + " "

}

// Done with file, so try to close
if (fileCharStream != null) {

4

File stream for reading chars
User defined file name
Data read from file

name: ");

+ fileName + ".");

n);

1/30/16, 11:03 AM

// May throw FileNotFoundExcept

// -1 means end of file has been reac

)y; // May throw IOException
)i

it

System.out.println("\nClosing file " + fileName + ".");

fileCharStream.close();

}
} catch (IOException excpt) {

System.out.println("Caught IOException:

}

return;

// close() may throw IOException if fails

+ excpt.getMessage());

Enter a valid file name:
Opening file letters.txt.
Reading character values:
Closing file letters.txt.

letters.txt with
seven characters:

abcdefg N

Enter a valid file name:
Opening file badfile.txt.

letters.txt

97 98 99 100 101 102 103 10 -1

badfile.txt

Caught IOException: badfile.txt (No such file or directory)

https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print

Page 18 of 31

Lehman College City University of New York CMP 167 Spring 2016: Programming in Java 1/30/16, 11:03 AM

The FileReader class provides an input stream that allows a programmer to read characters from the
file specified via FileReader's constructor. FileReader supports several overloaded read() methods for
reading characters and a close() method for terminating the stream and closing the file. Most
FileReader methods and constructors throw exceptions of type IOException (i.e., input/output
exception), a built-in checked exception inheriting from the Exception class. Specifically, read() may
throw an IOException if an error is encountered while reading the file, and close() may throw an
|IOException if an error occurs while attempting to close the file. FileReader's constructors may throw
a FileNotFoundException, which itself inherits from IOException, if the specified file cannot be
opened for reading.

In the above program, the try block contains instructions that open a file, read from that file, and close
the file. The single catch block is able to handle any exceptions thrown by each of these operations
individually, and the program seems to function as intended. However, suppose that an interrupted
read() operation causes the statement charRead = fileCharStream.read(); tothrow an

IOException. Although the catch block successfully catches and reports the error, the program exits
without closing the file. This behavior is due to the fact that program execution immediately jumps to
the end of the try block as soon as a contained statement throws an exception. A programmer must
ensure that files are closed when no longer in use, to allow the JVM to clean up any resources
associated with the file streams.

One possible solution is to place the call to close() after the try-catch blocks:

import java.util.Scanner;
import java.io.FileReader;
import java.io.IOException;

public class FileReadChars {
public static void main(String[] args) {
Scanner scnr = new Scanner(System.in);
FileReader fileCharStream = null; // File stream for reading chars

String fileName = ; // User defined file name
int charRead = 0; // Data read from file

// Get file name from user
System.out.print("Enter a valid file name: ");
fileName = scnr.next();

try {
// Prompt user for input

System.out.println("Opening file " + fileName + ".");
fileCharStream = new FileReader(fileName); // May throw FileNotFoundExcept

// Use file input stream

System.out.print("Reading character values: ");

while (charRead != -1) { // -1 means end of file has been reac
charRead = fileCharStream.read(); // May throw IOException
System.out.print(charRead + " ");

}

1 ecatch (TOExcention exeont) {

https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print Page 19 of 31

Lehman College City University of New York CMP 167 Spring 2016: Programming in Java 1/30/16, 11:03 AM

s e S Sl S 8

System.out.println("Caught IOException:

+ excpt.getMessage());

}

// Done with file, so try to close it
try {
if (fileCharStream != null) {
System.out.println("\nClosing file " + fileName + ".");
fileCharStream.close(); // close() may throw IOException if fails
}
} catch (IOException excpt) {
System.out.println("Caught IOException:

+ excpt.getMessage());

}

return;

Enter a valid file name: letters.txt

Opening file letters.txt.

letters.txt with Reading character values: 97 98 99 100 101 102 103 10 -1
seven characters: Closing file letters.txt.

abcdefg oo

Enter a valid file name: badfile.txt
Opening file badfile.txt.
Caught IOException: badfile.txt (No such file or directory)

. J

However, if the program throws an exception unrelated to the file 10 (e.g., RuntimeException,
NullPointerException) before calling close(), the program may still exit without first closing the file.

A better solution uses a finally block. A finally block follows all catch blocks, and executes after the
program exits the corresponding try or catch blocks.

https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print Page 20 of 31

Lehman College City University of New York CMP 167 Spring 2016: Programming in Java 1/30/16, 11:03 AM

// ... means normal code

try {

// If error detected
throw objOfExcptType;

}
catch (excptType excptObj) {
// Handle exception, e.g., print message

}
finally {

// Clean up resources, e.g., close file
}

Activity
v

P rartopaton 13 4.1: Using a finally block to clean up resources.

Start

/) means normal code If exception is thrown in try,

... the corresponding catch block
try { will execute, followed by the
}}.If error detected finaHy block
throw objOfExcptType;
y N If exception is not thrown in try,
catch (excptType excptObj) { the finally block will execute

// Handle exception, e.g., print message
once the try completes

}
finally {

// Clean up resources, e.g., close file
}

// Resume normal code below finally

Error message...

| CH—

https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print

Page 21 of 31

Lehman College City University of New York CMP 167 Spring 2016: Programming in Java

1/30/16, 11:03 AM

A good practice is to use finally blocks for code that should be executed both when the program
executes normally and when the program throws an exception, such as closing files that are opened
and accessed within a try block.

The following is an improved version of the previous program, using a finally block to ensure that the
input stream and file are always closed. The code within the try block opens a file and reads
characters from that file. If an error occurs while reading from the file, an IOException will be thrown,
and the catch block will report the exception. The finally block executes after the try and catch blocks
have finished execution calling CloseFileReader(), which will close the file. As an exception may be
thrown while closing a file, the CloseFileReader method also includes try and catch blocks.

import java.util.Scanner;
import java.io.FileReader;
import java.io.IOException;

public class FileReadChars {
/* Method closes a FileReader.

Prints exception message if closing fails */

public static void closeFileReader (FileReader fileName) {

}

try {
if (fileName != null) { // Ensure "file" references a valid object
System.out.println("Closing file.");
fileName.close(); // close() may throw IOException if fails
}

} catch (IOException closeExcpt) {
System.out.println("Error closing file:

+ closeExcpt.getMessage());

}

return;

public static void main(String[] args) {

Scanner scnr = new Scanner (System.in);

FileReader fileCharStream = null; // File stream for reading chars
String fileName = ""; // User defined file name

int charRead = 0; // Data read from file

// Get file name from user
System.out.print("Enter a valid file name: ");
fileName = scnr.next();

try {
// Prompt user for input
System.out.println("Opening file " + fileName + ".");

fileCharStream = new FileReader(fileName); // May throw FileNotFoundExcept

// Use file input stream

System.out.print("Reading character values: ");

while (charRead != -1) { // -1 means end of file has been reached
charRead = fileCharStream.read(); // May throw IOException
System.out.print(charRead + " ");

}

System.out.println():;

https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print

Page 22 of 31

Lehman College City University of New York CMP 167 Spring 2016: Programming in Java

} catch (IOExcéption ékcpt) {

System.out.println("Caught IOException: " + excpt.getMessage());
} finally {
closeFileReader(fileCharStream); // Ensure file is closed!
}
return;
}
}
p
Enter a valid file name: letters.txt
Opening file letters.txt.
letters.txt with Reading character values: 97 98 99 100 101 102 103 10 -1

seven characters: | ¢tosing file.

abcdefg N

Enter a valid file name: badfile.txt
Opening file badfile.txt.

Caught IOException: bad.txt (No such file or directory)

1/30/16, 11:03 AM

While the previous programs simply print a message if the program cannot open a file for reading, the
following example allows the user to enter a different file name if the file cannot be opened by catching

the FileNotFoundException.

import java.util.Scanner;

import java.io.FileNotFoundException;
import java.io.FileReader;

import java.io.IOException;

public class FileReadCharsInteractive {
/* Method prints characters in a file using read().
Throws IOException if read() operation fails. */
public static void readFileChars(FileReader file) throws IOException {
int charRead = 0; // Data read from file

// Use file input stream

System.out.print("Reading character values: ");
while (charRead != -1) { // -1 means end of file has been reached
charRead = file.read(); // May throw IOException

System.out.print(charRead + " ");
}
System.out.println();

return;

}

/* Method closes a FileReader.

https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print

Page 23 of 31

Lehman College City University of New York CMP 167 Spring 2016: Programming in Java 1/30/16, 11:03 AM

Prints exception message if closing fails. */
public static void closeFileReader (FileReader fileName) {
try {
if (fileName != null) { // Ensure "file" references a valid object
System.out.println("Closing file.");
fileName.close(); // close() may throw IOException if fails
}
} catch (IOException closeExcpt) {
System.out.println("Error closing file:

+ closeExcpt.getMessage());

}

return;

}

public static void main(String[] args) {
Scanner scnr = new Scanner (System.in);
FileReader fileCharStream = null; // File stream for reading chars

String fileName = ""; // User defined file name
boolean validFile = true; // Ensures file opened
do {

// Get file name from user

System.out.print("Enter a valid file name (or 'gq' to quit): ");

fileName = scnr.next();

if (fileName.equals("q")) {
break; // Exit do-while loop

}

try {
// Prompt user for input
System.out.println("Opening file " + fileName + ".");
fileCharStream = new FileReader(fileName); // May throw FileNotFoundExc

validFile = true; // If reached this statement, file opened successfull

// Read chars from file
readFileChars(fileCharStream); // May throw IOException
} catch (FileNotFoundException excpt) {
System.out.println("Caught FileNotFoundException:
validFile = false;
} catch (IOException excpt) {
System.out.println("Caught IOException:
} finally {
closeFileReader (fileCharStream); // Ensure file is closed!

+ excpt.getMessage(

+ excpt.getMessage());

}
} while (!validFile);
return;
}
}
Enter a valid file name (or 'gq' to quit): letters.txt
letters. txt Opening file letters.txt.
ith ' Reading character values: 97 98 99 100 101 102 103 10 -1

wit Closing file.
seven
characters: | ---

https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print Page 24 of 31

Lehman College City University of New York CMP 167 Spring 2016: Programming in Java 1/30/16, 11:03 AM

l apcueLry Enter a valla ILlle name (Or ¢ TO qult): badIlle.TXT
Opening file badfile.txt.
Caught FileNotFoundException: badfile.txt (No such file or directory
Enter a valid file name (or 'q' to quit): g

The statements in main() execute in a do-while loop until the user enters a valid file name. The first
catch catches the FileNotFoundException exception and sets a boolean variable to false indicating the
file is not valid. The second catch catches any other IOException, such as an exception that occurs
while reading from the file. As the FileNotFoundException exception is derived from an IOException,
the catch for the FileNotFoundException must come before the catch for the IOException.

A programmer should also utilize exception handling when writing to file output streams in order to
handle exceptions resulting from invalid or interrupted file operations, as shown below. The program
opens a user-specified file, writes the first 10 letters of the alphabet, and safely closes the file.

import java.util.Scanner;
import java.io.FileWriter;
import java.io.IOException;

public class FileWriteChars {
/* Method closes a FileWriter.
Prints exception message if closing fails. */
public static void closeFileWriter (FileWriter fileName) {

try {
if (fileName != null) { // Ensure "file" references a valid object
System.out.println("Closing file.");
fileName.close(); // close() may throw IOException if fails
}
} catch (IOException closeExcpt) {
System.out.println("Error closing file: " + closeExcpt.getMessage());
}
return;

}

public static void main(String[] args) {
Scanner scnr = new Scanner (System.in);
final int NUM CHARS TO WRITE = 10; // Num chars to write to file

int countvVar = 0; // Track num chars written so far
FileWriter fileCharStream = null; // File stream for writing file
String fileName = ""; // User defined file name

char charWrite = 'a'; // Char data written to file

// Get file name from user

System.out.print("Enter a valid file name: ");
fileName = scnr.next();
try {

System.out.println("Creating file " + fileName + ".");
fileCharStream = new FileWriter(fileName); // May throw IOException

https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print Page 25 of 31

Lehman College City University of New York CMP 167 Spring 2016: Programming in Java 1/30/16, 11:03 AM

// Use file output stream
System.out.print("Writing " + NUM_CHARS_TO WRITE + " characters: ");
while (countVar < NUM_CHARS_TO WRITE) {
fileCharStream.write(charWrite);
System.out.print (charWrite);

charWrite++; // Get next char ready
countVar++; // Keep track of number chars written
}
System.out.println();
} catch (IOException excpt) {
System.out.println("Caught IOException: " + excpt.getMessage());
} finally {
closeFileWriter(fileCharStream); // Ensure file is closed!

}

return;

outputfile mywritefile.txt
Enter a valid file name: mywritefile.txt : .
Creating file mywritefile.txt. with ten characters:

Writing 10 characters: abcdefghij abcdefghij
Closing file.

The program creates an object of type FileWriter, which provides overloaded write() methods to write
a stream of characters and a close() method to flush the underlying buffer and close the stream. Both
of these methods may throw IOExceptions in the event of a failure. A FileWriter's constructor may
throw an I0Exception if the program or operating system cannot create (or open) the specified file.

https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print Page 26 of 31

Lehman College City University of New York CMP 167 Spring 2016: Programming in Java 1/30/16, 11:03 AM

Participation
Activity

v

13.4.2: Exceptions with file input and output.

What type of exception may be thrown by a
41 FileReader's constructor?

What is the name of the base class from which all
o file i/o exceptions discussed above are derived?

What type of exception may be thrown by a
g FileReader's read() and close() methods?

What type of exception may be thrown by a
4 FileWriter's constructor?

What is the name of the clause used to ensure that
contained statements are executed after the try and
5 catch blocks.

Exploring further:
e More on the finally block from Oracle's Java Tutorials
e Oracle's Java FileReader class specification
e QOracle's Java FileWriter class specification
e QOracle's Java IOException class specification

https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print Page 27 of 31

http://docs.oracle.com/javase/tutorial/essential/exceptions/finally.html
http://docs.oracle.com/javase/7/docs/api/java/io/FileReader.html
http://docs.oracle.com/javase/7/docs/api/java/io/FileWriter.html
http://docs.oracle.com/javase/7/docs/api/java/io/IOException.html

Lehman College City University of New York CMP 167 Spring 2016: Programming in Java 1/30/16, 11:03 AM

Participation
Activity

v

13.5.1: Catch number format error.

Running the below program with the given input causes a number conversion error. The program
reads from System.in the following rows (also called records) that contain a last name, first name,
department, and annual salary. The program uses the String class split() method to split an input
FOW.

Argon,John,Operations,50000
Williams,Jane,Marketing,60000.0
Uminum,Al,Finance, 70000

Jones, Ellen,Sales, 80000

Note that the second row has a value that is type double, not type int, which is going to cause a
problem.

1. Run the program and note the line number where the program fails. The line
number can be found on the last row of the error messages.

2. Add try/catch statements to catch the number conversion error, which is called
NumberFormatException. In this case, print a message, and do not add the item
to the total salaries.

3. Run the program again and note the total salaries excludes the row with the error.

import java.util.Scanner;
public class StreamNumberException {

// Describe the format of a row of input. There are four fields in a row

1

2

3

4

5 public static void main(String [] args) {

6

7 // separate by commas: last name, first name, department, salary
8

final String SEPARATOR ","s // Field separator in each row of data
9 final int INDEX_LAST_NAME @; // # of the last name field
10 final int INDEX_FIRST_NAME - 1; // # of the first name field
11 final int INDEX_DEPT 2; // # of the department name field
12 final int INDEX_SALARY 3; // # of the salary field
13 Scanner scnr = new Scanner(System.in);
14
15 String [] field; // Fields on one row in the input file
16 String row; // One row of the input file
17 int nRows = 0; // Counts # of rows in the input file
18 int totalSalaries = @; // Total of all salaries read

https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print Page 28 of 31

Lehman College City University of New York CMP 167 Spring 2016: Programming in Java 1/30/16, 11:03 AM

19 int i Q: // Loob counter
Doe,John,Operations,50000
Doette,Jane,Marketing,60000.0
Uminum,Al,Finance, 70000

3n,Sales, 80000

https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print Page 29 of 31

Lehman College City University of New York CMP 167 Spring 2016: Programming in Java 1/30/16, 11:03 AM

Participation
Activity

v

13.5.2: Catch number format error (solution).

Below is a solution to the above problem.

1 1import java.util.Scanner;

2

3 public class StreamNumberExceptionSolution {

4

5 public static void main(String [] args) {

6 // Describe the format of a row of input. There are four fields in a row
7 // separate by commas: last name, first name, department, salary

8 final String SEPARATOR ","s // Field separator in each row of data
9 final int INDEX_LAST_NAME @; // # of the last name field

10 final int INDEX_FIRST_NAME - 1; // # of the first name field

11 final int INDEX_DEPT 2; // # of the department name field

12 final int INDEX_SALARY 3; // # of the salary field

13 Scanner scnr = new Scanner(System.in);

14

15 String [] field; // Fields on one row in the input file

16 String row; // One row of the input file

17 int nRows = 0; // Counts # of rows in the input file

18 int totalSalaries = @; // Total of all salaries read

19 int i = @: // Loob _counter

Doe,John,Operations,50000

Doette,Jane,Marketing,60000.0

Uminum,Al,Finance, 70000
3n,Sales, 80000

https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print Page 30 of 31

Lehman College City University of New York CMP 167 Spring 2016: Programming in Java 1/30/16, 11:03 AM

https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print Page 31 of 31

