
1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 1 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print

Chapter 13 - Exceptions

Section 13.1 - Exception basics
Error-checking code is code a programmer writes to detect and handle errors that occur during
program execution. An exception is a circumstance that a program was not designed to handle,
such as if the user enters a negative height.

The following program, given a person's weight and height, outputs a person's body-mass index
(BMI), which is used to determine normal weight for a given height. The program has no error
checking.

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 2 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print

Naively adding error-checking code using if-else statements obscures the normal code. And
redundant checks are ripe for errors if accidentally made inconsistent with normal code. Problematic
code is highlighted.

Figure 13.1.1: BMI example without error checking.

import java.util.Scanner;

public class BMINoErrorCheck {
 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 int weightVal = 0; // User defined weight (lbs)
 int heightVal = 0; // User defined height (in)
 float bmiCalc = 0.0f; // Resulting BMI
 char quitCmd = 'a'; // Indicates quit/continue

 while (quitCmd != 'q') {

 // Get user data
 System.out.print("Enter weight (in pounds): ");
 weightVal = scnr.nextInt();

 System.out.print("Enter height (in inches): ");
 heightVal = scnr.nextInt();

 // Calculate BMI value
 bmiCalc = ((float) weightVal /
 (float) (heightVal * heightVal)) * 703.0f;

 //Print user health info
 // Source: http://www.cdc.gov/
 System.out.println("BMI: " + bmiCalc);
 System.out.println("(CDC: 18.6-24.9 normal)");

 // Prompt user to continue/quit
 System.out.print("\nEnter any key ('q' to quit): ");
 quitCmd = scnr.next().charAt(0);
 }

 return;
 }
}

Enter weight (in pounds): 150
Enter height (in inches): 66
BMI: 24.207989
(CDC: 18.6-24.9 normal)

Enter any key ('q' to quit): a
Enter weight (in pounds): -1
Enter height (in inches): 66
BMI: -0.1613866
(CDC: 18.6-24.9 normal)

Enter any key ('q' to quit): a
Enter weight (in pounds): 150
Enter height (in inches): -1
BMI: 105450.0
(CDC: 18.6-24.9 normal)

Enter any key ('q' to quit): q

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 3 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print

Figure 13.1.2: BMI example with error-checking code but without using
exception-handling constructs.

import java.util.Scanner;

public class BMINaiveErrorCheck {
 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 int weightVal = 0; // User defined weight (lbs)
 int heightVal = 0; // User defined height (in)
 float bmiCalc = 0.0f; // Resulting BMI
 char quitCmd = 'a'; // Indicates quit/continue

 while (quitCmd != 'q') {

 // Get user data
 System.out.print("Enter weight (in pounds): ");
 weightVal = scnr.nextInt();

 // Error checking, non-negative weight
 if (weightVal < 0) {
 System.out.println("Invalid weight.");
 }
 else {
 System.out.print("Enter height (in inches): ");
 heightVal = scnr.nextInt();
 // Error checking, non-negative height

 if (heightVal < 0) {
 System.out.println("Invalid height.");
 }
 }

 // Calculate BMI and print user health info if no input error
 // Source: http://www.cdc.gov/
 if ((weightVal <= 0) || (heightVal <= 0)) {
 System.out.println("Cannot compute info.");
 }
 else {
 bmiCalc = ((float) weightVal /
 (float) (heightVal * heightVal)) * 703.0f;

 System.out.println("BMI: " + bmiCalc);
 System.out.println("(CDC: 18.6-24.9 normal)");
 // Source: http://www.cdc.gov/
 }

 // Prompt user to continue/quit
 System.out.print("\nEnter any key ('q' to quit): ");
 quitCmd = scnr.next().charAt(0);
 }

 return;
 }
}

Enter weight (in pounds): 150
Enter height (in inches): 66
BMI: 24.207989
(CDC: 18.6-24.9 normal)

Enter any key ('q' to quit): a
Enter weight (in pounds): -1
Invalid weight.
Cannot compute info.

Enter any key ('q' to quit): a
Enter weight (in pounds): 150
Enter height (in inches): -1
Invalid height.
Cannot compute info.

Enter any key ('q' to quit): q

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 4 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print

The language has special constructs, try, throw, and catch, known as exception-handling
constructs, to keep error-checking code separate and to reduce redundant checks.

Construct 13.1.1: Exception-handling constructs.
// ... means normal code
...
try {
 ...
 // If error detected
 throw objectOfExceptionType;
 ...
}
catch (exceptionType excptObj) {
 // Handle exception, e.g., print message
}
...

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 5 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print

A try block surrounds normal code, which is exited immediately if a throw statement
executes.

A throw statement appears within a try block; if reached, execution jumps
immediately to the end of the try block. The code is written so only error situations
lead to reaching a throw. The throw statement provides an object of type Throwable,
such as an object of type Exception or its subclasses. The statement is said to throw
an exception of the particular type. A throw statement's syntax is similar to a return
statement.

A catch clause immediately follows a try block; if the catch was reached due to an
exception thrown of the catch clause's parameter type, the clause executes. The
clause is said to catch the thrown exception. A catch block is called a handler
because it handles an exception.

P Participation
Activity

13.1.1: How try, throw, and catch
handle exceptions.

Start

// ... means normal code
...
try {
 ...
 ...
 // If error detected
 throw objectOfExceptionType;
 ...
 ...
}
catch (exceptionType excptObj) {
 // Handle exception, e.g., print message
}

X

Error message...

...
// Resume normal code below catch

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 6 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print

The following shows the earlier BMI program using exception-handling constructs. Notice that the
normal code flow is not obscured by error-checking/handling if-else statements. The flow is clearly:
Get weight, then get height, then print BMI.

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 7 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print

Figure 13.1.3: BMI example with error-checking code using exception-handling
constructs.

import java.util.Scanner;

public class BMIExceptHandling {
 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 int weightVal = 0; // User defined weight (lbs)
 int heightVal = 0; // User defined height (in)
 float bmiCalc = 0.0f; // Resulting BMI
 char quitCmd = 'a'; // Indicates quit/continue

 while (quitCmd != 'q') {

 try {
 // Get user data
 System.out.print("Enter weight (in pounds): ");
 weightVal = scnr.nextInt();

 // Error checking, non-negative weight
 if (weightVal < 0) {
 throw new Exception("Invalid weight.");
 }

 System.out.print("Enter height (in inches): ");
 heightVal = scnr.nextInt();

 // Error checking, non-negative height
 if (heightVal < 0) {
 throw new Exception("Invalid height.");
 }

 // Calculate BMI and print user health info if no input error
 // Source: http://www.cdc.gov/
 bmiCalc = ((float) weightVal
 / (float) (heightVal * heightVal)) * 703.0f;

 System.out.println("BMI: " + bmiCalc);
 System.out.println("(CDC: 18.6-24.9 normal)");
 }
 catch (Exception excpt) {
 // Prints the error message passed by throw statement
 System.out.println(excpt.getMessage());
 System.out.println("Cannot compute health info");
 }

 // Prompt user to continue/quit
 System.out.print("\nEnter any key ('q' to quit): ");
 quitCmd = scnr.next().charAt(0);
 }

 return;
 }
}

Enter weight (in pounds): 150
Enter height (in inches): 66
BMI: 24.208
(CDC: 18.6-24.9 normal)

Enter any key ('q' to quit): a
Enter weight (in pounds): -1
Invalid weight.
Cannot compute health info.

Enter any key ('q' to quit): a
Enter weight (in pounds): 150
Enter height (in inches): -1
Invalid height.
Cannot compute health info.

Enter any key ('q' to quit): q

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 8 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print

The object thrown and caught must be of the Throwable class type, or a class inheriting from
Throwable. As discussed elsewhere, Java offers several built-in Throwable types like Error, Exception,
and classes derived from these. The Exception class (and other Throwable types) has a constructor
that can be passed a String, as in throw new Exception("Invalid weight.");, which
allocates a new Exception object and sets an internal String value that can later be retrieved using the
getMessage() method, as in System.out.println(excpt.getMessage());.

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 9 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print

Participation
ActivityP 13.1.2: Exceptions.

Select the one code region that is incorrect.

Question

1

try {
 if (weight < 0) {
 try new Exception("Invalid weight.");
 }

 //Print user health info
 // ...
}
catch (Exception excpt) {

 System.out.println(excpt.getMessage());
 System.out.println("Cannot compute health info");
}

2

try {
 if (weight < 0) {
 throw new Exception("Invalid weight.");
 }

 //Print user health info
 // ...
}
catch (Exception excpt) {
 System.out.println(excpt());
 System.out.println("Cannot compute health info");
}

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 10 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print

Section 13.2 - Exceptions with methods
The power of exceptions becomes clearer when used within a method. If an exception is thrown
within a method and not caught within that method, then the method is immediately exited and the
calling method is checked for a handler, and so on up the method call hierarchy. The following
illustrates; note the clarity of the normal code.

Participation
ActivityP 13.1.3: Exception basics.

Question Your answer

1

After an exception is thrown and a catch block executes,
execution resumes after the throw statement.

True

False

2

A compiler generates an error message if a try block is not
immediately followed by a catch block.

True

False

3

If no throw is executed in a try block, then the subsequent
catch block is not executed.

True

False

Exploring further:
More on Exceptions from Oracle's Java Tutorials
Oracle's Java Exception class specification

http://docs.oracle.com/javase/tutorial/essential/exceptions/index.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Exception.html

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 11 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print

Figure 13.2.1: BMI example using exception-handling constructs along with
methods.

import java.util.Scanner;

public class BMIExceptHandling {
 public static int getWeight() throws Exception {
 Scanner scnr = new Scanner(System.in);
 int weightParam = 0; // User defined weight (lbs)

 // Get user data
 System.out.print("Enter weight (in pounds): ");
 weightParam = scnr.nextInt();

 // Error checking, non-negative weight
 if (weightParam < 0) {
 throw new Exception("Invalid weight.");
 }
 return weightParam;
 }

 public static int getHeight() throws Exception {
 Scanner scnr = new Scanner(System.in);
 int heightParam = 0; // User defined height (in)

 // Get user data
 System.out.print("Enter height (in inches): ");
 heightParam = scnr.nextInt();

 // Error checking, non-negative height
 if (heightParam < 0) {
 throw new Exception("Invalid height.");
 }
 return heightParam;
 }

 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 int weightVal = 0; // User defined weight (lbs)
 int heightVal = 0; // User defined height (in)
 float bmiCalc = 0.0f; // Resulting BMI
 char quitCmd = 'a'; // Indicates quit/continue

 while (quitCmd != 'q') {

 try {
 //Get user data
 weightVal = getWeight();
 heightVal = getHeight();

 // Calculate BMI and print user health info if no input error
 // Source: http://www.cdc.gov/
 bmiCalc = ((float) weightVal /
 (float) (heightVal * heightVal)) * 703.0f;

 System.out.println("BMI: " + bmiCalc);
 System.out.println("(CDC: 18.6-24.9 normal)");
 } catch (Exception excpt) {
 // Prints the error message passed by throw statement
 System.out.println(excpt.getMessage());

Enter weight (in pounds): 150
Enter height (in inches): 66
BMI: 24.207989
(CDC: 18.6-24.9 normal)

Enter any key ('q' to quit): a
Enter weight (in pounds): -1
Invalid weight.
Cannot compute health info

Enter any key ('q' to quit): a
Enter weight (in pounds): 150
Enter height (in inches): -1
Invalid height.
Cannot compute health info

Enter any key ('q' to quit): q

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 12 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print

Suppose GetWeight() throws an exception of type runtime_error. GetWeight() immediately exits, up to
main() where the call was in a try block, so the catch block catches the exception.

Note the clarity of the code in main(). Without exceptions, GetWeight() would have had to somehow
indicate failure, perhaps returning -1. Then main() would have needed an if-else statement to detect
such failure, obscuring the normal code.

If a method throws an exception not handled within the method, a programmer must include a
throws clause within the method declaration, by appending throws Exception before the
opening curly brace. Java requires that a programmer either provides an exception handler or
specifies that a method may throw an exception by appending a throws clause to all methods that
may throw checked exceptions. A checked exception is an exception that a programmer should be
able to anticipate and appropriately handle. Checked exceptions include Exception and several of its
subclasses, discussed elsewhere in the context of file input/output. A common error is forgetting
either to specify a throws clause or forgetting to enclose code that may throw exceptions with try-
catch constructs, which results in a compiler error such as: "unreported exception
java.lang.Exception; must be caught or declared to be thrown".

Unchecked exceptions, in contrast to checked expressions, are exceptions that result from
hardware or logic errors that typically cannot be anticipated or handled appropriately, and instead
should be eliminated from the program or at the very least should cause the program to terminate
immediately. A programmer is not required to handle unchecked exceptions or even specify that a
method may throw them. Unchecked exceptions are comprised of the Error and RuntimeException
classes and their subclasses. Examples of built-in unchecked exceptions include
NullPointerException, ArithmeticException, IndexOutOfBoundsException, and IOError, which are
automatically thrown whenever a programmer attempts to use a null reference, divides an integer by
zero, attempts to access a non-existing element within an array, or when a hardware failure causes an
I/O operation to fail, respectively. The following table provides an overview of common unchecked
exceptions with links to the corresponding class specification page from Oracle.

 System.out.println(excpt.getMessage());
 System.out.println("Cannot compute health info");
 }

 // Prompt user to continue/quit
 System.out.print("\nEnter any key ('q' to quit): ");
 quitCmd = scnr.next().charAt(0);
 }

 return;
 }

}

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 13 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print

Table 13.2.1: Common unchecked exceptions.

Unchecked exception Notes

NullPointerException Indicates a null reference.

IndexOutOfBoundsException Indicates that an index (e.g., an index for an array) is
outside the appropriate range.

ArithmeticException Indicates the occurrence of an exceptional arithmetic
condition (e.g., integer division by zero).

IOError Indicates the failure of an I/O operation.

ClassCastException
Indicates an invalid attempt to cast an object to type of
which the object is not an instance (e.g., casting a Double
to a String).

IllegalArgumentException Thrown by a method to indicate an illegal or inappropriate
argument.

http://docs.oracle.com/javase/7/docs/api/java/lang/NullPointerException.html
http://docs.oracle.com/javase/7/docs/api/java/lang/IndexOutOfBoundsException.html
http://docs.oracle.com/javase/7/docs/api/java/lang/ArithmeticException.html
http://docs.oracle.com/javase/7/docs/api/java/io/IOError.html
http://docs.oracle.com/javase/7/docs/api/java/lang/ClassCastException.html
http://docs.oracle.com/javase/7/docs/api/java/lang/IllegalArgumentException.html

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 14 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print

Section 13.3 - Multiple handlers
Different throws in a try block may throw different exception types. Multiple handlers may exist, each
handling a different type. The first matching handler executes; remaining handlers are skipped.

catch(Throwable thrwObj) is a catch-all handler that catches any error or exception as both are
derived from the Throwable class; this handler is useful when listed as the last handler.

Participation
ActivityP 13.2.1: Exceptions.

Question Your answer

1

For a method that may contain a throw, the method's
statements must be surrounded by a try block.

True

False

2

A throw executed in a method automatically causes a jump to
the last return statement in the method.

True

False

3

A goal of exception handling is to avoid polluting normal code
with distracting error-handling code.

True

False

4

A checked exception must either be handled via try-catch
constructs, or the throwing method must specify that the
appropriate exception type may be thrown by appending a
throws clause to the method's definition.

True

False

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 15 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print

Construct 13.3.1: Exception-handling: multiple handlers.
// ... means normal code
...
try {
 ...
 throw objOfExcptType1;
 ...
 throw objOfExcptType2;
 ...
 throw objOfExcptType3;
 ...
}
catch (excptType1 excptObj) {
 // Handle type1
}
catch (excptType2 excptObj) {
 // Handle type2
}
catch (Throwable thrwObj) {
 // Handle others (e.g., type3)
}
... // Execution continues here

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 16 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print

A thrown exception may also be caught by a catch block meant to handle an exception of a base
class. If in the above code, excptType2 is a subclass of excptType1, then objOfExcptType2 would
always be caught by the first catch block instead of the second catch block, which is typically not the
intended behavior. A common error is to place a catch block intended to handle exceptions of a base
class before catch blocks intended to handle exceptions of a derived class, resulting in a compiler
error with a message such as: "exception has already been caught".

Participation
ActivityP 13.3.1: Multiple handlers.

// ... means normal code
...
try {
 ...
 throw objOfExcptType1;
 ...
 throw objOfEexcptType2;
 ...
 throw objOfExcptType3;
 ...
}
catch (excptType1 excptObj) {
 // Handle type1, e.g., print error message 1
}
catch (excptType2 excptObj) {
 // Handle type2, e.g., print error message 2
}
catch (Throwable thrwObj) {
 // Handle others (e.g., type3), print message
}
...

// no error detected

// error detected

X

Start

// Execution continues here

Error message 2

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 17 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print

Section 13.4 - Exception handling in file input/output
A file input/output stream requires exception handling to ensure invalid or interrupted file operation
exceptions are appropriately caught and handled. The following naively attempts to handle exceptions
for reading and printing characters from a text file until reaching the end of the file.

Participation
ActivityP 13.3.2: Exceptions with multiple handlers.

Refer to the multiple handler code above.

Question Your answer

1

If an object of type objOfExcptType1 is thrown, three catch
blocks will execute.

True

False

2

If an object of type objOfExcptType3 is thrown, no catch
blocks will execute.

True

False

3

A second catch block can never execute immediately after a
first one executes.

True

False

4

If excptType2 inherits from excptType1, then the inclusion of
the second catch block (i.e.,
catch (excptType2 excptObj)) below the first catch
block results in a compiler error as the second catch block
would never be executed.

True

False

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 18 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print

Figure 13.4.1: First attempt at reading from a file with exception handling.

import java.util.Scanner;
import java.io.FileReader;
import java.io.IOException;

public class FileReadChars {
 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 FileReader fileCharStream = null; // File stream for reading chars
 String fileName = ""; // User defined file name
 int charRead = 0; // Data read from file

 // Get file name from user
 System.out.print("Enter a valid file name: ");
 fileName = scnr.next();

 try {
 // Prompt user for input
 System.out.println("Opening file " + fileName + ".");
 fileCharStream = new FileReader(fileName); // May throw FileNotFoundException

 // Use file input stream
 System.out.print("Reading character values: ");
 while (charRead != -1) { // -1 means end of file has been reached
 charRead = fileCharStream.read(); // May throw IOException
 System.out.print(charRead + " ");
 }

 // Done with file, so try to close it
 if (fileCharStream != null) {
 System.out.println("\nClosing file " + fileName + ".");
 fileCharStream.close(); // close() may throw IOException if fails
 }
 } catch (IOException excpt) {
 System.out.println("Caught IOException: " + excpt.getMessage());
 }

 return;
 }
}

letters.txt with
seven characters:
abcdefg

Enter a valid file name: letters.txt
Opening file letters.txt.
Reading character values: 97 98 99 100 101 102 103 10 -1
Closing file letters.txt.

...

Enter a valid file name: badfile.txt
Opening file badfile.txt.
Caught IOException: badfile.txt (No such file or directory)

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 19 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print

The FileReader class provides an input stream that allows a programmer to read characters from the
file specified via FileReader's constructor. FileReader supports several overloaded read() methods for
reading characters and a close() method for terminating the stream and closing the file. Most
FileReader methods and constructors throw exceptions of type IOException (i.e., input/output
exception), a built-in checked exception inheriting from the Exception class. Specifically, read() may
throw an IOException if an error is encountered while reading the file, and close() may throw an
IOException if an error occurs while attempting to close the file. FileReader's constructors may throw
a FileNotFoundException, which itself inherits from IOException, if the specified file cannot be
opened for reading.

In the above program, the try block contains instructions that open a file, read from that file, and close
the file. The single catch block is able to handle any exceptions thrown by each of these operations
individually, and the program seems to function as intended. However, suppose that an interrupted
read() operation causes the statement charRead = fileCharStream.read(); to throw an
IOException. Although the catch block successfully catches and reports the error, the program exits
without closing the file. This behavior is due to the fact that program execution immediately jumps to
the end of the try block as soon as a contained statement throws an exception. A programmer must
ensure that files are closed when no longer in use, to allow the JVM to clean up any resources
associated with the file streams.

One possible solution is to place the call to close() after the try-catch blocks:

Figure 13.4.2: Closing file after try-catch block.

import java.util.Scanner;
import java.io.FileReader;
import java.io.IOException;

public class FileReadChars {
 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 FileReader fileCharStream = null; // File stream for reading chars
 String fileName = ""; // User defined file name
 int charRead = 0; // Data read from file

 // Get file name from user
 System.out.print("Enter a valid file name: ");
 fileName = scnr.next();

 try {
 // Prompt user for input
 System.out.println("Opening file " + fileName + ".");
 fileCharStream = new FileReader(fileName); // May throw FileNotFoundException

 // Use file input stream
 System.out.print("Reading character values: ");
 while (charRead != -1) { // -1 means end of file has been reached
 charRead = fileCharStream.read(); // May throw IOException
 System.out.print(charRead + " ");
 }
 } catch (IOException excpt) {

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 20 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print

However, if the program throws an exception unrelated to the file IO (e.g., RuntimeException,
NullPointerException) before calling close(), the program may still exit without first closing the file.

A better solution uses a finally block. A finally block follows all catch blocks, and executes after the
program exits the corresponding try or catch blocks.

 } catch (IOException excpt) {
 System.out.println("Caught IOException: " + excpt.getMessage());
 }

 // Done with file, so try to close it
 try {
 if (fileCharStream != null) {
 System.out.println("\nClosing file " + fileName + ".");
 fileCharStream.close(); // close() may throw IOException if fails
 }
 } catch (IOException excpt) {
 System.out.println("Caught IOException: " + excpt.getMessage());
 }

 return;
 }
}

letters.txt with
seven characters:
abcdefg

Enter a valid file name: letters.txt
Opening file letters.txt.
Reading character values: 97 98 99 100 101 102 103 10 -1
Closing file letters.txt.

...

Enter a valid file name: badfile.txt
Opening file badfile.txt.
Caught IOException: badfile.txt (No such file or directory)

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 21 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print

Construct 13.4.1: Finally block.
// ... means normal code
...
try {
 ...
 // If error detected
 throw objOfExcptType;
 ...
}
catch (excptType excptObj) {
 // Handle exception, e.g., print message
}
finally {
 // Clean up resources, e.g., close file
}
...

Participation
ActivityP 13.4.1: Using a finally block to clean up resources.

Start

// ... means normal code
...
try {
 ...
 // If error detected
 throw objOfExcptType;
 ...
}
catch (excptType excptObj) {
 // Handle exception, e.g., print message
}
finally {
 // Clean up resources, e.g., close file
}
...

X

Error message...

If exception is thrown in try,
the corresponding catch block
will execute, followed by the
finally block

If exception is not thrown in try,
the finally block will execute
once the try completes

 // Resume normal code below finally

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 22 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print

A good practice is to use finally blocks for code that should be executed both when the program
executes normally and when the program throws an exception, such as closing files that are opened
and accessed within a try block.

The following is an improved version of the previous program, using a finally block to ensure that the
input stream and file are always closed. The code within the try block opens a file and reads
characters from that file. If an error occurs while reading from the file, an IOException will be thrown,
and the catch block will report the exception. The finally block executes after the try and catch blocks
have finished execution calling CloseFileReader(), which will close the file. As an exception may be
thrown while closing a file, the CloseFileReader method also includes try and catch blocks.

Figure 13.4.3: Reading from a file with appropriate resource clean-up.

import java.util.Scanner;
import java.io.FileReader;
import java.io.IOException;

public class FileReadChars {
 /* Method closes a FileReader.
 Prints exception message if closing fails */
 public static void closeFileReader(FileReader fileName) {
 try {
 if (fileName != null) { // Ensure "file" references a valid object
 System.out.println("Closing file.");
 fileName.close(); // close() may throw IOException if fails
 }
 } catch (IOException closeExcpt) {
 System.out.println("Error closing file: " + closeExcpt.getMessage());
 }

 return;
 }

 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 FileReader fileCharStream = null; // File stream for reading chars
 String fileName = ""; // User defined file name
 int charRead = 0; // Data read from file

 // Get file name from user
 System.out.print("Enter a valid file name: ");
 fileName = scnr.next();

 try {
 // Prompt user for input
 System.out.println("Opening file " + fileName + ".");
 fileCharStream = new FileReader(fileName); // May throw FileNotFoundException

 // Use file input stream
 System.out.print("Reading character values: ");
 while (charRead != -1) { // -1 means end of file has been reached
 charRead = fileCharStream.read(); // May throw IOException
 System.out.print(charRead + " ");
 }
 System.out.println();

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 23 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print

While the previous programs simply print a message if the program cannot open a file for reading, the
following example allows the user to enter a different file name if the file cannot be opened by catching
the FileNotFoundException.

 System.out.println();
 } catch (IOException excpt) {
 System.out.println("Caught IOException: " + excpt.getMessage());
 } finally {
 closeFileReader(fileCharStream); // Ensure file is closed!
 }

 return;
 }
}

letters.txt with
seven characters:
abcdefg

Enter a valid file name: letters.txt
Opening file letters.txt.
Reading character values: 97 98 99 100 101 102 103 10 -1
Closing file.

...

Enter a valid file name: badfile.txt
Opening file badfile.txt.
Caught IOException: bad.txt (No such file or directory)

Figure 13.4.4: Reading from a file with an improved FileNotFoundException
handler.

import java.util.Scanner;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;

public class FileReadCharsInteractive {
 /* Method prints characters in a file using read().
 Throws IOException if read() operation fails. */
 public static void readFileChars(FileReader file) throws IOException {
 int charRead = 0; // Data read from file

 // Use file input stream
 System.out.print("Reading character values: ");
 while (charRead != -1) { // -1 means end of file has been reached
 charRead = file.read(); // May throw IOException
 System.out.print(charRead + " ");
 }
 System.out.println();

 return;
 }

 /* Method closes a FileReader.
 Prints exception message if closing fails. */

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 24 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print

 Prints exception message if closing fails. */
 public static void closeFileReader(FileReader fileName) {
 try {
 if (fileName != null) { // Ensure "file" references a valid object
 System.out.println("Closing file.");
 fileName.close(); // close() may throw IOException if fails
 }
 } catch (IOException closeExcpt) {
 System.out.println("Error closing file: " + closeExcpt.getMessage());
 }

 return;
 }

 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 FileReader fileCharStream = null; // File stream for reading chars
 String fileName = ""; // User defined file name
 boolean validFile = true; // Ensures file opened

 do {
 // Get file name from user
 System.out.print("Enter a valid file name (or 'q' to quit): ");
 fileName = scnr.next();

 if (fileName.equals("q")) {
 break; // Exit do-while loop
 }

 try {
 // Prompt user for input
 System.out.println("Opening file " + fileName + ".");
 fileCharStream = new FileReader(fileName); // May throw FileNotFoundException

 validFile = true; // If reached this statement, file opened successfully.

 // Read chars from file
 readFileChars(fileCharStream); // May throw IOException
 } catch (FileNotFoundException excpt) {
 System.out.println("Caught FileNotFoundException: " + excpt.getMessage())
 validFile = false;
 } catch (IOException excpt) {
 System.out.println("Caught IOException: " + excpt.getMessage());
 } finally {
 closeFileReader(fileCharStream); // Ensure file is closed!
 }
 } while (!validFile);

 return;
 }
}

letters.txt
with
seven
characters:
abcdefg

Enter a valid file name (or 'q' to quit): letters.txt
Opening file letters.txt.
Reading character values: 97 98 99 100 101 102 103 10 -1
Closing file.

...

Enter a valid file name (or 'q' to quit): badfile.txt

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 25 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print

The statements in main() execute in a do-while loop until the user enters a valid file name. The first
catch catches the FileNotFoundException exception and sets a boolean variable to false indicating the
file is not valid. The second catch catches any other IOException, such as an exception that occurs
while reading from the file. As the FileNotFoundException exception is derived from an IOException,
the catch for the FileNotFoundException must come before the catch for the IOException.

A programmer should also utilize exception handling when writing to file output streams in order to
handle exceptions resulting from invalid or interrupted file operations, as shown below. The program
opens a user-specified file, writes the first 10 letters of the alphabet, and safely closes the file.

abcdefg Enter a valid file name (or 'q' to quit): badfile.txt
Opening file badfile.txt.
Caught FileNotFoundException: badfile.txt (No such file or directory
Enter a valid file name (or 'q' to quit): q

Figure 13.4.5: Writing to a file with exception handling.

import java.util.Scanner;
import java.io.FileWriter;
import java.io.IOException;

public class FileWriteChars {
 /* Method closes a FileWriter.
 Prints exception message if closing fails. */
 public static void closeFileWriter(FileWriter fileName) {
 try {
 if (fileName != null) { // Ensure "file" references a valid object
 System.out.println("Closing file.");
 fileName.close(); // close() may throw IOException if fails
 }
 } catch (IOException closeExcpt) {
 System.out.println("Error closing file: " + closeExcpt.getMessage());
 }

 return;
 }

 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 final int NUM_CHARS_TO_WRITE = 10; // Num chars to write to file
 int countVar = 0; // Track num chars written so far
 FileWriter fileCharStream = null; // File stream for writing file
 String fileName = ""; // User defined file name
 char charWrite = 'a'; // Char data written to file

 // Get file name from user
 System.out.print("Enter a valid file name: ");
 fileName = scnr.next();

 try {
 System.out.println("Creating file " + fileName + ".");
 fileCharStream = new FileWriter(fileName); // May throw IOException

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 26 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print

The program creates an object of type FileWriter, which provides overloaded write() methods to write
a stream of characters and a close() method to flush the underlying buffer and close the stream. Both
of these methods may throw IOExceptions in the event of a failure. A FileWriter's constructor may
throw an IOException if the program or operating system cannot create (or open) the specified file.

 // Use file output stream
 System.out.print("Writing " + NUM_CHARS_TO_WRITE + " characters: ");
 while (countVar < NUM_CHARS_TO_WRITE) {
 fileCharStream.write(charWrite);
 System.out.print(charWrite);

 charWrite++; // Get next char ready
 countVar++; // Keep track of number chars written
 }
 System.out.println();
 } catch (IOException excpt) {
 System.out.println("Caught IOException: " + excpt.getMessage());
 } finally {
 closeFileWriter(fileCharStream); // Ensure file is closed!
 }

 return;
 }
}

Enter a valid file name: mywritefile.txt
Creating file mywritefile.txt.
Writing 10 characters: abcdefghij
Closing file.

outputfile mywritefile.txt
with ten characters:
abcdefghij

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 27 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print

Participation
ActivityP 13.4.2: Exceptions with file input and output.

Question Your answer

1
What type of exception may be thrown by a
FileReader's constructor?

2
What is the name of the base class from which all
file i/o exceptions discussed above are derived?

3
What type of exception may be thrown by a
FileReader's read() and close() methods?

4
What type of exception may be thrown by a
FileWriter's constructor?

5

What is the name of the clause used to ensure that
contained statements are executed after the try and
catch blocks.

Exploring further:
More on the finally block from Oracle's Java Tutorials
Oracle's Java FileReader class specification
Oracle's Java FileWriter class specification
Oracle's Java IOException class specification

http://docs.oracle.com/javase/tutorial/essential/exceptions/finally.html
http://docs.oracle.com/javase/7/docs/api/java/io/FileReader.html
http://docs.oracle.com/javase/7/docs/api/java/io/FileWriter.html
http://docs.oracle.com/javase/7/docs/api/java/io/IOException.html

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 28 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print

Section 13.5 - Java example: Generate number format
exception

Participation
ActivityP 13.5.1: Catch number format error.

Argon,John,Operations,50000
Williams,Jane,Marketing,60000.0
Uminum,Al,Finance,70000
Jones,Ellen,Sales,80000

Running the below program with the given input causes a number conversion error. The program
reads from System.in the following rows (also called records) that contain a last name, first name,
department, and annual salary. The program uses the String class split() method to split an input
row.

Note that the second row has a value that is type double, not type int, which is going to cause a
problem.

1. Run the program and note the line number where the program fails. The line
number can be found on the last row of the error messages.

2. Add try/catch statements to catch the number conversion error, which is called
NumberFormatException. In this case, print a message, and do not add the item
to the total salaries.

3. Run the program again and note the total salaries excludes the row with the error.

Reset
import java.util.Scanner;

public class StreamNumberException {

 public static void main(String [] args) {
 // Describe the format of a row of input. There are four fields in a row
 // separate by commas: last name, first name, department, salary
 final String SEPARATOR = ","; // Field separator in each row of data
 final int INDEX_LAST_NAME = 0; // # of the last name field
 final int INDEX_FIRST_NAME = 1; // # of the first name field
 final int INDEX_DEPT = 2; // # of the department name field
 final int INDEX_SALARY = 3; // # of the salary field
 Scanner scnr = new Scanner(System.in);

 String [] field; // Fields on one row in the input file
 String row; // One row of the input file
 int nRows = 0; // Counts # of rows in the input file
 int totalSalaries = 0; // Total of all salaries read
 int i = 0; // Loop counter

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 29 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print

Doe,John,Operations,50000
Doette,Jane,Marketing,60000.0
Uminum,Al,Finance,70000
Jones,Ellen,Sales,80000

 int i = 0; // Loop counter

Run

19

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 30 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print

Participation
ActivityP 13.5.2: Catch number format error (solution).

Below is a solution to the above problem.

Reset

Doe,John,Operations,50000
Doette,Jane,Marketing,60000.0
Uminum,Al,Finance,70000
Jones,Ellen,Sales,80000

import java.util.Scanner;

public class StreamNumberExceptionSolution {

 public static void main(String [] args) {
 // Describe the format of a row of input. There are four fields in a row
 // separate by commas: last name, first name, department, salary
 final String SEPARATOR = ","; // Field separator in each row of data
 final int INDEX_LAST_NAME = 0; // # of the last name field
 final int INDEX_FIRST_NAME = 1; // # of the first name field
 final int INDEX_DEPT = 2; // # of the department name field
 final int INDEX_SALARY = 3; // # of the salary field
 Scanner scnr = new Scanner(System.in);

 String [] field; // Fields on one row in the input file
 String row; // One row of the input file
 int nRows = 0; // Counts # of rows in the input file
 int totalSalaries = 0; // Total of all salaries read
 int i = 0; // Loop counter

Run

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 31 of 31https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/13/print

