
1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 1 of 44https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/12/print

Chapter 12 - Recursion

Section 12.1 - Recursion: Introduction
An algorithm is a sequence of steps for solving a problem. For example, an algorithm for making
lemonade is:

Some problems can be solved using a recursive algorithm. A recursive algorithm solves a problem
by breaking that problem into smaller subproblems, solving these subproblems, and combining the
solutions.

An algorithm that is defined by repeated applications of the same algorithm on smaller problems is a
recursive algorithm. The mowing algorithm consists of applying the mowing algorithm on smaller

Figure 12.1.1: Algorithms are like recipes.

Figure 12.1.2: Mowing the lawn can be broken down into a recursive process.

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 2 of 44https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/12/print

pieces of the yard.

At some point, a recursive algorithm must describe how to actually do something, known as the base

case. The mowing algorithm could thus be written as:

Mow the lawn
If lawn is less than 100 square meters

Push the lawnmower left-to-right in adjacent rows

Else

Mow one half of the lawn

Mow the other half of the lawn

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 3 of 44https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/12/print

Section 12.2 - Recursive methods
A method may call other methods, including calling itself. A method that calls itself is a recursive

method.

Participation
ActivityP 12.1.1: Recursion.

Which are recursive definitions/algorithms?

Question Your answer

1

Helping N people:

If N is 1, help that person.
Else, help the first N/2 people, then help the second N/2
people.

True

False

2

Driving to the store:

Go 1 mile.
Turn left on Main Street.
Go 1/2 mile.

True

False

3

Sorting envelopes by zipcode:

If N is 1, done.
Else, find the middle zipcode. Put all zipcodes less than the
middle zipcode on the left, all greater ones on the right. Then
sort the left, then sort the right.

True

False

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 4 of 44https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/12/print

Each call to countDown() effectively creates a new "copy" of the executing method, as shown on the
right. Returning deletes that copy.

The example is for demonstrating recursion; counting down is otherwise better implemented with a
loop.

Participation
ActivityP 12.2.1: A recursive method example.

public class CountDownTimer {
 public static void countDown(int countInt) {
 if (countInt == 0) {
 System.out.println("GO!");
 }
 else {
 System.out.println(countInt);
 countDown(countInt-1);
 }
 return;
 }

 public static void main (String[] args) {
 countDown(2);
 return;
 }
}

 2
1
GO!

public static void main (String[] args) {
 CountDown(2);
 return;
}

public static void countDown(int countInt) {
 if (countInt == 0) {
 System.out.println("GO!");
 }
 else {
 System.out.println(countInt);
 countDown(countInt-1);
 }
 return;
}

public static void countDown(int countInt) {
 if (countInt == 0) {
 System.out.println("GO!");
 }
 else {
 System.out.println(countInt);
 countDown(countInt-1);
 }
 return;
}

public static void countDown(int countInt) {
 if (countInt == 0) {
 System.out.println("GO!");
 }
 else {
 System.out.println(countInt);
 countDown(countInt-1);
 }
 return;
}

Start

countInt: 2

countInt: 1

countInt: 0

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 5 of 44https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/12/print

Participation
ActivityP 12.2.2: Thinking about recursion.

Refer to the above countDown example for the following.

Question Your answer

1
How many times is countDown() called if main() calls
CountDown(5)?

2
How many times is countDown() called if main() calls
CountDown(0)?

3

Is there a difference in how we define the
parameters of a recursive versus non-recursive
method? Answer yes or no.

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 6 of 44https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/12/print

Section 12.3 - Recursive algorithm: Search
Consider a guessing game program where a friend thinks of a number from 0 to 100 and you try to
guess the number, with the friend telling you to guess higher or lower until you guess correctly. What
algorithm would you use to minimize the number of guesses?

A first try might implement an algorithm that simply guesses in increments of 1:

Is it 0? Higher

Is it 1? Higher

Is it 2? Higher

This algorithm requires too many guesses (50 on average). A second try might implement an algorithm

Challenge
ActivityC 12.2.1: Calling a recursive method.

Write a statement that calls the recursive method backwardsAlphabet() with parameter startingLetter.

Run

 System.out.println(currLetter);
 }
 else {
 System.out.print(currLetter + " ");
 backwardsAlphabet(--currLetter);
 }
 return;
 }

 public static void main (String [] args) {
 char startingLetter = '-';

 startingLetter = 'z';

 /* Your solution goes here */

 return;
 }
}

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 7 of 44https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/12/print

that guesses by 10s and then by 1s:

Is it 10? Higher

Is it 20? Higher

Is it 30? Lower

Is it 21? Higher

Is it 22? Higher

Is it 23? Higher

This algorithm does better but still requires about 10 guesses on average: 5 to find the correct tens
digit and 5 to guess the correct ones digit. An even better algorithm uses a binary search. A binary

search algorithm begins at the midpoint of the range and halves the range after each guess. For
example:

Is it 50 (the middle of 0-100)? Lower

Is it 25 (the middle of 0-50)? Higher

Is it 37 (the middle of 25-50)? Lower

Is it 31 (the middle of 25-37).

After each guess, the binary search algorithm is applied again, but on a smaller range, i.e., the
algorithm is recursive.

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 8 of 44https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/12/print

A recursive method is a natural match for the recursive binary search algorithm. A method
guessNumber(lowVal, highVal) has parameters that indicate the low and high sides of the guessing
range. The method guesses at the midpoint of the range. If the user says lower, the method calls
guessNumber(lowVal, midVal). If the user says higher, the method calls guessNumber(midVal + 1,
highVal) .

Participation
ActivityP 12.3.1: Binary search: A well-known recursive algorithm.

mid

Figure 12.3.1: A recursive Find() carrying out a binary search algorithm.
import java.util.Scanner;

public class NumberGuessGame {
 public static void guessNumber(int lowVal, int highVal) {
 Scanner scnr = new Scanner(System.in);
 int midVal = 0; // Midpoint of low..high
 char userAnswer = '-'; // User response

 midVal = (highVal + lowVal) / 2;

 // Prompt user for input
 System.out.print("Is it " + midVal + "? (l/h/y): ");
 userAnswer = scnr.next().charAt(0);

 if ((userAnswer != 'l') && (userAnswer != 'h')) { // Base case: found number
 System.out.println("Thank you!");
 }

Start

0 100

(31)

50

0 5025

25 5037

25 37
31

Guess middle
Halve window

Guess middle
Halve window

Guess middle
Halve window

Guess middle
Correct

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 9 of 44https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/12/print

 }
 else { // Recursive case: split into lower OR upper half
 if (userAnswer == 'l') { // Guess in lower half
 guessNumber(lowVal, midVal); // Recursive call
 }
 else { // Guess in upper half
 guessNumber(midVal + 1, highVal); // Recursive call
 }
 }

 return;
 }

 public static void main(String[] args) {
 // Print game objective, user input commands
 System.out.println("Choose a number from 0 to 100.");
 System.out.println("Answer with:");
 System.out.println(" l (your num is lower)");
 System.out.println(" h (your num is higher)");
 System.out.println(" any other key (guess is right).");

 // Call recursive function to guess number
 guessNumber(0, 100);

 return;
 }
}

Choose a number from 0 to 100.
Answer with:
 l (your num is lower)
 h (your num is higher)
 any other key (guess is right).
Is it 50? (l/h/y): l
Is it 25? (l/h/y): h
Is it 38? (l/h/y): l
Is it 32? (l/h/y): l
Is it 29? (l/h/y): h
Is it 31? (l/h/y): y
Thank you!

Participation
ActivityP 12.3.2: Binary search tree tool.

The following program guesses the hidden number known by the user.

import java.util.Scanner;

public class NumberGuess {
 public static void Find(int low, int high) {
 Scanner scnr = new Scanner(System.in);
 int mid = 0; // Midpoint of low..high
 char answer = '\0';

 mid = (high + low)/2;

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 10 of 44https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/12/print

 mid = (high + low)/2;

 System.out.print("Is it " + mid + "? (l/h/y): ");
 answer = scnr.next().charAt(0);

 if((answer != 'l')
 && (answer != 'h')) { // Base case:
 System.out.println("Thank you!"); // Found number!
 }
 else { // Recursive case: Guess in
 // lower or upper half of range
 if (answer == 'l') { // Guess in lower half
 Find(low, mid); // Recursive call
 }
 else { // Guess in upper half
 Find(mid+1, high); // Recursive call
 }
 }

 return;
 }

 public static void main (String[] args) {
 System.out.println("Choose a number from 0 to 100.");
 System.out.println("Answer with:");
 System.out.println(" l (your num is lower)");
 System.out.println(" h (your num is higher)");
 System.out.println(" any other key (guess is right).");

 Find(0, 100);

 return;
 }
}

Current function Function code

→main()

public static void main (String[] args) {
 System.out.println("Choose a number from 0 to 100.");
 System.out.println("Answer with:");
 System.out.println(" l (your num is lower)");
 System.out.println(" h (your num is higher)");
 System.out.println(" any other key (guess is right).");

 Find(0, 100);

 return;

}

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 11 of 44https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/12/print

The recursive method has an if-else statement. The if branch ends the recursion, known as the base

case. The else branch has recursive calls. Such an if-else pattern is common in recursive methods.

Search is commonly performed to quickly find an item in a sorted list stored in an array or ArrayList.
Consider a list of attendees at a conference, whose names have been stored in alphabetical order in
an array or ArrayList. The following quickly determines whether a particular person is in attendance.

Figure 12.3.2: Recursively searching a sorted list.
import java.util.Scanner;
import java.util.ArrayList;

public class NameFinder {
 /* Finds index of string in vector of strings, else -1.
 Searches only with index range low to high
 Note: Upper/lower case characters matter
 */
 public static int findMatch(ArrayList<String> stringList, String itemMatch,
 int lowVal, int highVal) {
 int midVal = 0; // Midpoint of low and high values
 int itemPos = 0; // Position where item found, -1 if not found
 int rangeSize = 0; // Remaining range of values to search for match

 rangeSize = (highVal - lowVal) + 1;
 midVal = (highVal + lowVal) / 2;

 if (itemMatch.equals(stringList.get(midVal))) { // Base case 1: item found at midVal position
 itemPos = midVal;
 }
 else if (rangeSize == 1) { // Base case 2: match not found
 itemPos = -1;
 }
 else { // Recursive case: search lower or upper half
 if (itemMatch.compareTo(stringList.get(midVal)) < 0) { // Search lower half, recursive call
 itemPos = findMatch(stringList, itemMatch, lowVal, midVal);
 }
 else { // Search upper half, recursive call
 itemPos = findMatch(stringList, itemMatch, midVal + 1, highVal);
 }
 }

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 12 of 44https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/12/print

findMatch() restricts its search to elements within the range lowVal to highVal. main() initially passes a
range of the entire list: 0 to (list size - 1). findMatch() compares to the middle element, returning that
element's position if matching. If not matching, findMatch() checks if the window's size is just one
element, returning -1 in that case to indicate the item was not found. If neither of those two base
cases are satisfied, then findMatch() recursively searches either the lower or upper half of the range as
appropriate.

 return itemPos;
 }

 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 ArrayList<String> attendeesList = new ArrayList<String>(); // List of attendees
 String attendeeName = ""; // Name of attendee to match
 int matchPos = 0; // Matched position in attendee list

 // Omitting part of program that adds attendees
 // Instead, we insert some sample attendees in sorted order
 attendeesList.add("Adams, Mary");
 attendeesList.add("Carver, Michael");
 attendeesList.add("Domer, Hugo");
 attendeesList.add("Fredericks, Carlos");
 attendeesList.add("Li, Jie");

 // Prompt user to enter a name to find
 System.out.print("Enter person's name: Last, First: ");
 attendeeName = scnr.nextLine(); // Use nextLine() to allow space in name

 // Call function to match name, output results
 matchPos = findMatch(attendeesList, attendeeName, 0, attendeesList.size() - 1)
 if (matchPos >= 0) {
 System.out.println("Found at position " + matchPos + ".");
 }
 else {
 System.out.println("Not found.");
 }

 return;
 }
}

Enter person's name: Last, First: Meeks, Stan
Not found.

...

Enter person's name: Last, First: Adams, Mary
Found at position 0.

...

Enter person's name: Last, First: Li, Jie
Found at position 4.

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 13 of 44https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/12/print

Participation
ActivityP 12.3.3: Recursive search algorithm.

Consider the above findMatch() method for finding an item in a sorted list.

Question Your answer

1

If a sorted list has elements 0 to 50 and the item
being searched for is at element 6, how many times
will findMatch() be called?

2

If an alphabetically ascending list has elements 0 to
50, and the item at element 0 is "Bananas", how
many recursive calls to findMatch() will be made
during the failed search for "Apples"?

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 14 of 44https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/12/print

(*mid) Because midVal has already been checked, it need not be part of the new window, so midVal +
1 rather than midVal is used for the window's new low side, or midVal - 1 for the window's new high
side. But the midVal - 1 can have the drawback of a non-intuitive base case (i.e., midVal < lowVal,
because if the current window is say 4..5, midVal is 4, so the new window would be 4..4-1, or 4..3).
rangeSize == 1 is likely more intuitive, and thus the algorithm uses midVal rather than midVal - 1.
However, the algorithm uses midVal + 1 when searching higher, due to integer rounding. In particular,
for window 99..100, midVal is 99 ((99 + 100) / 2 = 99.5, rounded to 99 due to truncation of the
fraction in integer division). So the next window would again be 99..100, and the algorithm would

Participation
ActivityP 12.3.4: Recursive calls.

A list has 5 elements numbered 0 to 4, with these letter values: 0: A, 1: B, 2: D, 3: E, 4: F.

Question Your answer

1

To search for item C, the first call is findMatch(0, 4). What is
the second call to findMatch()?

findMatch(0, 0)

findMatch(0, 2)

findMatch(3, 4)

2

In searching for item C, findMatch(0, 2) is called. What
happens next?

Base case 1: item
found at midVal.

Base case 2:
rangeSize == 1, so no
match.

Recursive call:
findMatch(2, 2)

Exploring further:
Binary search from wikipedia.com

http://en.wikipedia.org/wiki/Binary_search_algorithm

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 15 of 44https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/12/print

repeat with this window forever. midVal + 1 prevents the problem, and doesn't miss any numbers
because midVal was checked and thus need not be part of the window.

Section 12.4 - Adding output statements for debugging
Recursive methods can be particularly challenging to debug. Adding output statements can be
helpful. Furthermore, an additional trick is to indent the print statements to show the current depth of
recursion. The following program adds a parameter indent to a findMatch() method that searches a
sorted list for an item. All of findMatch()'s print statements start with
System.out.print(indentAmt + ...);. Indent is typically some number of spaces. main()
sets indent to three spaces. Each recursive call adds three more spaces. Note how the output now
clearly shows the recursion depth.

Figure 12.4.1: Output statements can help debug recursive methods, especially
if indented based on recursion depth.

import java.util.Scanner;
import java.util.ArrayList;

public class NameFinder {
 /* Finds index of string in vector of strings, else -1.
 Searches only with index range low to high
 Note: Upper/lower case characters matter
 */
 public static int findMatch(ArrayList<String> stringList, String itemMatch,
 int lowVal, int highVal, String indentAmt) { // indentAmt used for print debug
 int midVal = 0; // Midpoint of low and high values
 int itemPos = 0; // Position where item found, -1 if not found
 int rangeSize = 0; // Remaining range of values to search for match

 System.out.println(indentAmt + "Find() range " + lowVal + " " + highVal);
 rangeSize = (highVal - lowVal) + 1;
 midVal = (highVal + lowVal) / 2;

 if (itemMatch.equals(stringList.get(midVal))) { // Base case 1: item found at midVal position
 System.out.println(indentAmt + "Found person.");
 itemPos = midVal;
 }
 else if (rangeSize == 1) { // Base case 2: match not found
 System.out.println(indentAmt + "Person not found.");
 itemPos = -1;
 }
 else { // Recursive case: search lower or upper half
 if (itemMatch.compareTo(stringList.get(midVal)) < 0) { // Search lower half, recursive call
 System.out.println(indentAmt + "Searching lower half.");
 itemPos = findMatch(stringList, itemMatch, lowVal, midVal, indentAmt + " "
 }
 else { // Search upper half, recursive call
 System.out.println(indentAmt + "Searching upper half.");
 itemPos = findMatch(stringList, itemMatch, midVal + 1, highVal, indentAmt
 }

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 16 of 44https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/12/print

 }
 }

 System.out.println(indentAmt + "Returning pos = " + itemPos + ".");
 return itemPos;
 }

 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 ArrayList<String> attendeesList = new ArrayList<String>(); // List of attendees
 String attendeeName = ""; // Name of attendee to match
 int matchPos = 0; // Matched position in attendee list

 // Omitting part of program that adds attendees
 // Instead, we insert some sample attendees in sorted order
 attendeesList.add("Adams, Mary");
 attendeesList.add("Carver, Michael");
 attendeesList.add("Domer, Hugo");
 attendeesList.add("Fredericks, Carlos");
 attendeesList.add("Li, Jie");

 // Prompt user to enter a name to find
 System.out.print("Enter person's name: Last, First: ");
 attendeeName = scnr.nextLine(); // Use nextLine() to allow space in name

 // Call function to match name, output results
 matchPos = findMatch(attendeesList, attendeeName, 0, attendeesList.size() - 1,
 if (matchPos >= 0) {
 System.out.println("Found at position " + matchPos + ".");
 }
 else {
 System.out.println("Not found.");
 }

 return;
 }
}

Enter person's name: Last, First: Meeks, Stan
 Find() range 0 4
 Searching upper half.
 Find() range 3 4
 Searching upper half.
 Find() range 4 4
 Person not found.
 Returning pos = -1.
 Returning pos = -1.
 Returning pos = -1.
Not found.

...

Enter person's name: Last, First: Adams, Mary
 Find() range 0 4
 Searching lower half.
 Find() range 0 2
 Searching lower half.
 Find() range 0 1
 Found person.
 Returning pos = 0.
 Returning pos = 0.
 Returning pos = 0.

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 17 of 44https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/12/print

Some programmers like to leave the output statements in the code, commenting them out with "//"
when not in use. The statements actually serve as a form of comment as well.

 Returning pos = 0.
Found at position 0.

Participation
ActivityP 12.4.1: Recursive debug statements.

Refer to the above code using indented output statements.

Question Your answer

1

The above debug approach requires an extra parameter be
passed to indicate the amount of indentation.

True

False

2

Each recursive call should add a few spaces to the indent
parameter.

True

False

3

The method should remove a few spaces from the indent
parameter before returning.

True

False

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 18 of 44https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/12/print

Section 12.5 - Creating a recursive method
Creating a recursive method can be accomplished in two steps.

Write the base case -- Every recursive method must have a case that returns a
value without performing a recursive call. That case is called the base case. A
programmer may write that part of the method first, and then test. There may be
multiple base cases.

Write the recursive case -- The programmer then adds the recursive case to the
method.

Participation
ActivityP 12.4.2: Output statements in a recursive function.

Run the recursive program, and observe the output statements for debugging, and
that the person is correctly not found.
Introduce an error by changing itemPos = -1 to itemPos = 0 in the range
size == 1 base case.
Run the program, notice how the indented print statements help isolate the error
of the person incorrectly being found.

import java.util.Scanner;
import java.util.ArrayList;

public class NameFinder {
 /* Finds index of string in vector of strings, else -1.
 Searches only with index range low to high
 Note: Upper/lower case characters matter
 */
 public static int findMatch(ArrayList<String> stringList
 int lowVal, int highVal,
 int midVal = 0; // Midpoint of low and high values
 int itemPos = 0; // Position where item found, -1 if not found
 int rangeSize = 0; // Remaining range of values to search for match

 System.out.println(indentAmt + "Find() range " + lowVal
 rangeSize = (highVal - lowVal) + 1;
 midVal = (highVal + lowVal) / 2;

Run
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 19 of 44https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/12/print

The following illustrates for a simple method that computes the factorial of N (i.e. N!). The base case is
N = 1 or 1! which evaluates to 1. The base case is written as if (N <= 1) { fact = 1; }.
The recursive case is used for N > 1, and written as else { fact = N * NFact(N - 1); }.

A common error is to not cover all possible base cases in a recursive method. Another common error
is to write a recursive method that doesn't always reach a base case. Both errors may lead to infinite
recursion, causing the program to fail.

Typically, programmers will use two methods for recursion. An "outer" method is intended to be called
from other parts of the program, like the method int calcFactorial(int inVal). An "inner"
method is intended only to be called from that outer method, for example a method
int _calcFactorial(int inVal) (note the "_"). The outer method may check for a valid input
value, e.g., ensuring inVal is not negative, and then calling the inner method. Commonly, the inner
method has parameters that are mainly of use as part of the recursion, and need not be part of the

P Participation
Activity

12.5.1: Writing a recursive method for factorial: First write
the base case, then add the recursive case.

Start

public static int nFact(int N) {
 int factResult = 0;
 if (N == 1) { // Base case
 factReslt = 1;
 }
 // FIXME: Finish
 return factResult;
}
// main(): Get N, print nFact(N)

 Enter N: 1
N! is: 1

Write and test base
case (non-recursive

case)

Add and test
recursive case

 Enter N: 1
N! is: 1
Enter N: 6
N! is: 720

public static int nFact(int N) {
 int factResult = 0;
 if (N == 1) { // Base case
 factResult = 1;
 }
 else { // Recursive case
 factResult = N * nFact(N - 1);
 }
 return factResult;
}
//main(): Get N, print nFact(N)

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 20 of 44https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/12/print

outer method, thus keeping the outer method more intuitive.

Before writing a recursive method, a programmer should determine:

1. Does the problem naturally have a recursive solution?

2. Is a recursive solution better than a non-recursive solution?

For example, computing N! (N factorial) does have a natural recursive solution, but a recursive solution
is not better than a non-recursive solution. The figure below illustrates how the factorial computation
can be implemented as a loop. Conversely, binary search has a natural recursive solution, and that
solution may be easier to understand than a non-recursive solution.

Participation
ActivityP 12.5.2: Creating recursion.

Question Your answer

1

Recursive methods can be accomplished in one step, namely
repeated calls to itself.

True

False

2

A recursive method with parameter N counts up from any
negative number to 0. An appropriate base case would be
N == 0.

True

False

3

A recursive method can have two base cases, such as
N == 0 returning 0, and N == 1 returning 1.

True

False

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 21 of 44https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/12/print

Figure 12.5.1: Non-recursive solution to compute N!
for (i = inputNum; i > 1; --i) {
 facResult = facResult * i;
}

Participation
ActivityP 12.5.3: When recursion is appropriate.

Question Your answer

1

N factorial (N!) is commonly implemented as a recursive
method due to being easier to understand and executing
faster than a loop implementation.

True

False

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 22 of 44https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/12/print

Participation
ActivityP 12.5.4: Output statements in a recursive function.

Implement a recursive method to determine if a number is prime. Skeletal code is provided in the
isPrime method.

public class PrimeChecker {
// Returns 0 if value is not prime, 1 if value is prime
 public static int isPrime(int testVal, int divVal) {
 // Base case 1: 0 and 1 are not prime, testVal is not prime

 // Base case 2: testVal only divisible by 1, testVal is prime

 // Recursive Case
 // Check if testVal can be evenly divided by divVal
 // Hint: use the % operator

 // If not, recursive call to isPrime with testVal and (divVal - 1)
 return 0;
 }

 public static void main(String[] args) {
 int primeCheckVal = 0; // Value checked for prime

Run
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 23 of 44https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/12/print

Challenge
ActivityC 12.5.1: Recursive method: Writing the base case.

Write code to complete doublePennies()'s base case. Sample output for below program:

Number of pennies after 10 days: 1024

Note: These activities may test code with different test values. This activity will perform three tests, with startingPennies = 1 and userDays
= 10, then with startingPennies = 1 and userDays = 40, then with startingPennies = 1 and userDays = 1.

Also note: If the submitted code has an infinite loop, the system will stop running the code after a few seconds, and report "Program end
never reached." The system doesn't print the test case that caused the reported message.

Run

 else {
 totalPennies = doublePennies((numPennies * 2), numDays - 1);
 }
 return totalPennies;
 }

// Program computes pennies if you have 1 penny today,
// 2 pennies after one day, 4 after two days, and so on
 public static void main (String [] args) {
 long startingPennies = 0;
 int userDays = 0;

 startingPennies = 1;
 userDays = 10;
 System.out.println("Number of pennies after " + userDays + " days: "
 + doublePennies(startingPennies, userDays));
 return;
 }
}

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 24 of 44https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/12/print

Section 12.6 - Recursive math methods

Fibonacci sequence
Recursive methods can solve certain math problems, such as computing the Fibonacci sequence.
The Fibonacci sequence is 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, etc.; starting with 0, 1, the pattern is to
compute the next number by adding the previous two numbers.

Below is a program that outputs the Fibonacci sequence values step-by-step, for a user-entered
number of steps. The base case is that the program has output the requested number of steps. The
recursive case is that the program needs to compute the number in the Fibonacci sequence.

Challenge
ActivityC 12.5.2: Recursive method: Writing the recursive case.

Write code to complete printFactorial()'s recursive case. Sample output if userVal is 5:

5! = 5 * 4 * 3 * 2 * 1 = 120

Run

 System.out.print(factCounter + " * ");
 nextCounter = factCounter - 1;
 nextValue = nextCounter * factValue;

 /* Your solution goes here */

 }
 }

 public static void main (String [] args) {
 int userVal = 0;

 userVal = 5;
 System.out.print(userVal + "! = ");
 printFactorial(userVal, userVal);

 return;
 }
}

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 25 of 44https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/12/print

Figure 12.6.1: Fibonacci sequence step-by-step.

import java.util.Scanner;

public class FibonacciSequence {
 /* Output the Fibonacci sequence step-by-step.
 Fibonacci sequence starts as:
 0 1 1 2 3 5 8 13 21 ... in which the first
 two numbers are 0 and 1 and each additional
 number is the sum of the previous two numbers
 */
 public static void computeFibonacci(int fibNum1, int fibNum2, int runCnt) {
 System.out.println(fibNum1 + " + " + fibNum2 + " = " +
 (fibNum1 + fibNum2));

 if (runCnt <= 1) { // Base case: Ran for user specified
 // number of steps, do nothing
 }
 else { // Recursive case: compute next value
 computeFibonacci(fibNum2, fibNum1 + fibNum2, runCnt - 1);
 }

 return;
 }

 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 int runFor = 0; // User specified number of values computed

 // Output program description
 System.out.println("This program outputs the\n" +
 "Fibonacci sequence step-by-step,\n" +
 "starting after the first 0 and 1.\n");

 // Prompt user for number of values to compute
 System.out.print("How many steps would you like? ");
 runFor = scnr.nextInt();

 // Output first two Fibonacci values, call recursive function
 System.out.println("0\n1");
 computeFibonacci(0, 1, runFor);

 return;
 }
}

This program outputs the
Fibonacci sequence step-by-step,
starting after the first 0 and 1.

How many steps would you like? 10
0
1
0 + 1 = 1
1 + 1 = 2
1 + 2 = 3
2 + 3 = 5
3 + 5 = 8
5 + 8 = 13
8 + 13 = 21
13 + 21 = 34
21 + 34 = 55
34 + 55 = 89

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 26 of 44https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/12/print

Greatest common divisor (GCD)

Participation
ActivityP 12.6.1: Recursive Fibonacci.

Complete computeFibonacci() to return F , where F is 0, F is 1, F is 1, F is 2, F is 3, and
continuing: F is F + F . Hint: Base cases are N == 0 and N == 1.

N 0 1 2 3 4
N N-1 N-2

public class FibonacciSequence {
 public static int computeFibonacci(int N) {

 System.out.println("FIXME: Complete this method.");
 System.out.println("Currently just returns 0.");

 return 0;
 }

 public static void main(String[] args) {
 int N = 4; // F_N, starts at 0

 System.out.println("F_" + N + " is " + computeFibonacci(N));

 return;
 }
}

Run

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 27 of 44https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/12/print

Recursion can solve the greatest common divisor problem. The greatest common divisor (GCD) is
the largest number that divides evenly into two numbers, e.g. GCD(12, 8) = 4. One GCD algorithm
(described by Euclid around 300 BC) subtracts the smaller number from the larger number until both
numbers are equal. Ex:

GCD(12, 8): Subtract 8 from 12, yielding 4.

GCD(4, 8): Subtract 4 from 8, yielding 4.

GCD(4, 4): Numbers are equal, return 4

The following recursively computes the GCD of two numbers. The base case is that the two numbers
are equal, so that number is returned. The recursive case subtracts the smaller number from the larger
number and then calls GCD with the new pair of numbers.

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 28 of 44https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/12/print

Figure 12.6.2: Calculate greatest common divisor of two numbers.

import java.util.Scanner;

public class GCDCalc {
 /* Determine the greatest common divisor
 of two numbers, e.g. GCD(8, 12) = 4
 */
 public static int gcdCalculator(int inNum1, int inNum2) {
 int gcdVal = 0; // Holds GCD results

 if (inNum1 == inNum2) { // Base case: Numbers are equal
 gcdVal = inNum1; // Return value
 }
 else { // Recursive case: subtract smaller from larger
 if (inNum1 > inNum2) { // Call function with new values
 gcdVal = gcdCalculator(inNum1 - inNum2, inNum2);
 }
 else { // n1 is smaller
 gcdVal = gcdCalculator(inNum1, inNum2 - inNum1);
 }
 }

 return gcdVal;
 }

 public static void main (String[] args) {
 Scanner scnr = new Scanner(System.in);
 int gcdInput1 = 0; // First input to GCD calc
 int gcdInput2 = 0; // Second input to GCD calc
 int gcdOutput = 0; // Result of GCD

 // Print program function
 System.out.println("This program outputs the greatest \n" +
 "common divisor of two numbers.");

 // Prompt user for input
 System.out.print("Enter first number: ");
 gcdInput1 = scnr.nextInt();

 System.out.print("Enter second number: ");
 gcdInput2 = scnr.nextInt();

 // Check user values are > 1, call recursive GCD function
 if ((gcdInput1 < 1) || (gcdInput2 < 1)) {
 System.out.println("Note: Neither value can be below 1.");
 }
 else {
 gcdOutput = gcdCalculator(gcdInput1, gcdInput2);
 System.out.println("Greatest common divisor = " + gcdOutput);
 }

 return;
 }
}

This program outputs the greatest
common divisor of two numbers.
Enter first number: 12
Enter second number: 8
Greatest common divisor = 4

...

This program outputs the greatest
common divisor of two numbers.
Enter first number: 456
Enter second number: 784
Greatest common divisor = 8

...

This program outputs the greatest
common divisor of two numbers.
Enter first number: 0
Enter second number: 10
Note: Neither value can be below 1.

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 29 of 44https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/12/print

Participation
ActivityP 12.6.2: Recursive GCD example.

Question Your answer

1

How many calls are made to gcdCalculator() method for input
values 12 and 8?

1

2

3

2

What is the base case for the GCD algorithm? When both inputs to
the method are equal.

When both inputs are
greater than 1.

When inNum1 >
inNum2.

Exploring further:
Fibonacci sequence from wikipedia.com
GCD algorithm from wikipedia.com

http://en.wikipedia.org/wiki/Fibonacci_sequence
http://en.wikipedia.org/wiki/Greatest_common_divisor

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 30 of 44https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/12/print

Section 12.7 - Recursive exploration of all possibilities
Recursion is a powerful technique for exploring all possibilities, such as all possible reorderings of a
word's letters, all possible subsets of items, all possible paths between cities, etc. This section
provides several examples.

Word scramble
Consider printing all possible combinations (or "scramblings") of a word's letters. The letters of abc
can be scrambled in 6 ways: abc, acb, bac, bca, cab, cba. Those possibilities can be listed by making

Challenge
ActivityC 12.6.1: Writing a recursive math method.

Write code to complete raiseToPower(). Sample output if userBase is 4 and userExponent is 2 is shown below. Note: This example is for
practicing recursion; a non-recursive method, or using the built-in method pow(), would be more common.

4^2 = 16

Run

 else {
 resultVal = baseVal * /* Your solution goes here */;
 }

 return resultVal;
 }

 public static void main (String [] args) {
 int userBase = 0;
 int userExponent = 0;

 userBase = 4;
 userExponent = 2;
 System.out.println(userBase + "^" + userExponent + " = "
 + raiseToPower(userBase, userExponent));

 return;
 }
}

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 31 of 44https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/12/print

three choices: Choose the first letter (a, b, or c), then choose the second letter, then choose the third
letter. The choices can be depicted as a tree. Each level represents a choice. Each node in the tree
shows the unchosen letters on the left, and the chosen letters on the right.

The tree guides creation of a recursive exploration method to print all possible combinations of a
string's letters. The method takes two parameters: unchosen letters, and already chosen letters. The
base case is no unchosen letters, causing printing of the chosen letters. The recursive case calls the
method once for each letter in the unchosen letters. The above animation depicts how the recursive
algorithm traverses the tree. The tree's leaves (the bottom nodes) are the base cases.

The following program prints all possible ordering of the letters of a user-entered word.

Participation
ActivityP 12.7.1: Exploring all possibilities viewed as a tree of choices.

Figure 12.7.1: Scramble a word's letters in every possible way.
import java.util.Scanner;

public class WordScrambler {
 /* Output every possible combination of a word.
 Each recursive call moves a letter from

Choose 1st letter

Choose 2nd letter

Choose 3rd letter

abc/

bc/a ac/b ab/c

c/ab b/ac c/ba a/bc b/ca a/cb

remaining-letters / chosen-letters

/abc /acb /bac /bca /cab /cba

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 32 of 44https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/12/print

 remainLetters" to scramLetters".
 */
 public static void scrambleLetters(String remainLetters, // Remaining letters
 String scramLetters) { // Scrambled letters
 String tmpString = ""; // Temp word combinations
 int i = 0; // Loop index

 if (remainLetters.length() == 0) { // Base case: All letters used
 System.out.println(scramLetters);
 }
 else { // Recursive case: move a letter from
 // remaining to scrambled letters
 for (i = 0; i < remainLetters.length(); ++i) {
 // Move letter to scrambled letters
 tmpString = remainLetters.substring(i, i + 1);
 remainLetters = RemoveFromIndex(remainLetters, i);
 scramLetters = scramLetters + tmpString;

 scrambleLetters(remainLetters, scramLetters);

 // Put letter back in remaining letters
 remainLetters = InsertAtIndex(remainLetters, tmpString, i);
 scramLetters = RemoveFromIndex(scramLetters, scramLetters.length() - 1);
 }
 }
 return;
 }

 // Returns a new String without the character at location remLoc
 public static String RemoveFromIndex(String origStr, int remLoc) {
 String finalStr = ""; // Temp string to extract char

 finalStr = origStr.substring(0, remLoc); // Copy before location remLoc
 finalStr += origStr.substring(remLoc + 1, origStr.length()); // Copy after location remLoc

 return finalStr;
 }

 // Returns a new String with the character specified by insertStr
 // inserted at location addLoc
 public static String InsertAtIndex(String origStr, String insertStr, int addLoc)
 String finalStr = ""; // Temp string to extract char

 finalStr = origStr.substring(0, addLoc); // Copy before location addLoc
 finalStr += insertStr; // Copy character to location addLoc
 finalStr += origStr.substring(addLoc, origStr.length()); // Copy after location addLoc

 return finalStr;
 }

 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 String wordScramble = ""; // User defined word to scramble

 // Prompt user for input
 System.out.print("Enter a word to be scrambled: ");
 wordScramble = scnr.next();

 // Call recursive method
 scrambleLetters(wordScramble, "");

 return;

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 33 of 44https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/12/print

Shopping spree
Recursion can find all possible subsets of a set of items. Consider a shopping spree in which a person
can select any 3-item subset from a larger set of items. The following program prints all possible 3-
item subsets of a given larger set. The program also prints the total price of each subset.

shoppingBagCombinations() has a parameter for the current bag contents, and a parameter for the
remaining items from which to choose. The base case is that the current bag already has 3 items,
which prints the items. The recursive case moves one of the remaining items to the bag, recursively
calling the method, then moving the item back from the bag to the remaining items.

 return;
 }
}

Enter a word to be scrambled: cat
cat
cta
act
atc
tca
tac

Participation
ActivityP 12.7.2: Letter scramble.

Question Your answer

1

What is the output of scrambleLetters("xy", "")? Determine
your answer by manually tracing the code, not by running the
program.

yx xy

xx yy xy yx

xy yx

Figure 12.7.2: Shopping spree in which a user can fit 3 items in a shopping bag.

Milk Belt Toys = $45
Milk Belt Cups = $38
Milk Toys Belt = $45

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 34 of 44https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/12/print

GroceryItem.java:
public class GroceryItem {
 public String itemName; // Name of item
 public int priceDollars; // Price of item
}

Milk Toys Belt = $45
Milk Toys Cups = $33
Milk Cups Belt = $38
Milk Cups Toys = $33
Belt Milk Toys = $45
Belt Milk Cups = $38
Belt Toys Milk = $45
Belt Toys Cups = $55
Belt Cups Milk = $38
Belt Cups Toys = $55
Toys Milk Belt = $45
Toys Milk Cups = $33
Toys Belt Milk = $45
Toys Belt Cups = $55
Toys Cups Milk = $33
Toys Cups Belt = $55
Cups Milk Belt = $38
Cups Milk Toys = $33
Cups Belt Milk = $38
Cups Belt Toys = $55
Cups Toys Milk = $33
Cups Toys Belt = $55

ShoppingSpreeCombinations.java:
import java.util.ArrayList;

public class ShoppingSpreeCombinations {
 public static final int MAX_SHOPPING_BAG_SIZE = 3; // Max number of items in shopping bag

 /* Output every combination of items that fit
 in a shopping bag. Each recursive call moves
 one item into the shopping bag.
 */
 public static void shoppingBagCombinations(ArrayList<GroceryItem> currBag,
 ArrayList<GroceryItem> remainingItems
 int bagValue = 0; // Cost of items in shopping bag
 GroceryItem tmpGroceryItem; // Grocery item to add to bag
 int i = 0; // Loop index

 if (currBag.size() == MAX_SHOPPING_BAG_SIZE) { // Base case: Shopping bag full
 bagValue = 0;
 for (i = 0; i < currBag.size(); ++i) {
 bagValue += currBag.get(i).priceDollars;
 System.out.print(currBag.get(i).itemName + " ");
 }
 System.out.println("= $" + bagValue);
 }
 else { // Recursive case: move one
 for (i = 0; i < remainingItems.size(); ++i) { // item to bag
 // Move item into bag
 tmpGroceryItem = remainingItems.get(i);
 remainingItems.remove(i);
 currBag.add(tmpGroceryItem);

 shoppingBagCombinations(currBag, remainingItems);

 // Take item out of bag
 remainingItems.add(i, tmpGroceryItem);
 currBag.remove(currBag.size() - 1);
 }

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 35 of 44https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/12/print

 }
 }
 return;
 }

 public static void main(String[] args) {
 ArrayList<GroceryItem> possibleItems = new ArrayList<GroceryItem>(); // Possible shopping items
 ArrayList<GroceryItem> shoppingBag = new ArrayList<GroceryItem>(); // Current shopping bag
 GroceryItem tmpGroceryItem; // Temp item

 // Populate grocery with different items
 tmpGroceryItem = new GroceryItem();
 tmpGroceryItem.itemName = "Milk";
 tmpGroceryItem.priceDollars = 2;
 possibleItems.add(tmpGroceryItem);

 tmpGroceryItem = new GroceryItem();
 tmpGroceryItem.itemName = "Belt";
 tmpGroceryItem.priceDollars = 24;
 possibleItems.add(tmpGroceryItem);

 tmpGroceryItem = new GroceryItem();
 tmpGroceryItem.itemName = "Toys";
 tmpGroceryItem.priceDollars = 19;
 possibleItems.add(tmpGroceryItem);

 tmpGroceryItem = new GroceryItem();
 tmpGroceryItem.itemName = "Cups";
 tmpGroceryItem.priceDollars = 12;
 possibleItems.add(tmpGroceryItem);

 // Try different combinations of three items
 shoppingBagCombinations(shoppingBag, possibleItems);

 return;
 }
}

Participation
ActivityP 12.7.3: All letter combinations.

Question Your answer

1

When main() calls shoppingBagCombinations(), how many
items are in the remainingItems list?

None

3

4

When main() calls shoppingBagCombinations(), how many None

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 36 of 44https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/12/print

Traveling salesman
Recursion is useful for finding all possible paths. Suppose a salesman must travel to 3 cities: Boston,
Chicago, and Los Angeles. The salesman wants to know all possible paths among those three cities,

2

When main() calls shoppingBagCombinations(), how many
items are in currBag list?

None

1

4

3

After main() calls ShoppingBagCombinations(), what happens
first?

The base case prints
Milk, Belt, Toys.

The method bags one
item, makes recursive
call.

The method bags 3
items, makes recursive
call.

4

After shoppingBagCombinations() returns back to main(), how
many items are in the remainingItems list?

None

4

5

How many recursive calls occur before the first combination
is printed?

None

1

3

6

What happens if main() only put 2, rather than 4, items in the
possibleItems list?

Base case never
executes; nothing
printed.

Infinite recursion
occurs.

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 37 of 44https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/12/print

starting from any city. A recursive exploration of all travel paths can be used. The base case is that the
salesman has traveled to all cities. The recursive case is to travel to a new city, explore possibilities,
then return to the previous city.

Figure 12.7.3: Find distance of traveling to 3 cities.
import java.util.ArrayList;

public class TravelingSalesmanPaths {
 public static final int NUM_CITIES = 3; // Number of cities
 public static int[][] cityDistances = new int[NUM_CITIES][NUM_CITIES]; // Distance between cities
 public static String[] cityNames = new String[NUM_CITIES]; // City names

 /* Output every possible travel path.
 Each recursive call moves to a new city.
 */
 public static void travelPaths(ArrayList<Integer> currPath,
 ArrayList<Integer> needToVisit) {
 int totalDist = 0; // Total distance given current path
 int tmpCity = 0; // Next city distance
 int i = 0; // Loop index

 if (currPath.size() == NUM_CITIES) { // Base case: Visited all cities
 totalDist = 0; // Return total path distance
 for (i = 0; i < currPath.size(); ++i) {
 System.out.print(cityNames[currPath.get(i)] + " ");

 if (i > 0) {
 totalDist += cityDistances[currPath.get(i - 1)][currPath.get(i)];
 }
 }

 System.out.println("= " + totalDist);
 }
 else { // Recursive case: pick next city
 for (i = 0; i < needToVisit.size(); ++i) {
 // add city to travel path
 tmpCity = needToVisit.get(i);
 needToVisit.remove(i);
 currPath.add(tmpCity);

 travelPaths(currPath, needToVisit);

 // remove city from travel path
 needToVisit.add(i, tmpCity);
 currPath.remove(currPath.size() - 1);
 }
 }

 return;
 }

 public static void main (String[] args) {
 ArrayList<Integer> needToVisit = new ArrayList<Integer>(); // Cities left to visit
 ArrayList<Integer> currPath = new ArrayList<Integer>(); // Current path traveled

 // Initialize distances array
 cityDistances[0][0] = 0;

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 38 of 44https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/12/print

 cityDistances[0][0] = 0;
 cityDistances[0][1] = 960; // Boston-Chicago
 cityDistances[0][2] = 2960; // Boston-Los Angeles
 cityDistances[1][0] = 960; // Chicago-Boston
 cityDistances[1][1] = 0;
 cityDistances[1][2] = 2011; // Chicago-Los Angeles
 cityDistances[2][0] = 2960; // Los Angeles-Boston
 cityDistances[2][1] = 2011; // Los Angeles-Chicago
 cityDistances[2][2] = 0;

 cityNames[0] = "Boston";
 cityNames[1] = "Chicago";
 cityNames[2] = "Los Angeles";

 needToVisit.add(new Integer(0)); // Boston
 needToVisit.add(new Integer(1)); // Chicago
 needToVisit.add(new Integer(2)); // Los Angeles

 // Explore different paths
 travelPaths(currPath, needToVisit);

 return;
 }
}

Boston Chicago Los Angeles = 2971
Boston Los Angeles Chicago = 4971
Chicago Boston Los Angeles = 3920
Chicago Los Angeles Boston = 4971
Los Angeles Boston Chicago = 3920
Los Angeles Chicago Boston = 2971

Participation
ActivityP 12.7.4: Recursive exploration.

Question Your answer

1

You wish to generate all possible 3-letter subsets from the
letters in an N-letter word (N>3). Which of the above recursive
methods is the closest?

shoppingBagCombinations

scrambleLetters

main()

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 39 of 44https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/12/print

Section 12.8 - Stack overflow
Recursion enables an elegant solution to some problems. But, for large problems, deep recursion can
cause memory problems. Part of a program's memory is reserved to support function calls. Each
method call places a new stack frame on the stack, for local parameters, local variables, and more
method items. Upon return, the frame is deleted.

Deep recursion could fill the stack region and cause a stack overflow, meaning a stack frame
extends beyond the memory region allocated for stack, Stack overflow usually causes the program to
crash and report an error like: stack overflow error or stack overflow exception.

Exploring further:
Recursion trees from wikipedia.org

Participation
ActivityP 12.8.1: Recursion causing stack overflow.

public static void myFct(int inParm) {
 int locVar;
 ...
 myFct(...);
 ...
 return;
}

public static void main (String[] args) {
 int myVar;
 myFct(...);
 ...
}

Start

Deep recursion may cause stack overflow,
causing program to crash

End of stack region

Stack

3201

3202

3203

3200

3205

3206

3207

3204

3208

main()}myVar

myFct()}inParm
locVar

myFct()}inParm
locVar

myFct()}inParm
locVar

myFct()}inParm
locVar

http://en.wikipedia.org/wiki/Recursive_tree

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 40 of 44https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/12/print

The animation showed a tiny stack region for easy illustration of stack overflow.

The number (and size) of parameters and local variables results in a larger stack frame. Large
ArrayLists, arrays, or Strings defined as local variables can lead to faster stack overflow.

A programmer can estimate recursion depth and stack size to determine whether stack overflow
might occur. Sometime a non-recursive algorithm must be developed to avoid stack overflow.

Section 12.9 - Java example: Recursively output permutations

Participation
ActivityP 12.8.2: Stack overflow.

Question Your answer

1

A memory's stack region can store at most one stack frame. True

False

2

The size of the stack is unlimited. True

False

3

A stack overflow occurs when the stack frame for a method
call extends past the end of the stack's memory.

True

False

4

The following recursive method will result in a stack overflow.
int recAdder(int inValue) {
 return recAdder(inValue + 1);
}

True

False

ParticipationP 12.9.1: Recursively output permutations.

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 41 of 44https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/12/print

Participation
ActivityP 12.9.1: Recursively output permutations.

cab
cba
acb
abc
bca
bac

The below program prints all permutations of an input string of letters, one permutation per line. Ex:
The six permutations of "cab" are:

Below, the permuteString method works recursively by starting with the first character and
permuting the remainder of the string. The method then moves to the second character and
permutes the string consisting of the first character and the third through the end of the string, and
so on.

1. Run the program and input the string "cab" (without quotes) to see that the above
output is produced.

2. Modify the program to print the permutations in the opposite order, and also to
output a permutation count on each line.

3. Run the program again and input the string cab. Check that the output is reversed.
4. Run the program again with an input string of abcdefg. Why did the program take

longer to produce the results?

Reset
import java.util.Scanner;

public class Permutations {
 // FIXME: Use a static variable to count permutations. Why must it be static?

 public static void permuteString(String head, String tail) {
 char current = '?';
 String newPermute = "";
 int len = tail.length();
 int i = 0;

 if (len <= 1) {
 // FIXME: Output the permutation count on each line too
 System.out.println(head + tail);
 }
 else {
 // FIXME: Change the loop to output permutations in reverse order
 for (i = 0; i < len; ++i) {
 current = tail.charAt(i); // Get next leading character

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 42 of 44https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/12/print

cab
 current = tail.charAt(i); // Get next leading character

Run

19

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 43 of 44https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/12/print

Participation
ActivityP 12.9.2: Recursively output permutations (solution).

Below is the solution to the above problem.

Reset

cab
abcdefg

import java.util.Scanner;

public class PermutationsSolution {
 static int permutationCount = 0;

 public static void permuteString(String head, String tail) {
 char current = '?';
 String newPermute = "";
 int len = tail.length();
 int i = 0;

 if (len <= 1) {
 ++permutationCount;
 System.out.println(permutationCount + ") " + head + tail);
 }
 else {
 for (i = len - 1; i >= 0; --i) {
 current = tail.charAt(i); // Get next leading character
 newPermute = tail.substring(0, i) + tail.substring(i + 1);

Run

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 11:03 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 44 of 44https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/12/print

