
1/30/16, 11:02 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 1 of 23https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/11/print

Chapter 11 - Abstract Class and Interfaces

Section 11.1 - Abstract classes: Introduction

Object-oriented programming (OOP) is a powerful programming paradigm, consisting of several
features. One feature involves a class, which encapsulates data and behavior to create objects.
Another feature is inheritance, which allows one class (a subclass) to be based on another class (a
base class or superclass). For example, a Shape class may encapsulate data and behavior for
geometric shapes, like setting/getting the Shape's name and color, while a Circle class may be a
subclass of a Shape, with additional features like setting/getting the center point and radius.

A third feature is the idea of an abstract class. An abstract class is a class that guides the design of
subclasses but cannot itself be instantiated as an object. For example, a Shape class might not only
have behavior for setting/getting the Shape's name and color, but also specifies that any subclass
must define a method named computeArea().

1/30/16, 11:02 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 2 of 23https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/11/print

An example of abstract classes in action is the hierarchy of classification used in biology. The upper
levels of the hierarchy specify features in common across all members below that level of the
hierarchy. As with concrete classes that implement all abstract methods, no creature can actually be
instantiated except at the species level.

Participation
ActivityP 11.1.1: Classes, inheritance, and abstract classes.

X
Shape

+Get/set name
+Get/set color

Circle (derived from Shape)

+Get/set center point
+Get/set radius

shape1

shape2

circle1

circle2

+Compute area (abstract)

(abstract)

+Compute area

Objects:

Start

1/30/16, 11:02 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 3 of 23https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/11/print

Participation
ActivityP 11.1.2: Biological classification uses abstract classes.

The hierarchy of biological classification is an example of abstract classes

Domain

Kingdom

Phylum

Family

Class

Order

Genus

Species

Class Mammalia specifies animals
with mammary glands

Kingdom Animalia
specifies animals

Order Carnivora specifies
animals who eat meat

Genus Canis and Species
lupus familaris is the domestic dog.

Start

1/30/16, 11:02 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 4 of 23https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/11/print

Section 11.2 - Abstract classes

Participation
ActivityP 11.1.3: Abstract classes.

Question Your answer

1

An abstract class can be instantiated as an object. True

False

2

From the example above, the Shape class is an abstract
class and the Circle class is a concrete class.

True

False

3

Consider a program that catalogs the types of trees in a
forest. Each tree object contains the tree's species type, age,
and location. This program will benefit from an abstract class
to represent the trees.

True

False

4

Consider a program that catalogs the types of trees in a
forest. Each tree object contains the tree's species type, age,
location, and estimated size based on age. Each species
uses a different formula to estimate size based on age. This
program will benefit from an abstract class.

True

False

5

Consider a program that maintains a grocery list. Each item,
like eggs, has an associated price and weight. Each item
belongs to a category like produce, meat, or cereal, where
each category has additional features, such as meat having a
"sell by" date. This program will benefit from an abstract
class.

True

False

1/30/16, 11:02 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 5 of 23https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/11/print

An abstract class is a class that cannot be instantiated as an object, but is the superclass for a
subclass and specifies how the subclass must be implemented. A concrete class is a class that is
not abstract, and hence can be instantiated. An abstract class is denoted by the keyword abstract in
front of the class definition. The example program below manages sets of shapes. Shape is an
abstract class, and Circle and Rectangle are concrete classes. The Shape abstract class merely
specifies that any derived class must define a method computeArea() that returns type double.

Figure 11.2.1: Shape is an abstract class. Circle and Rectangle are concrete
classes that extend the Shape class.

Shape.java specifies how a programmer interacts
with shapes
public abstract class Shape {

 abstract double computeArea();
}

Point.java holds the x, y coordinates for a point
public class Point {

 private double x;
 private double y;

 public Point(double x, double y)
 this.x = x;
 this.y = y;
 }

 public double getX() {
 return x;
 }

 public double getY() {
 return y;
 }
}

Circle.java defines a Circle class
public class Circle extends Shape {

 private double radius;
 private Point center;

 public Circle(Point center, double radius) {
 this.radius = radius;
 this.center = center;
 }

 @Override
 public double computeArea() {
 return (Math.PI * Math.pow(radius, 2));
 }
}

Rectangle.java defines a Rectangle class
public class Rectangle extends Shape

 private Point lowerLeft, upperRight

 Rectangle(Point lowerLeft, Point upperRight
 this.lowerLeft = lowerLeft;
 this.upperRight = upperRight;
 }

 @Override
 public double computeArea() {
 double length = 0.0;
 double height = 0.0;

 length = upperRight.getX() - lowerLeft
 height = upperRight.getY() - lowerLeft

 return (length * height);
 }
}

1/30/16, 11:02 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 6 of 23https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/11/print

A program cannot use the new operator to create an instance of an abstract class. For example, the
variable initialization Shape shape1 = new Shape(); generates a compiler error like the
following:

An abstract class can contain methods and variables that are shared by subclasses. An abstract class
may also contain abstract methods, such as method computeArea() in class Shape. An abstract

method is a method that each subclass must implement to be a concrete class. If a subclass does
not implement an abstract method, then the subclass must also be defined as abstract.

TestShapes.java tests the Shape class
public class TestShapes {
 public static void main(String[] args) {
 Circle circle1 = new Circle(new Point(0.0, 0.0), 1.0);
 Circle circle2 = new Circle(new Point(0.0, 0.0), 2.0);

 Shape rectangle = new Rectangle(new Point(0.0, 0.0), new Point(1.0, 1.0));

 System.out.println("Area of circle 1 is: " + circle1.computeArea());
 System.out.println("Area of circle 2 is: " + circle2.computeArea());
 System.out.println("Area of rectangle is: " + rectangle.computeArea());

 return;
 }
}

Area of circle 1 is: 3.141592653589793
Area of circle 2 is: 12.566370614359172
Area of rectangle is: 1.0

Figure 11.2.2: Sample compiler error when trying to define an object of an
abstract base class type.

javac TestShapes.java
TestShapes.java:5: error: Shape is abstract; cannot be instantiated
 Shape shape1 = new Shape();
 ^
1 error

1/30/16, 11:02 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 7 of 23https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/11/print

Participation
ActivityP 11.2.1: Abstract and concrete classes.

Run the code and observe that the code calls the correct area method. Add a new abstract
method double computePerimeter() to the Shape class and implement the method within
each of the concrete classes. Modify the main() method in the TestShapes class to use the
computePerimeter() method for the Circle and Rectangle objects.

Point.java Shape.java Circle.java Rectangle.java

public class Point {

 private double x;
 private double y;

 public Point(double x, double y) {
 this.x = x;
 this.y = y;
 }

 public double getX() {
 return x;
 }

 public double getY() {
 return y;
 }
}

Run
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 11:02 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 8 of 23https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/11/print

Participation
ActivityP 11.2.2: Abstract class instantiation.

Given the above Shape example, select the line that will fail to compile.

Question

1

Shape shape1 = new Shape();

Shape shape2 = new Circle(new Point(0.0, 0.0), 1.0);

Shape shape3 = new Rectangle(new Point(0.0, 0.0), new Point(2.0, 2.0));

1/30/16, 11:02 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 9 of 23https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/11/print

Participation
ActivityP 11.2.3: Abstract class example.

Some questions refer to the above shapes example.

Question Your answer

1

Shape is what kind of class? Subclass

Concrete

Abstract

2

Circle is what kind of class? Abstract

Concrete

3

Can the Shape class define and provide code for non-
abstract methods?

Yes, an abstract class
can include both
method signatures for
abstract methods and
complete code for
non-abstract
methods.

Yes, but the class can
only have one non-
abstract method.

No, all methods of an
abstract class must be
abstract.

4

If the Circle class omitted the computeArea() implementation,
could Circle objects be instantiated?

Yes, a subclass of an
abstract class can be
instantiated.

No, in that case the
subclass must be
defined as abstract.

1/30/16, 11:02 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 10 of 23https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/11/print

Section 11.3 - UML for abstract classes

UML uses italics to denote abstract classes. In particular, UML uses italics for the abstract class'
name, and for any abstracts methods in the class. As a reminder, a superclass does not have to be
abstract. Also, any class with an abstract method must be abstract.

P Participation
Activity

11.3.1: UML uses italics for abstract classes and
methods.

UML for abstract and concrete classes

Shape

+computeArea(): double

Circle

-radius: double
-center: Point
+computeArea(): double

Start

1/30/16, 11:02 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 11 of 23https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/11/print

Section 11.4 - Abstract classes and polymorphism

Abstract classes provide runtime polymorphism, which enables a programmer to use an abstract
method without worrying about which concrete class implements the abstract method. When the
program executes, the JVM will automatically call the method of the concrete subclass. Abstract

Participation
ActivityP 11.3.2: UML for abstract classes.

Match the UML diagram to the best description for that diagram. Each of the questions concerns a
different implementation of a grocery store inventory system.

(d) (c) (a) (b)

Drag and drop above item GroceryItems are abstract because they require all
subclasses to implement specific methods. DryGoods
and Produce can be created as classes.

GroceryItems are abstract because they require all
subclasses to implement specific methods. DryGoods
and Produce are also abstract as they require subclasses
to implement methods specific to each class.

All classes are concrete.

All classes are abstract.

Reset

1/30/16, 11:02 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 12 of 23https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/11/print

classes are especially powerful when used in combination with arrays or Java Collections Framework
classes, including ArrayList, Map, etc.

Figure 11.4.1: Polymorphism example.

import java.util.ArrayList;

public class PolymorphismExample {
 public static void main(String[] args) {
 ArrayList<Shape> shapesList = new ArrayList<Shape>();

 Circle circle = new Circle(new Point(0.0, 0.0), 1.0);
 shapesList.add(circle);

 Rectangle rectangle = new Rectangle(new Point(0.0, 0.0), new Point(2.0, 2.0));
 shapesList.add(rectangle);

 for (Shape shape : shapesList) {
 System.out.println("Shape is: " + shape.getClass() + " and area is: " + shape
 }

 return;
 }
}

Participation
ActivityP 11.4.1: Abstract and concrete classes.

Run the code and observe that the code calls the correct method for computeArea() even though
the ArrayList is using the abstract superclass of Shape. Add print statements to the computeArea()
method to ensure the code really calls the right class.

PolymorphismExample.java Shape.java Point.java

Rectangle.java

Reset

import java.util.ArrayList;

public class PolymorphismExample {
 public static void main(String[] args) {
 ArrayList<Shape> shapesList = new ArrayList<Shape>();

 Circle circle = new Circle(new Point(0.0, 0.0), 1.0);
 shapesList.add(circle);

1
2
3
4
5
6
7
8
9

10

1/30/16, 11:02 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 13 of 23https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/11/print

 Rectangle rectangle = new Rectangle(new Point(0.0, 0.0), new Point(2.0, 2.0));
 shapesList.add(rectangle);

 for (Shape shape : shapesList) {
 System.out.println("Shape is: " + shape.getClass() + " and area is: " + shape
 }

 return;
 }

Run

10
11
12
13
14
15
16
17
18
19

1/30/16, 11:02 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 14 of 23https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/11/print

Section 11.5 - Interfaces

Java provides interfaces as another mechanism for programmers to state that a class adheres to

Participation
ActivityP 11.4.2: Polymorphism and ArrayLists.

Given the Shape, Circle, and Rectangle classes, select the block of code that will correctly
compile.

Question

1

ArrayList<Circle> circlesList = new
ArrayList<Circle>();
Circle circle1 = new Circle(new Point(0.0, 0.0),
1.0);
circlesList.add(circle1);
Rectangle rectangle1 = new Rectangle(new Point(0.0,
0.0), new Point(2.0, 2.0));
circlesList.add(rectangle1);

ArrayList<Rectangle> rectanglesList = new
ArrayList<Rectangle>();
Circle circle2 = new Circle(new Point(0.0, 0.0),
1.0);
rectanglesList.add(circle2);
Rectangle rectangle2 = new Rectangle(new Point(0.0,
0.0), new Point(2.0, 2.0));
rectanglesList.add(rectangle2);

ArrayList<Shape> shapesList = new ArrayList<Shape>
();
Circle circle3 = new Circle(new Point(0.0, 0.0),
1.0);
shapesList.add(circle3);
Rectangle rectangle3 = new Rectangle(new Point(0.0,
0.0), new Point(2.0, 2.0));
shapesList.add(rectangle3);

1/30/16, 11:02 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 15 of 23https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/11/print

rules defined by the interface. An interface specifies a set of methods that an implementing class
must override and define. Although inheritance and polymorphism allow a class to override methods
defined in the superclass, a class can only inherit from a single superclass. A class can implement

multiple interfaces. Each Interface a class implements means the class will adhere to the rules defined
by the interface class.

To create an interface, a programmer uses the keyword interface in the class definition. The following
code illustrates an interface named DrawableInterface that contains a method declaration for a
method drawMe(). A method declaration within an interface only specifies the method's return type,
name, and parameters. The Drawable interface requires classes implementing the interface to define a
method called drawMe().

Any class that implements the interface must list the interface name after the keyword implements. A

Example 11.5.1: Interface example.

The Serializable interface is a useful interface that illustrates how to use interfaces and why
interfaces can be so powerful. The Circle class from above has been modified to implement
the Serializable interface. This interface tells Java that objects of type Circle can be written to
and read from files (or other I/O Streams). Serializable is an extremely useful interface for
large programs that need to save their state.

import java.io.Serializable;

public class Circle extends Shape implements Serializable {

 private double radius;
 private Point center;

 public Circle(Point center, double radius) {
 this.radius = radius;
 this.center = center;
 }

 @Override
 public double computeArea() {
 return (Math.PI * Math.pow(radius, 2));
 }
}

Figure 11.5.1: Creating an interface.

public interface DrawableInterface {

 public void drawMe();
}

1/30/16, 11:02 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 16 of 23https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/11/print

class can implement multiple interfaces using a comma separated list. For example, Circle can
implement both the Serializable and DrawableInterface.

Figure 11.5.2: Implementing an interface.

import java.io.Serializable;

public class Circle extends Shape implements Serializable, DrawableInterface {

 private double radius;
 private Point center;

 public Circle(Point center, double radius) {
 this.radius = radius;
 this.center = center;
 }

 @Override
 public double computeArea() {
 return (Math.PI * Math.pow(radius, 2));
 }

 @Override
 public void drawMe() {
 // TODO: code to draw a circle
 }
}

1/30/16, 11:02 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 17 of 23https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/11/print

UML Diagrams denote interfaces using the keyword interface, inside double angle brackets, above the
class name. Classes that implement the interface have a dashed line with an unfilled arrow pointing at
the interface. Following UML conventions is important for clear communication between
programmers.

Participation
ActivityP 11.5.1: Comparison of interfaces and abstract classes.

Interfaces and abstract classes can seem superficially similar but they have different purposes. The
following questions will help clarify these differences. Choose whether an interface or abstract
class is the best choice for each situation.

Question Your answer

1

A class that provides default code to other classes that use
that class.

Interface

Abstract class

2

A class that provides only static final fields. Interface

Abstract class

3

A class provides default variables. Interface

Abstract class

4

A class that provides an API that must be implemented and
no other code.

Interface

Abstract class

1/30/16, 11:02 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 18 of 23https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/11/print

Figure 11.5.3: UML for DrawableInterface.

Participation
ActivityP 11.5.2: UML interfaces.

Match the UML diagram from above to the code block that it describes.

(a) (d) (c) (b)

Drag and drop above item

public abstract class ClassA {
 public abstract void doNeatThings();
}

public interface ClassC {

}

1/30/16, 11:02 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 19 of 23https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/11/print

Section 11.6 - Java example: Employees and instantiating from
an abstract class

public class ClassB extends ClassA implements
ClassC {
 @Override
 public void doNeatThings() {
 System.out.println("Does neat things!");
 }
}

public interface ClassA {
 public void doNeatThings();
}

public class ClassB implements ClassA {
 @Override
 public void doNeatThings() {
 System.out.println("Does neat things!");
 }
}

public abstract class ClassA {
 public abstract void doNeatThings();
}

public class ClassB extends ClassA {
 @Override
 public void doNeatThings() {
 System.out.println("Does neat things!");
 }
}

public interface ClassA {
 public void doNeatThings();
}

public interface ClassC {

}

public class ClassB implements ClassA, ClassC {
 @Override
 public void doNeatThings() {
 System.out.println("Does neat things!");
 }
}

Reset

P

1/30/16, 11:02 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 20 of 23https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/11/print

Participation
ActivityP 11.6.1: Employees example: Abstract class and interface.

The classes below describe an abstract class named EmployeePerson and two derived concrete
classes, EmployeeManager and EmployeeStaff, both of which extend the EmployeePerson class.
The main program creates objects of type EmployeeManager and EmployeeStaff and prints them.

1. Run the program. The program prints manager and staff data using the
EmployeeManager's and EmployeeStaff's printInfo methods. Those classes
override EmployeePerson's getAnnualBonus() method but simply return 0.

2. Modify the EmployeeManager and EmployeeStaff getAnnualBonus methods to
return the correct bonus rather than just returning 0. A manager's bonus is 10% of
the annual salary and a staff's bonus is 7.5% of the annual salary.

EmployeeMain.java EmployeePerson.java EmployeeManager.java

Reset

Pre-enter any input for program, then press run

public class EmployeeMain {

 public static void main(String [] args) {

 // Create the objects
 EmployeeManager manager = new EmployeeManager(25);
 EmployeeStaff staff1 = new EmployeeStaff("Michele");

 // Load data into the objects using the Person class's method
 manager.setData("Michele", "Sales", "03-03-1975", 70000);
 staff1.setData ("Bob", "Sales", "02-02-1980", 50000);

 // Print the objects
 manager.printInfo();
 System.out.println("Annual bonus: " + manager.getAnnualBonus());
 staff1.printInfo();
 System.out.println("Annual bonus: " + staff1.getAnnualBonus());

 return;

Run

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 11:02 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 21 of 23https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/11/print

1/30/16, 11:02 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 22 of 23https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/11/print

P Participation
Activity

11.6.2: Employees example: Abstract class and interface
(solution).

Below is the solution to the above problem. Note that the EmployeePerson class is unchanged.

EmployeeMain.java EmployeePerson.java EmployeeManager.java

Reset

Pre-enter any input for program, then press run

public class EmployeeMain {

 public static void main(String [] args) {

 // Create the objects
 EmployeeManager manager = new EmployeeManager(25);
 EmployeeStaff staff1 = new EmployeeStaff("Michele");

 // Load data into the objects using the Person class's method
 manager.setData("Michele", "Sales", "03-03-1975", 70000);
 staff1.setData ("Bob", "Sales", "02-02-1980", 50000);

 // Print the objects
 manager.printInfo();
 System.out.println("Annual bonus: " + manager.getAnnualBonus());
 staff1.printInfo();
 System.out.println("Annual bonus: " + staff1.getAnnualBonus());

 return;

Run

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 11:02 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 23 of 23https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/11/print

