
1/30/16, 11:02 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 1 of 34https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/10/print

Chapter 10 - Inheritance

Section 10.1 - Derived classes
Commonly, one class is similar to another class but with some additions or variations. For example, a
store inventory system might use a class called GenericItem having itemName and itemQuantity
members. But for produce (fruits and vegetables), a class ProduceItem having itemName,
itemQuantity, and expirationDate members may be desired. Note that ProduceItem is really a
GenericItem with an additional feature, so ideally a program could define the ProduceItem class as
being the same as the GenericItem class but with the addition of an expirationDate member.

Such similarity among classes is supported by indicating that a class is derived from another class, as
shown below.

Figure 10.1.1: A derived class example: Class ProduceItem is derived from
class GenericItem.

GenericItem.java:
public class GenericItem {
 public void setName(String newName) {
 itemName = newName;
 return;
 }

 public void setQuantity(int newQty) {
 itemQuantity = newQty;
 return;
 }

 public void printItem() {
 System.out.println(itemName + " " + itemQuantity);
 return;
 }

 private String itemName;
 private int itemQuantity;
}

ProduceItem.java:
public class ProduceItem extends GenericItem { // ProduceItem derived from GenericItem
 public void setExpiration(String newDate) {
 expirationDate = newDate;
 return;
 }

 public String getExpiration() {

1/30/16, 11:02 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 2 of 34https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/10/print

A class named GenericItem is defined as normal. In main(), a GenericItem reference variable miscItem
is initialized, the item's data fields set to "Smith Cereal" and "9", and the item's printItem() member
method called. A class named ProduceItem is also defined, that class was derived from the
GenericItem class by appending extends GenericItem after the name ProduceItem, i.e.,
class ProduceItem extends GenericItem {. As such, initializing the ProduceItem variable
perishItem creates an object with data members itemName and itemQuantity (from GenericItem) plus
expirationDate (from ProduceItem). Also, ProduceItem has member method setName(), setQuantity(),
and printItem() (from GenericItem) plus setExpiration() and getExpiration() (from ProduceItem). So in
main(), perishItem 's object has its data fields set to "Apples", "40", and "May 5, 2012", and the item is
printed using the printItem() member method and using the getExpiration() member method. (Note:
We have written the code unusually concisely to help focus attention on the derivation concepts being
learned)

The term derived class (or subclass) refers to a class that is derived from another class that is known
as a base class (or superclass). Any class may serve as a base class; no changes to the declaration
of that class are required. The derived class is said to inherit the properties of its base class, a concept
commonly called inheritance. An object defined of a derived class type has access to all the public
members of the derived class as well as the public members of the base class. The following
animation illustrates the relationship between a derived class and a base class.

 public String getExpiration() {
 return expirationDate;
 }

 private String expirationDate;
}

ClassDerivationEx.java:
public class ClassDerivationEx {
 public static void main(String[] args) {
 GenericItem miscItem = new GenericItem();
 ProduceItem perishItem = new ProduceItem();

 miscItem.setName("Smith Cereal");
 miscItem.setQuantity(9);
 miscItem.printItem();

 perishItem.setName("Apples");
 perishItem.setQuantity(40);
 perishItem.setExpiration("May 5, 2012");
 perishItem.printItem();

 System.out.println(" (Expires: " + perishItem.getExpiration() + ")");

 return;
 }
}

1/30/16, 11:02 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 3 of 34https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/10/print

Programmers commonly draw class inheritance relationships using Unified Modeling Language
(UML) notation (Wikipedia: UML).

P Participation
Activity

10.1.1: Derived class example: ProduceItem derived from
GenericItem.

Start

75

76

77

78

79

80

miscItemitemName
itemQuantity }

GenericItem

ProduceItem

||
V

setName()
setQuantity()
printItem()

Access to:

setName()
setQuantity()
printItem()
setExpiration()
getExpiration()

- - - - - - -

public static void main(String[] args) {
 GenericItem miscItem = new GenericItem();
 ProduceItem perishItem = new ProduceItem();
 ...
}

itemName
itemQuantity perishItem}
expirationDate
- - - - - - - - - -
-

ProduceItem is derived
from GenericItem so
inherits GenericItem's
members

plus it has its own
members

http://en.wikipedia.org/wiki/Unified_Modeling_Language

1/30/16, 11:02 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 4 of 34https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/10/print

Various class derivation variations are possible:

A derived class can itself serve as a base class for another class. In the earlier
example, class FruitItem extends ProduceItem {...} could be added.

A class can serve as a base class for multiple derived classes. In the earlier example,
class FrozenFoodItem extends GenericItem {...} could be added.

A class can only be derived from one base class directly. For example, inheriting from
two classes as in
class House extends Dwelling, Property {...} results in a compiler
error.

P Participation
Activity

10.1.2: Derived class example: Produce derived from
GenericItem.

Start

GenericItem

ProduceItem

||
V

GenericItem
-itemName

-itemQuantity
+setName()

+setQuantity()
+printItem()

ProduceItem
-expirationDate
+setExpiration()
+getExpiration()

|V

Inheritance commonly drawn like this

More detailed diagram format (UML)
3 sections per class:
 * Identity -- class name
 * State -- variables
 * Behavior -- member functions

Member access
 - means private
 + means public
 # means protected

Arrow indicates class derived from
 * Derived class only shows additional members

1/30/16, 11:02 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 5 of 34https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/10/print

Participation
ActivityP 10.1.3: Interactive inheritance tree.

Click a class to see available functions and data for that class.

Inheritance tree

Item

Produce Book

Fruit Dairy Textbook Audiobook

1/30/16, 11:02 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 6 of 34https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/10/print

Participation
ActivityP 10.1.4: Derived classes basic.

Question Your answer

1
A class that can serve as the basis for another class
is called a _____ class.

2

Class Dwelling has data members door1, door2,
door3. A class House is derived from Dwelling and
has data members wVal, xVal, yVal, zVal. The
definition and initialization
House h = new House(); creates how many
data members?

Exploring further:
Oracle's Java tutorials on inheritance.

http://docs.oracle.com/javase/tutorial/java/IandI/subclasses.html

1/30/16, 11:02 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 7 of 34https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/10/print

Section 10.2 - Access by members of derived classes
The members of a derived class have access to the public members of the base class, but not to the
private members of the base class. This is logical—allowing access to all private members of a class
merely by creating a derived class would circumvent the idea of private members. Thus, adding the
following member method to the earlier ProduceItem class yields a compiler error.

Challenge
ActivityC 10.1.1: Basic inheritance.

Assign courseStudent's name with Smith, age with 20, and ID with 9999. Use the print member method and a separate println statement
to output courseStudents's data. Sample output from the given program:

Name: Smith, Age: 20, ID: 9999

Run

 }

 public int getID() {
 return idNum;
 }
}
// ===== end =====

// ===== Code from file StudentDerivationFromPerson.java =====
public class StudentDerivationFromPerson {
 public static void main (String [] args) {
 StudentData courseStudent = new StudentData();

 /* Your solution goes here */

 return;
 }
}
// ===== end =====

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

1/30/16, 11:02 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 8 of 34https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/10/print

Recall that members of a class may have their access specified as public or private. A third access
specifier is protected, which provides access to derived classes and other classes in the same
package but not by anyone else. Packages are discussed in detail elsewhere, but for our purposes a
package can just be thought of as the directory in which program files are located. Thus, classes in
the same package are located in the same directory. The following illustrates the implications of the
protected access specifier.

Figure 10.2.1: Member methods of a derived class cannot access private
members of the base class.

public class ProduceItem extends GenericItem {

 ...

 public void displayProduceItem() {
 System.out.println(itemName + " " + itemQuantity +
 " (Expires: " + expirationDate + ")");
 }

 ...
}

$ javac ProduceItem.java
ProduceItem.java:12: itemName has private access in GenericItem
 System.out.println(itemName + " " + itemQuantity + " (Expires: " + expirationDate + ")");
 ^
ProduceItem.java:12: itemQuantity has private access in GenericItem
 System.out.println(itemName + " " + itemQuantity + " (Expires: " + expirationDate + ")");
 ^
2 errors

1/30/16, 11:02 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 9 of 34https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/10/print

Being specified as protected, the member called baseName is accessible anywhere in the derived
class. Note that the baseName member is also accessible in main()—the protected specifier also
allows access to classes in the same package; protected members are private to everyone else.

To make ProduceItems displayProduceItem() method work, we merely need to change the private
members to protected members in class GenericItem. GenericItem's class members itemName and

Figure 10.2.2: Access specifiers—Protected allows access by derived classes
and classes in the same package but not by others.

Code contains intended errors to demonstrate protected accesses.

BaseClass.java:
public class BaseClass {
 public void printMembers() { // Member accessible by anyone
 // Print information ...
 }

 protected String baseName; // Member accessible by self and derived classes
 private int baseCount; // Member accessible only by self
}

DerivedClass.java:
public class DerivedClass extends BaseClass {
 public void someOperation() {
 // Attempted accesses
 printMembers(); // OK
 baseName = "Mike"; // OK ("protected" above made this possible)
 baseCount = 1; // ERROR
 }

 // Other class members ...
}

InheritanceAccessEx.java
public class InheritanceAccessEx {
 public static void main (String[] args) {
 BaseClass baseObj = new BaseClass();
 DerivedClass derivedObj = new DerivedClass();

 // Attempted accesses
 baseObj.printMembers(); // OK
 baseObj.baseName = "Mike"; // OK (protected also applies to other classes in the same package)
 baseObj.baseCount = 1; // ERROR

 derivedObj.printMembers(); // OK
 derivedObj.baseName = "Mike"; // OK (protected also applies to other classes in the same package)
 derivedObj.baseCount = 1; // ERROR

 // Other instructions ...

 return;
 }
}

1/30/16, 11:02 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 10 of 34https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/10/print

itemQuantity thus become accessible to a derived class like ProduceItem. A programmer may often
want to make some members protected in a base class to allow access by derived classes, while
making other members private to the base class.

The following table summarizes access specifiers.

Separately, the keyword "public" in a class declaration like public class DerivedClass {...}
specifies a class's visibility in other classes in the program:

public : A class can be used by every class in the program regardless of the package
in which either is defined.

no specifier : A class can be used only in other classes within the same package,
known as package private.

Most beginning programmers define classes as public when learning to program.

Table 10.2.1: Access specifiers for class members.

Specifier Description

private Accessible by self.

protected Accessible by self, derived classes, and other classes in the same package.

public Accessible by self, derived classes, and everyone else.

no specifier Accessible by self and other classes in the same package.

1/30/16, 11:02 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 11 of 34https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/10/print

Participation
ActivityP 10.2.1: Access by derived class members.

Assume public class DerivedClass extends BaseClass {...}

Question Your answer

1

BaseClass' public member method can be called by a
member method of DerivedClass.

Yes

No

2

BaseClass' protected member method can be called by a
member method of DerivedClass.

Yes

No

3

BaseClass' private field can be accessed by a member
method of DerivedClass.

Yes

No

4

For
DerivedClass derivedObj = new DerivedClass();
in main(), derivedObj can access a protected member of
BaseClass. Assume main() is defined in a class located in the
same package as DerivedClass.

Yes

No

5

For BaseClass baseObj = new BaseClass(); in
main(), baseObj can access a protected member of
BaseClass. Assume main() is defined in a class located in a
different package as BaseClass.

Yes

No

Exploring further:

1/30/16, 11:02 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 12 of 34https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/10/print

Section 10.3 - Overriding member methods
A derived class may define a member method having the same name as the base class. Such a
member method overrides the method of the base class. The following example shows the earlier
GenericItem/ProduceItem example where the ProduceItem class has its own printItem() member
method that overrides the printItem() method of the GenericItem class.

More on access specifiers from Oracle's Java tutorials

Figure 10.3.1: ProduceItem's printItem() method overrides GenericItem's
printItem() method.

GenericItem.java:
public class GenericItem {
 public void setName(String newName) {
 itemName = newName;
 return;
 }

 public void setQuantity(int newQty) {
 itemQuantity = newQty;
 return;
 }

 public void printItem() {
 System.out.println(itemName + " " + itemQuantity);
 return;
 }

 protected String itemName;
 protected int itemQuantity;
}

ProduceItem.java:
public class ProduceItem extends GenericItem {
 public void setExpiration(String newDate) {
 expirationDate = newDate;
 return;
 }

 public String getExpiration() {
 return expirationDate;
 }

 @Override
 public void printItem() {
 System.out.println(itemName + " " + itemQuantity

http://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html

1/30/16, 11:02 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 13 of 34https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/10/print

Overriding differs from overloading. In overloading, methods with the same name must have different
parameter types. In overriding, a derived class member method takes precedence over base class
member method with the same name and parameter types. Overloading is performed if derived and
base member methods have different parameter types; the member method of the derived class does
not hide the member method of the base class.

Notice that the annotation @Override appears above the printItem() method definition in the
ProduceItem class. Annotations are optional notes beginning with the '@' symbol that can provide
the compiler with useful information in order to help the compiler detect errors better. The override
annotation lets the compiler know that the programmer intends to define a method that will override a
method in a base class. This annotation will cause the compiler to produce an error when a
programmer mistakenly specifies parameters that are different from the parameters of the method that
should be overridden. A good practice is to always include an override annotation with methods that
are meant to override methods in a base class.

The following shows an example of how the override annotation helps the compiler detect
inconsistencies in the manner in which ProduceItem overrides GenericItem's printItem() method in
what would otherwise be valid code.

 System.out.println(itemName + " " + itemQuantity
 + " (Expires: " + expirationDate + ")");
 return;
 }

 private String expirationDate;
}

ClassOverridingEx.java:
public class ClassOverridingEx {
 public static void main(String[] args) {
 GenericItem miscItem = new GenericItem();
 ProduceItem perishItem = new ProduceItem();

 miscItem.setName("Smith Cereal");
 miscItem.setQuantity(9);
 miscItem.printItem(); // Calls GenericItem's printItem()

 perishItem.setName("Apples");
 perishItem.setQuantity(40);
 perishItem.setExpiration("May 5, 2012");
 perishItem.printItem(); // Calls ProduceItem's printItem()

 return;
 }
}

Smith Cereal 9
Apples 40 (Expires: May 5, 2012)

1/30/16, 11:02 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 14 of 34https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/10/print

The overriding function can still call the overridden method by using the super keyword, as in
super.printItem(), as follows.

The super keyword is used to access class members of an object's base class—i.e., superclass --
instead of the object's own class members. Without the use of the super keyword, the call to
printItem() would refer to itself (a recursive call), so the method would call itself, and that call would call
itself, etc., never actually printing anything (an error in this case).

Figure 10.3.2: The override annotation helps the compiler detect incorrect
method overriding.

public class ProduceItem extends GenericItem {
 // Other methods ...

 @Override
 public void printItem(int someInt) {
 System.out.println(itemName + " " + itemQuantity +
 " (Expires: " + expirationDate + ")");
 return;
 }

 // Other fields ...
}

$ javac ProduceItem.java
ProduceItem.java:11: method does not override or implement a method from a supertype
 @Override
 ^
1 error

Figure 10.3.3: Method calling overridden method of base class (i.e.,
superclass).

public class ProduceItem extends GenericItem {
 // Other methods ...

 @Override
 public void printItem() {
 super.printItem();
 System.out.println(" (Expires: " + expirationDate + ")");
 return;
 }

 // Other fields ...
}

1/30/16, 11:02 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 15 of 34https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/10/print

Participation
ActivityP 10.3.1: Override.

Assume myItem is defined and initialized as GenericItem, and myProduce as ProduceItem, with
classes GenericItem and ProduceItem defined as above.

Question Your answer

1

myItem.printItem() calls the printItem() method for
which class?

GenericItem

ProduceItem

2

myProduce.printItem() calls the printItem() method for
which class?

GenericItem

ProduceItem

3

Provide a statement within printItem() method of the the
ProduceItem class to call the printItem() method of
ProduceItem's base class.

printItem();

@Override printItem();

super.printItem();

4

If ProduceItem did NOT have its own printItem() method
defined, the printItem() method of which class would be
called?

GenericItem

ProduceItem

A call to PrintItem()
yields an error.

1/30/16, 11:02 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 16 of 34https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/10/print

Section 10.4 - The Object class
Java's built-in Object class serves as the base class for all other classes and does not have a
superclass—i.e., the Object class is located at the root of the Java class hierarchy. Thus, all classes,
including user-defined classes, implement Object's methods. In the following discussion, note the
subtle distinction between the term "Object class" and the generic term "object", which can refer to
the instance of any class. Some common methods defined within the Object class are presented
below. Refer to Oracle's Java Object class specification for a more detailed description of all available
methods.

Challenge
ActivityC 10.3.1: Basic derived class member override.

Define a method printAll() for class PetData that prints output as follows. Hint: Make use of the base class' printAll() method.

Name: Fluffy, Age: 5, ID: 4444

Run

}
// ===== end =====

// ===== Code from file BasicDerivedOverride.java =====
public class BasicDerivedOverride {
 public static void main (String [] args) {
 PetData userPet = new PetData();

 userPet.setName("Fluffy");
 userPet.setAge (5);
 userPet.setID (4444);
 userPet.printAll();
 System.out.println("");

 return;
 }
}
// ===== end =====

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html

1/30/16, 11:02 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 17 of 34https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/10/print

toString() --Returns a String representation of the Object. By default, the toString()
method returns a String containing the name of the class of which the object is an
instance (e.g., the Object class) followed by the object's hexadecimal address in
memory.

equals(otherObject) --Compares an Object to another otherObject and returns true
if both variables reference the same object. Otherwise, the equals() method returns
false. By default, the equals() method tests the equality of the two Object references,
not the equality of their contents.

The following example illustrates the use of the toString() method with objects of various types,
including a user-defined class that overrides the toString() method in order to represent a decimal
integer in a numeral system of any base less than 10 (e.g., binary).

Figure 10.4.1: Using the Object class's toString() method with various class
types.

IntegerWithBase.java:
public class IntegerWithBase {
 private int decimalValue;
 private int baseFormat;

 public IntegerWithBase(int inDecimal, int inBase) {
 this.decimalValue = inDecimal;
 this.baseFormat = inBase;
 }

 @Override
 public String toString() {
 int quotientVal = 0;
 int remainderVal = 0;
 int dividendVal = 0 ;
 String resultVal = "";

 dividendVal = decimalValue;

 if (baseFormat > 1) {

 // Loop iteratively determines each digit
 do {
 quotientVal = dividendVal / baseFormat;
 remainderVal = dividendVal % baseFormat;

 // Append remainder to the result as the new digit
 resultVal = remainderVal + resultVal;

 dividendVal = quotientVal;

 } while (quotientVal > 0);
 }
 else {
 resultVal = String.valueOf(decimalValue);

tempNum = 100
tempNum (base 4) = 1210
myObj = java.lang.Object@1148ab5c

1/30/16, 11:02 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 18 of 34https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/10/print

The main() method creates three different objects (i.e., an Integer object, an IntegerWithBase object,
and an Object object) and prints the String representation of each object to the console by calling
toString(). The program's output demonstrates the differences in implementation among the three
objects' toString() methods. While the Object class's toString() method prints the object's type
followed by the object's memory address, the built-in Integer class overrides toString() in order to print
its internal integer value. Similarly, the IntegerWithBase class overrides toString() in order to print the
integer value in a given numeral system. Note that although the above program explicitly invokes each
object's toString() method, the Java compiler allows the programmer to omit calls to toString() if the
object is concatenated with a String or if the object is an argument to the println() or print() methods,
which automatically invoke an argument's toString() method. Thus, statements such as
System.out.println("tempNumInBase4 = " + tempNumInBase4); are valid as well.

The IntegerWithBase class defines a constructor that allows the user to specify an integer's decimal
value and the base in which to represent the number when the program calls the toString() method.
For example, the above statement
IntegerWithBase tempNumInBase4 = new IntegerWithBase(100,4); creates an
IntegerWithBase object that can represent the integer 100 in the base-4 numeral system. The
IntegerWithBase class overrides Object's toString() method with an iterative algorithm that computes
the digits in the new numeral system and returns the corresponding String. First, the toString() method
initializes the variable called dividendVal to the original value of the integer (e.g., 100). Then, every
iteration of the while loop performs integer division of the dividendVal by the baseFormat (e.g., 4). The
resulting remainderVal becomes the next digit in the new numeral system representation and the
quotientVal becomes the new dividendVal for the next iteration. The while loop terminates when the
quotientVal becomes zero, and then the toString() method returns the resultVal.

 }

 return resultVal;
 }
}

ObjectPrinter.java:
public class ObjectPrinter {
 public static void main(String[] args) {
 Integer tempNum = new Integer(100);
 IntegerWithBase tempNumInBase4 = new IntegerWithBase(100, 4);
 Object myObj = new Object();

 // Call toString on each object and print
 System.out.println("tempNum = " + tempNum.toString());
 System.out.println("tempNum (base 4) = " + tempNumInBase4.toString());
 System.out.println("myObj = " + myObj.toString());

 return;
 }
}

1/30/16, 11:02 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 19 of 34https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/10/print

Notice that the IntegerWithBase class does not handle base values greater than 10 appropriately. For
example, creating the object
IntegerWithBase tempNumInBase16 = new IntegerWithBase(255,16); in order print
the value 255 in hexadecimal (base 16) results in the output "1515" as opposed to a value such as
"FF". The problem lies with the range of characters used to represent a digit. One possible solution
involves using alphabetical characters to represent digits with a value greater than nine.

1/30/16, 11:02 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 20 of 34https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/10/print

P Participation
Activity

10.4.1: Modifying IntegerWithBase to print bases greater than
10.

Define a new private method within IntegerWithBase called toAlphaNumDigit() that takes an integer
value as an argument and returns a char representing the digit. For argument values between 0
and 9, the method should simply return the unicode value for that argument (i.e., a char value
between 48 and 57). For argument values greater than or equal to 10, the method should return
unicode values corresponding to a lower-case letter in the alphabet(i.e., a char value between 97
and 122). Thus, the statement toAlphaNumDigit(15);, for example, should return the char
value 102, which corresponds to the letter "f".

Use this private method to convert the remainder values computed within toString() to the
appropriate characters. For example, creating the object
IntegerWithBase tempNumInBase16 = new IntegerWithBase(255,16); should
output "ff".

IntegerWithBase.java ObjectPrinter.java

public class IntegerWithBase {
 private int decimalValue;
 private int baseFormat;

 public IntegerWithBase(int inDecimal, int inBase) {
 this.decimalValue = inDecimal;
 this.baseFormat = inBase;
 }

 @Override
 public String toString() {
 int quotientVal = 0;
 int remainderVal = 0;
 int dividendVal = 0 ;
 String resultVal = "";

 dividendVal = decimalValue;

Run
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 11:02 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 21 of 34https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/10/print

Section 10.5 - Polymorphism

P Participation
Activity

10.4.2: The Object class and overriding the toString()
method.

Question Your answer

1

User-defined classes are not derived from the Object class. True

False

2

All classes can access Object's public and protected
methods (e.g., toString() and equals()) even if such methods
are not explicitly overridden.

True

False

3

The built-in Integer class overrides the toString() method in
order to return a String representing an Integer's value.

True

False

4

The Object class's toString() method returns a String
containing only the Object instance's type.

True

False

Exploring further:
Oracle's Java Object class specification.
Oracle's Java class hierarchy.

http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html
http://docs.oracle.com/javase/7/docs/api/java/lang/package-tree.html

1/30/16, 11:02 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 22 of 34https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/10/print

Polymorphism refers to determining which program behavior to execute depending on data types.
Method overloading is a form of compile-time polymorphism wherein the compiler determines
which of several identically-named methods to call based on the method's arguments. Another form is
runtime polymorphism wherein the compiler cannot make the determination but instead the
determination is made while the program is running.

One scenario requiring runtime polymorphism involves derived classes. Commonly, a programmer
wishes to create a collection of objects that combines base and derived class types, such as an
ArrayList named inventoryList whose elements can each be a reference to an object of type
GenericItem, ProduceItem, or FrozenFoodItem (the latter two types derived from GenericItem). Such
an ArrayList can be initialized as
ArrayList<GenericItem> inventoryList = new ArrayList<GenericItem>(); and
references to any of those objects may be added, as shown below.

Figure 10.5.1: Runtime polymorphism.
The JVM can dynamically determine the correct method to call based on the object's type.

GenericItem.java:
public class GenericItem {
 public void setName(String newName) {
 itemName = newName;
 return;
 }

 public void setQuantity(int newQty) {
 itemQuantity = newQty;
 return;
 }

 public void printItem() {
 System.out.println(itemName + " " + itemQuantity);
 return;
 }

 protected String itemName;
 protected int itemQuantity;
}

ProduceItem.java:
public class ProduceItem extends GenericItem { // ProduceItem derived from GenericItem
 public void setExpiration(String newDate) {
 expirationDate = newDate;
 return;
 }

 public String getExpiration() {
 return expirationDate;
 }

 @Override

1/30/16, 11:02 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 23 of 34https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/10/print

The program uses a Java feature relating to derived/base class reference conversion wherein a
reference to a derived class can be converted to a reference to the base class (without explicit

 @Override
 public void printItem() {
 System.out.println(itemName + " " + itemQuantity
 + " (Expires: " + expirationDate + ")");
 return;
 }

 private String expirationDate;
}

ItemInventory.java:
import java.util.ArrayList;

public class ItemInventory {
 public static void main(String[] args) {
 GenericItem genericItem1;
 ProduceItem produceItem1;
 ArrayList<GenericItem> inventoryList = new ArrayList<GenericItem>(); // Collection of "Items"
 int i = 0; // Loop index

 genericItem1 = new GenericItem();
 genericItem1.setName("Smith Cereal");
 genericItem1.setQuantity(9);

 produceItem1 = new ProduceItem();
 produceItem1.setName("Apple");
 produceItem1.setQuantity(40);
 produceItem1.setExpiration("May 5, 2012");

 genericItem1.printItem();
 produceItem1.printItem();

 // More common: Collection (e.g., ArrayList) of objs
 // Polymorphism -- Correct printItem() called
 inventoryList.add(genericItem1);
 inventoryList.add(produceItem1);
 System.out.println("\nInventory: ");
 for (i = 0; i < inventoryList.size(); ++i) {
 inventoryList.get(i).printItem(); // Calls correct printItem()
 }

 return;
 }
}

Smith Cereal 9
Apple 40 (Expires: May 5, 2012)

Inventory:
Smith Cereal 9
Apple 40 (Expires: May 5, 2012)

1/30/16, 11:02 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 24 of 34https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/10/print

casting). Such conversion is in contrast to other data type conversions, such as converting a double
to an int (which is an error unless explicitly cast). Thus, the above statement
inventoryList.add(produceItem1); uses this feature, with a ProduceItem reference being
converted to a GenericItem reference (inventoryList is an ArrayList of GenericItem references). The
conversion is intuitive; recall in an earlier animation that a derived class like ProductItem consists of the
base class GenericItem plus additional members, so the conversion yields a reference to the base
class part (so really there's no change).

However, an interesting question arises when printing the ArrayList's contents. For a given element,
how does the program know whether to call GenericItem's printItem() or ProduceItem's printItem()?
The Java virtual machine automatically performs runtime polymorphism, i.e., it dynamically determines
the correct method to call based on the actual object type to which the variable (or element) refers.

Participation
ActivityP 10.5.1: Polymorphism.

Consider the GenericItem and ProduceItem classes defined above.

Question Your answer

1

An item of type ProduceItem may be added to an ArrayList
of type ArrayList<GenericItem>.

True

False

2

The JVM automatically performs runtime polymorphism to
determine the correct method to call.

True

False

Exploring further:
More on Polymorphism from Oracle's Java tutorials
More on abstract classes and methods from Oracle's Java tutorials

http://docs.oracle.com/javase/tutorial/java/IandI/polymorphism.html
http://docs.oracle.com/javase/tutorial/java/IandI/abstract.html

1/30/16, 11:02 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 25 of 34https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/10/print

Section 10.6 - ArrayLists of Objects
Because all classes are derived from the Object class, programmers can take advantage of runtime
polymorphism in order to create a collection (e.g., ArrayList) of objects of various class types and
perform operations on the elements. The following program adds objects of seemingly differing types
(e.g., Object, Integer, IntegerWithBase, Double, and String) into a single ArrayList and prints the
contents.

Challenge
ActivityC 10.5.1: Basic polymorphism.

Write the printItem() method for the base class. Sample output for below program:

Last name: Smith
First and last name: Bill Jones

Run

Figure 10.6.1: Printing an ArrayList of Object elements.

 baseItemPtr = new BaseItem();
 baseItemPtr.setLastName("Smith");

 derivedItemPtr = new DerivedItem();
 derivedItemPtr.setLastName("Jones");
 derivedItemPtr.setFirstName("Bill");

 itemList.add(baseItemPtr);
 itemList.add(derivedItemPtr);

 for (i = 0; i < itemList.size(); ++i) {
 itemList.get(i).printItem();
 }

 return;
 }
}
// ===== end =====

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

1/30/16, 11:02 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 26 of 34https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/10/print

Figure 10.6.1: Printing an ArrayList of Object elements.

IntegerWithBase.java:
public class IntegerWithBase {
 private int decimalValue;
 private int baseFormat;

 public IntegerWithBase(int inDecimal, int inBase) {
 this.decimalValue = inDecimal;
 this.baseFormat = inBase;
 }

 @Override
 public String toString() {
 int quotientVal = 0;
 int remainderVal = 0;
 int dividendVal = 0 ;
 String resultVal = "";

 dividendVal = decimalValue;

 if (baseFormat > 1) {

 // Loop iteratively determines each digit
 do {
 quotientVal = dividendVal / baseFormat;
 remainderVal = dividendVal % baseFormat;

 // Append remainder to the result as the new digit
 resultVal = remainderVal + resultVal;

 dividendVal = quotientVal;

 } while (quotientVal > 0);
 }
 else {
 resultVal = String.valueOf(decimalValue);
 }

 return resultVal;
 }
}

ArrayPrinter.java:
import java.util.ArrayList;

public class ArrayPrinter {
 // Method prints an ArrayList of Objects
 public static void PrintArrayList(ArrayList<Object> objList) {
 int i = 0;

 for (i = 0; i < objList.size(); ++i) {
 System.out.println(objList.get(i));
 }

 return;
 }

 public static void main (String[] args) {

12
1010
3.14
Hello!

1/30/16, 11:02 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 27 of 34https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/10/print

The statement ArrayList<Object> objList = new ArrayList<Object>(); initializes an
ArrayList of Object elements used to store different objects. The program then adds five new objects
of various class types to the ArrayList and prints the contents of the ArrayList. Adding an object of a
type derived from Object (e.g., Double) into an ArrayList of Object elements is possible due to Java's
automatic conversion of derived class references to base class references. Thus, a statement such as
objList.add(new Double(3.14)); converts the reference to the new Double object into an
Object reference.

The PrintArrayList() method takes an ArrayList of Objects as an argument, iterates through every
element of the ArrayList, and prints the String representation of each element using the toString()
method. Runtime polymorphism enables the Java virtual machine to dynamically determine the
correct version of toString() to call based on the actual class type of each element. Notice that the
statement System.out.println(objList.get(i)); does not need to explicitly call each
element's toString() method because each element is concatenated with a String literal.

Finally, note that a method operating on a collection of Object elements may only invoke the methods
declared by the base class (e.g., the Object class). Thus, a statement that calls the toString() method
on an element of an ArrayList of Objects called objList, such as objList.get(i).toString(), is
valid because the Object class defines the toString() method. However, a statement that calls, for
example, the Integer class's intValue() method on the same element (i.e.,
objList.get(i).intValue()) results in a compiler error even if that particular element is an
Integer object.

 public static void main (String[] args) {
 ArrayList<Object> objList = new ArrayList<Object>();

 // Add new instances of various classes to objList
 objList.add(new Integer(12));
 objList.add(new IntegerWithBase(10,2));
 objList.add(new Double(3.14));
 objList.add(new String("Hello!"));
 objList.add(new Object());

 // Call method to print list of Objects
 PrintArrayList(objList);

 return;
 }
}

Hello!
java.lang.Object@79a340

1/30/16, 11:02 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 28 of 34https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/10/print

Section 10.7 - Is-a versus has-a relationships

P Participation
Activity

10.6.1: ArrayLists of Object elements and runtime
polymorphism principles.

Consider the IntegerWithBase and ArrayPrinter classes defined above.

Question Your answer

1

An item of any class type may be added to an ArrayList of
type ArrayList<Object>.

Yes

No

2

Assume that an ArrayList of type ArrayList<Object>
called myList contains only three elements of type Double. Is
the statement myList.get(0).doubleValue(); valid?

Note that the method doubleValue() is defined in the Double
class but not the Object class.

Yes

No

3

The above program's PrintArrayList() method can dynamically
determine which implementation of toString() to call.

Yes

No

Exploring further:
Oracle's Java Object class specification.
More on Polymorphism from Oracle's Java tutorials

http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html
http://docs.oracle.com/javase/tutorial/java/IandI/polymorphism.html

1/30/16, 11:02 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 29 of 34https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/10/print

The concept of inheritance is commonly confused with the idea of composition. Composition is the
idea that one object may be made up of other objects, such as a MotherInfo class being made up of
objects like firstName (which may be a String object), childrenData (which may be an ArrayList of
ChildInfo objects), etc. Defining that MotherInfo class does not involve inheritance, but rather just
composing the sub-objects in the class.

In contrast, a programmer may note that a mother is a kind of person, and all persons have a name
and birthdate. So the programmer may decide to better organize the program by defining a
PersonInfo class, and then by creating the MotherInfo class derived from PersonInfo, and likewise for
the ChildInfo class.

Figure 10.7.1: Composition.
The 'has-a' relationship. A MotherInfo object 'has a' String object and 'has a' ArrayList of
ChildInfo objects, but no inheritance is involved.

public class ChildInfo {
 public String firstName;
 public String birthDate;
 public String schoolName;

 ...
}

public class MotherInfo {
 public String firstName;
 public String birthDate;
 public String spouseName;
 public ArrayList<ChildInfo> childrenData;

 ...
}

1/30/16, 11:02 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 30 of 34https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/10/print

Figure 10.7.2: Inheritance.
The 'is-a' relationship. A MotherInfo object 'is a' kind of PersonInfo. The MotherInfo class
thus inherits from the PersonInfo class. Likewise for the ChildInfo class.

public class PersonInfo {
 public String firstName;
 public String birthdate;

 ...
}

public class ChildInfo extends PersonInfo {
 public String schoolName;

 ...
}

public class MotherInfo extends PersonInfo {
 public String spousename;
 public ArrayList<ChildInfo> childrenData;
 ...
}

Participation
ActivityP 10.7.1: Is-a vs. has-a relationships.

Indicate whether the relationship of the everyday items is an is-a or has-a relationship. Derived
classes and inheritance are related to is-a relationships, not has-a relationships.

Question Your answer

1

Fruit / apple Is-a

Has-a

2

House / window Is-a

Has-a

1/30/16, 11:02 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 31 of 34https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/10/print

Section 10.8 - Java example: Employees and overriding class
methods

Participation
ActivityP 10.8.1: Inheritance: Employees and overriding a class method.

The classes below describe a superclass named EmployeePerson and two derived classes,
EmployeeManager and EmployeeStaff, each of which extends the EmployeePerson class. The
main program creates objects of type EmployeeManager and EmployeeStaff and prints those
objects.

1. Run the program, which prints manager data only using the EmployeePerson
class' printInfo method.

2. Modify the EmployeeStaff class to override the EmployeePerson class' printInfo
method and print all the fields from the EmployeeStaff class. Run the program
again and verify the output includes the manager and staff information.

3. Modify the EmployeeManager class to override the EmployeePerson class'
printInfo method and print all the fields from the EmployeeManager class. Run the
program again and verify the manager and staff information is the same.

EmployeeMain.java EmployeePerson.java EmployeeManager.java EmployeeStaff.java

Reset

public class EmployeeMain {

 public static void main(String [] args) {

 // Create the objects
 EmployeeManager manager = new EmployeeManager(25);
 EmployeeStaff staff1 = new EmployeeStaff("Michele");

 // Load data into the objects using the Person class' method
 manager.setData("Michele", "Sales", "03-03-1975", 70000);
 staff1.setData ("Bob", "Sales", "02-02-1980", 50000);

 // Print the objects
 manager.printInfo();
 staff1.printInfo();

 return;
 }

Run

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 11:02 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 32 of 34https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/10/printP

1/30/16, 11:02 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 33 of 34https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/10/print

Participation
ActivityP 10.8.2: Employees and overriding a class method (solution).

Below is the solution to the problem of overriding the EmployeePerson class' printInfo() method in
the EmployeeManager and EmployeeStaff classes. Note that the Main and Person classes are
unchanged.

EmployeeMain.java EmployeePerson.java EmployeeManager.java EmployeeStaff.java

Reset

public class EmployeeMain {

 public static void main(String[] args) {

 // Create the objects
 EmployeeManager manager = new EmployeeManager(25);
 EmployeeStaff staff1 = new EmployeeStaff("Michele");

 // Load data into the objects using the Person class' method
 manager.setData("Michele", "Sales", "03-03-1975", 70000);
 staff1.setData ("Bob", "Sales", "02-02-1980", 50000);

 // Print the objects
 manager.printInfo();
 staff1.printInfo();
 }
}

Run

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 11:02 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 34 of 34https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/10/print

