
1/30/16, 11:01 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 1 of 30https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/9/print

Chapter 9 - Input / Output

Section 9.1 - OutputStream and System.out
Programs need a way to output data to a screen, file, or elsewhere. An OutputStream is a class that
supports output. OutputStream provides several overloaded methods for writing a sequence of bytes
to a destination. That sequence is normally placed into a buffer, and the system then outputs the
buffer at various times.

System.out is a predefined output stream object reference that is associated with a system's
standard output, usually a computer screen. The System class' out variable is a reference derived
from OutputStream called a PrintStream (e.g., PrintStream out; in the System class). The
PrintStream class extends the base functionality of the OutputStream class and provides the print()
and println() methods for converting different types of data into a sequence of characters. The
following animation illustrates.

The print() and println() methods are overloaded in order to support the various standard data types,
such as int, boolean, float, etc., each method converting that data type to a sequence of characters.
Basic use of these methods and System.out was discussed in an earlier section.

Participation
ActivityP 9.1.1: PrintStream supports output.

 3200

3201

3202

3203

PrintStream

Buffer

System.out
System.out.print(“Age");
System.out.print(ageYears);

Start

A g e 9

System writes buffer to screen

System.out.print() converts to characters,
puts in buffer for System.out

1/30/16, 11:01 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 2 of 30https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/9/print

The print() and println() methods also provide support for reference types. When a programmer
invokes either printing method with an argument of a reference type, the method prints a string
representation of the object. This string representation consists of the name of the object's class
followed by the "@" character and the hexadecimal value of the object's hash code. A hash code
typically represents the object's address in memory, although this is not guaranteed by the Java
specification.

Note that because the System class is predefined, a programmer is not required to import the System
class in order to use the output stream System.out.

Participation
ActivityP 9.1.2: ostream and System.out.

Question Your answer

1

Characters written to System.out are immediately written to a
system's standard output.

True

False

2

To use System.out, a program must include the statement
import java.io.PrintStream;.

True

False

3

Various standard data types are converted to a character
sequence by print() and println().

True

False

4

The output of print() and println() for a reference type includes
the object's class.

True

False

Exploring further:

1/30/16, 11:01 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 3 of 30https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/9/print

Section 9.2 - InputStream and System.in
Programs need a way to receive input data, from a keyboard, touchscreen, or elsewhere. An
InputStream is a class for achieving such input. InputStream provides several overloaded read()
methods that allow a programmer to extract bytes from a particular source.

System.in is a predefined input stream object reference that is associated with a system's standard
input, which is usually a keyboard. A programmer is not required to import the System class in order
to use System.in because the System class is a predefined class.

The System.in input stream automatically reads the standard input from a memory region, known as a
buffer, that the operating system fills with the input data. The following animation illustrates.

Oracle's OutputStream class specification
Oracle's PrintStream class specification
Oracle's System class specification

http://docs.oracle.com/javase/7/docs/api/java/io/OutputStream.html
http://docs.oracle.com/javase/7/docs/api/java/io/PrintStream.html
http://docs.oracle.com/javase/7/docs/api/java/lang/System.html

1/30/16, 11:01 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 4 of 30https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/9/print

Participation
ActivityP 9.2.1: InputStream supports byte input.

4000

4001

4002

4003

4004

4005

99

100

101

102

103

import java.io.IOException;

public class InputStreamReader {
 public static void main (String[] args)
 throws IOException {
 int usrInput = 0;

 // Read 1st byte
 usrInput = System.in.read();
 // Read 2nd byte
 usrInput = System.in.read();
 // Read 3rd byte
 usrInput = System.in.read();
 // Read 4th byte
 usrInput = System.in.read();
 // Read 5th byte
 usrInput = System.in.read();
 // Read 6th byte
 usrInput = System.in.read();

 return;
 }
}

istream

OS Buffer

System.inkeyboard '\n'
usrInput

Operating System
puts input

characters in
buffer

10

Start

1/30/16, 11:01 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 5 of 30https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/9/print

System.in is an input byte stream, and thus the read() method reads the first 8-bit ASCII value
available from the operating system's buffer. Each 8-bit value read from the input stream is returned as
an int (instead of byte) in order to allow the programmer to determine if data is no longer available,
which is indicated by a return value of -1.

When using an InputStream, a programmer must append the clause throws IOException to the
definition of main(), as seen in the above animation. A throws clause tells the Java virtual machine
that the corresponding method may exit unexpectedly due to an exception, which is an event that
disrupts a program's execution. In this case, the throws clause indicates that the program may
terminate due to an input/output exception (i.e., IOException). A program can throw an IOException
when it encounters certain errors as it is trying to read from an input stream. Exceptions and how to
handle them are discussed in more detail elsewhere. For now, it is sufficient to know that certain input
and output streams require the programmer to append a throws clause to the definition of main().

As seen from previous examples, a programmer often needs a way to extract strings or integers from
an input stream. Instead of directly reading bytes from System.in, a program typically uses the
Scanner class as a wrapper that augments System.in by automatically scanning a sequence of bytes
and converting those bytes to the desired data type. To initialize a Scanner object, a programmer can

Participation
ActivityP 9.2.2: Input streams and System.in.

Question Your answer

1

System.in is a predefined InputStream associated with the
system's standard input.

True

False

2

A program must import the InputStream class in order to use
System.in.

True

False

3

A read from System.in will read bytes from a buffer filled by
the operating system.

True

False

1/30/16, 11:01 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 6 of 30https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/9/print

pass an InputStream, such as System.in, as an argument to the constructor as in
Scanner scnr = new Scanner(System.in);. Basic use of the Scanner object is discussed in
earlier sections.

Section 9.3 - Output formatting

A programmer can adjust the way that output appears, a task known as output formatting. The
standard output stream System.out provides the methods printf() and format() for this task. Both
methods are equivalent, so this discussion will only refer to printf().

Like the print() and println() methods, printf() allows a programmer to print text along with variable

Participation
ActivityP 9.2.3: Byte stream and throws clause.

Question Your answer

1
How many bits of data are returned by
System.in.read()?

2
What value is returned by System.in.read() when
data is no longer available?

3
What clause needs to be appended to the definition
of main() when using an InputStream?

Exploring further:
Oracle's Java tutorials on I/O Streams
Oracle's InputStream class specification

http://docs.oracle.com/javase/tutorial/essential/io/streams.html
http://docs.oracle.com/javase/7/docs/api/java/io/InputStream.html

1/30/16, 11:01 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 7 of 30https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/9/print

values. printf(), however, affords the programmer more freedom in specifying the format of the output.

The first argument of the printf() method is referred to as the format string, which defines the format
of the text that will be printed along with any number of placeholders for printing numeric values.
These placeholders are known as format specifiers. Format specifiers define the type of values
being printed in place of the format specifier.

A format specifier begins with the % character followed by a sequence of characters that indicate the
type of value to be printed. For each format specifier within the format string, the value to be printed
must be provided in the printf() statement as arguments following the format strings. These arguments
are additional input to the printf() method, with each argument separated by a comma within the
parentheses. The following is an example of a printf() statement that prints a sentence including a
single decimal integer value.

The %d format specifier in the example above indicates that the printf() statement should output a
decimal integer value. Specifically, the % indicates we would like to output a value stored within a
variable, and the d indicates how we would like that value to be displayed as a decimal integer.
Following the format string (separated by a comma), the variable total indicates that the value stored
within this variable will be printed in place of the %d format specifier.

All format specifiers begin with %, thus % is a special character. To print a % character using printf(),
the sequence %% is used, as in:
printf("Annual percentage rate is %f %%.\n", rate);.

Multiple format specifiers can appear within the format string. The %f is used for printing floating-point
values, such as float and double. The value stored within the variable years will be printed as a
decimal integer in place of the %d format specifier, and the value stored within the variable total will be
displayed as a double.

In addition to numeric values, the format specifiers can also be used to print individual characters
(using the format specifier %c) and strings (using the format specifier %s). The following table provides
an overview of the format specifiers required for various data types.

Figure 9.3.1: Single decimal printf statement example.
System.out.printf(" You know %d people.\n", totalPpl);

Figure 9.3.2: Multiple format specifiers within a format string.
System.out.printf("Savings after %d years is: %f\n\n", years, total);

1/30/16, 11:01 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 8 of 30https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/9/print

The format specifiers within the format string of printf() can include format sub-specifiers. These
sub-specifiers define how a value stored within a variable will be printed in place of a format specifier.

The formatting sub-specifiers are included between the % and format specifier characters. For
example, printf("%.1f", myFloat); causes the floating-point variable, myFloat, to be output
with only 1 digit after the decimal point; if myFloat was 12.34, the output would be 12.3. Format
specifiers and sub-specifiers use the following form:

Floating point values

Formatting floating-point output is commonly done using the following sub-specifiers options. For the
following assume myFloat has a value of 12.34. Recall that %f is used for floating-point values and %e
is used to display floating-point values in scientific notation.

Table 9.3.1: Format specifiers for the printf() and format() methods.

Format specifier Data Type(s) Notes

%c char Prints a single Unicode character

%d int, long, short Prints a decimal integer value.

%o int, long, short Prints an octal integer value.

%h int, char, long, short Prints a hexadecimal integer value.

%f float, double Prints a floating-point value.

%e float, double Prints a floating-point value in scientific notation.

%s String Prints the characters in a String variable or literal.

%% Prints the '%' character.

%n Prints the platform-specific new-line character.

Construct 9.3.1: Format specifiers and sub-specifiers.
%(flags)(width)(.precision)specifier

1/30/16, 11:01 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 9 of 30https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/9/print

Table 9.3.2: Floating-point formatting.
Method calls to printf() apply to PrintStream objects like System.out.

Sub-
specifier Description Example

width

Specifies the minimum number
of characters to be printed. If
the formatted value has more
characters than the width, it will
not be truncated. If the
formatted value has fewer
characters than the width, the
output will be padded with
spaces (or 0's if the '0' flag is
specified).

printf("Value: %7.2f", myFloat);
Value: 12.34

.precision

Specifies the number of digits
to print following the decimal
point. If the precision is not
specified a default precision of 6
is used.

printf("%.4f", myFloat);
12.3400

printf("%3.4e", myFloat);
1.2340e+01

flags

-: Left justifies the output given
the specified width, padding the
output with spaces.
+: Print a preceding + sign for
positive values. Negative
numbers are always printed
with the - sign.
0: Pads the output with 0's
when the formatted value has
fewer characters than the width.
space: Prints a preceding space
for positive value.

printf("%+f", myFloat);
+12.340000
printf("%08.2f", myFloat);
00012.34

1/30/16, 11:01 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 10 of 30https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/9/print

Figure 9.3.3: Example output formatting for floating-point numbers.

import java.util.Scanner;

public class FlyDrive {
 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 double miles = 0.0; // User defined distance
 double hrsFly = 0.0; // Time to fly distance
 double hrsDrive = 0.0; // Time to drive distance

 // Prompt user for distance
 System.out.print("Enter a distance in miles: ");
 miles = scnr.nextDouble();
 // Calculate the correspond time to fly/drive distance

 hrsFly = miles / 500.0;
 hrsDrive = miles / 60.0;

 // Output resulting values
 System.out.printf("%.2f miles would take:\n", miles);
 System.out.printf("%.2f hours to fly\n", hrsFly);
 System.out.printf("%.2f hours to drive\n", hrsDrive);

 return;
 }
}

Enter a distance in miles: 10.3
10.30 miles would take:
0.02 hours to fly
0.17 hours to drive

1/30/16, 11:01 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 11 of 30https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/9/print

Integer values

Formatting of integer values can also be done using sub-specifiers. The behavior of sub-specifiers for
integer data behave differently than for floating-point values. For the following assume myInt is an int
value of 301.

Participation
ActivityP 9.3.1: Formatting floating point outputs using printf().

What is the output from the following print statements, assuming

float myFloat = 45.1342;

Question Your answer

1
printf("%09.3f", myFloat);

2
printf("%.3e", myFloat);

3
printf("%09.2f", myFloat);

1/30/16, 11:01 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 12 of 30https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/9/print

Table 9.3.3: Integer formatting.
Method calls to printf() apply to PrintStream objects like System.out.

Sub-
specifier Description Example

width

Specifies the minimum number of
characters to be printed. If the
formatted value has more characters
than the width, it will not be truncated.
If the formatted value has fewer
characters than the width, the output
will be padded with spaces (or 0's if
the '0' flag is specified).

printf("Value: %7d", myInt);
Value: 301

flags

-: Left justifies the output given the
specified width, padding the output
with spaces.
+: Print a preceding + sign for positive
values. Negative numbers are always
printed with the - sign.
0: Pads the output with 0's when the
formatted value has fewer characters
than the width.
space: Prints a preceding space for
positive value.

printf("%+d", myInt);
+301

printf("%08d", myInt);
00000301

printf("%+08d", myInt);
+0000301

Figure 9.3.4: Output formatting for integers.
public class CelestialBodyDist {
 public static void main(String[] args) {
 final long KM_EARTH_TO_SUN = 149598000; // Dist from Earth to sun
 final long KM_SATURN_TO_SUN = 1433449370; // Dist from Saturn to sun

 // Output distances with min number of characters
 System.out.printf("Earth is %12d", KM_EARTH_TO_SUN);
 System.out.printf(" kilometers from the sun.\n");
 System.out.printf("Saturn is %11d", KM_SATURN_TO_SUN);
 System.out.printf(" kilometers from the sun.\n");

 return;
 }
}

Earth is 149598000 kilometers from the sun.
Saturn is 1433449370 kilometers from the sun.

1/30/16, 11:01 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 13 of 30https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/9/print

Strings

Formatting of strings can also be done using sub-specifiers. For the following assume myString is the
string "Formatting".

Participation
ActivityP 9.3.2: Formatting integer outputs using printf().

What is the output from the following print statements, assuming

int myInt = -713;

Question Your answer

1
printf("%+04d", myInt);

2
printf("%05d", myInt);

3
printf("%+02d", myInt);

1/30/16, 11:01 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 14 of 30https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/9/print

Table 9.3.4: String formatting.
Method calls to printf() apply to PrintStream objects like System.out.

Sub-
specifier Description Example

width

Specifies the minimum
number of characters to be
printed. If the string has more
characters than the width, it
will not be truncated. If the
formatted value has fewer
characters than the width, the
output will be padded with
spaces.

printf("%20s String", myString);
 Formatting String

.precision

Specifies the maximum
number of characters to be
printed. If the string has more
characters than the precision,
it will be truncated.

printf("%.6s", myString);
Format

flags
-: Left justifies the output given
the specified width, padding
the output with spaces.

printf("%-20s String", myString);
Formatting String

Figure 9.3.5: Example output formatting for Strings.

public class DogAge {
 public static void main(String[] args) {

 System.out.printf("Dog age in human years (dogyears.com)\n\n");
 System.out.printf("-------------------------\n");

 // set num char for each column, left justified
 System.out.printf("%-10s | %-12s\n", "Dog age", "Human age");
 System.out.printf("-------------------------\n");

 // set num char for each column, first col left justified
 System.out.printf("%-10s | %12s\n", "2 months", "14 months");
 System.out.printf("%-10s | %12s\n", "6 months", "5 years");
 System.out.printf("%-10s | %12s\n", "8 months", "9 years");
 System.out.printf("%-10s | %12s\n", "1 year", "15 years");
 System.out.printf("-------------------------\n");

 return;
 }
}

Dog age in human years (dogyears.com)

Dog age | Human age

2 months | 14 months
6 months | 5 years
8 months | 9 years
1 year | 15 years

1/30/16, 11:01 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 15 of 30https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/9/print

Flushing output

Printing characters from the buffer to the output device (e.g., screen) requires a time-consuming
reservation of processor resources; once those resources are reserved, moving characters is fast,
whether there is 1 character or 50 characters to print. As such, the system may wait until the buffer is
full, or at least has a certain number of characters before moving them to the output device. Or, with
fewer characters in the buffer, the system may wait until the resources are not busy. However,
sometimes a programmer does not want the system to wait. For example, in a very processor-
intensive program, such waiting could cause delayed and/or jittery output. The programmer can use a
PrintStream's (e.g., System.out) method flush(). The flush() method will immediately flush the contents
of the buffer for the specified OutputStream. For example, the statement System.out.flush() will write
the contents of the buffer for System.out to the computer screen.

Participation
ActivityP 9.3.3: Formatting string outputs using printf().

What is the output from the following print statements, assuming

String myString = "Testing";
Make sure all of your responses are in qutoes, e.g. "Test".

Question Your answer

1
printf("%4s", myString);

2
printf("%8s", myString);

3
printf("%.4s", myString);

4
printf("%.10s", myString);

Exploring further:
More formatting options exist. See Oracle's Java Formatter class specification.

http://docs.oracle.com/javase/7/docs/api/java/util/Formatter.html

1/30/16, 11:01 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 16 of 30https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/9/print

Section 9.4 - Streams using Strings
Sometimes a programmer wishes to read input data from a string rather than from the keyboard
(standard input). A programmer can associate a Scanner object with a String rather than with the
keyboard (standard input). Such an object can be used just like a Scanner object associated with the
System.in stream. A Scanner object initialized from a String is often referred to as an input string
stream. The following program illustrates.

Challenge
ActivityC 9.3.1: Output formatting: Printing a maximum number of decimals.

Write a single statement that prints outsideTemperature with 2 decimals. End with newline. Sample output:

103.46

Run

public class OutsideTemperatureFormatting {
 public static void main (String [] args) {
 double outsideTemperature = 103.46432;

 /* Your solution goes here */

 return;
 }
}

1
2
3
4
5
6
7
8
9

1/30/16, 11:01 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 17 of 30https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/9/print

The program uses import java.util.Scanner; for access to the Scanner class. The statement
Scanner inSS = new Scanner(userInfo); creates a Scanner object in which the associated
input stream is initialized with a copy of myString. Then, the program can extract data from the
scanner inSS using the family of next() methods (e.g., next(), nextInt(), nextDouble(), etc.).

A common use of string streams is to process user input line-by-line. The following program reads in
the line as a String, and then extracts individual data items from that String.

Figure 9.4.1: Reading from a String using a Scanner object.

import java.util.Scanner;

public class StringInputStream {
 public static void main(String[] args) {
 Scanner inSS = null; // Input string stream
 String userInfo = "Amy Smith 19"; // Input string
 String firstName = ""; // First name
 String lastName = ""; // Last name
 int userAge = 0; // Age

 // Init scanner object with string
 inSS = new Scanner(userInfo);

 // Parse name and age values from string
 firstName = inSS.next();
 lastName = inSS.next();
 userAge = inSS.nextInt();

 // Output parsed values
 System.out.println("First name: " + firstName);
 System.out.println("Last name: " + lastName);
 System.out.println("Age: " + userAge);

 return;
 }
}

First name: Amy
Last name: Smith
Age: 19

Figure 9.4.2: Using a string stream to process a line of input text.
import java.util.Scanner;

public class ProcessInputText {
 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in); // Input stream for standard input
 Scanner inSS = null; // Input string stream
 String lineString = ""; // Holds line of text
 String firstName = ""; // First name
 String lastName = ""; // Last name
 int userAge = 0; // Age
 boolean inputDone = false; // Flag to indicate next iteration

 // Prompt user for input
 System.out.println("Enter \"firstname lastname age\" on each line");

1/30/16, 11:01 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 18 of 30https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/9/print

The program uses scnr.nextLine() to read an input line from the standard input and copy the line
into a String. The statement inSS = new Scanner(lineString); uses the Scanner's
constructor to initialize the stream's buffer to the String lineString. Afterwards, the program extracts
input from that stream using the next() methods.

 System.out.println("Enter \"firstname lastname age\" on each line");
 System.out.println("(\"Exit\" as firstname exits).\n");

 // Grab data as long as "Exit" is not entered
 while (!inputDone) {

 // Entire line into lineString
 lineString = scnr.nextLine();

 // Create new input string stream
 inSS = new Scanner(lineString);

 // Now process the line
 firstName = inSS.next();

 // Output parsed values
 if (firstName.equals("Exit")) {
 System.out.println(" Exiting.");

 inputDone = true;
 }
 else {
 lastName = inSS.next();
 userAge = inSS.nextInt();

 System.out.println(" First name: " + firstName);
 System.out.println(" Last name: " + lastName);
 System.out.println(" Age: " + userAge);
 System.out.println();
 }
 }

 return;
 }
}

Enter "firstname lastname age" on each line
("Exit" as firstname exits).

Mary Jones 22
 First name: Mary
 Last name: Jones
 Age: 22

Mike Smith 24
 First name: Mike
 Last name: Smith
 Age: 24

Exit
 Exiting.

1/30/16, 11:01 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 19 of 30https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/9/print

Similarly, a new output string stream can be created that is associated with a string rather than with
the screen (standard output). An output string stream is created using both the StringWriter and
PrintWriter classes, which are available by including: import java.io.StringWriter; and
import java.io.PrintWriter;

The StringWriter class provides a character stream that allows a programmer to output characters.
The PrintWriter class is a wrapper class that augments character streams, such as StringWriter, with
print() and println() methods that allow a programmer to output various data types (e.g., int, double,
String, etc.) to the underlying character stream in a manner similar to System.out.

To create a PrintWriter object, the program must first create a StringWriter, passing the StringWriter
object to the constructor for the PrintWriter. Once the PrintWrite object is created, a program can
insert characters into that stream using print() and println(). The program can then use the
StringWriter's toString() method to copy that buffer to a String.

Notice that the PrintWriter object provides the print() and println() methods for writing to the stream,
and the StringWriter object provides the toString() method for getting the resulting String. The following
example illustrates the use of StringWriter and PrintWriter classes.

Figure 9.4.3: Creating a String using a streams.
import java.util.Scanner;
import java.io.PrintWriter;
import java.io.StringWriter;

public class StringOutputStream {
 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);

 // Basic character stream for fullname
 StringWriter fullnameCharStream = new StringWriter();
 // Augments character stream (fullname) with print()
 PrintWriter fullnameOSS = new PrintWriter(fullnameCharStream);
 // Basic character stream for age
 StringWriter ageCharStream = new StringWriter();
 // Augments character stream (age) with print()
 PrintWriter ageOSS = new PrintWriter(ageCharStream);

 String firstName = ""; // First name
 String lastName = ""; // Last name
 String fullName = ""; // Full name (first and last)
 String ageStr = ""; // Age (string)
 int userAge = 0; // Age

 // Promput user for input
 System.out.print("Enter \"firstname lastname age\": \n ");
 firstName = scnr.next();
 lastName = scnr.next();
 userAge = scnr.nextInt();

 // Writes formatted string to buffer, copies from underlying char buffer
 fullnameOSS.print(lastName + ", " + firstName);
 fullName = fullnameCharStream.toString();

1/30/16, 11:01 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 20 of 30https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/9/print

 // Output parsed input
 System.out.println("\n Full name: " + fullName);

 // Writes int age as characters to buffer
 ageOSS.print(userAge);

 // Appends (minor) to object if less than 21, then
 // copies buffer into string
 if (userAge < 21) {
 ageOSS.print(" (minor)");
 }

 ageStr = ageCharStream.toString();

 // Output string
 System.out.println(" Age: " + ageStr);

 return;
 }
}

Enter "firstname lastname age":
 Mary Jones 22

 Full name: Jones, Mary
 Age: 22

...

Enter "firstname lastname age":
 Sally Smith 14

 Full name: Smith, Sally
 Age: 14 (minor)

1/30/16, 11:01 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 21 of 30https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/9/print

Participation
ActivityP 9.4.1: Input/output string streams.

Question Your answer

1
Define and initialize a Scanner variable named inSS that creates
an input string stream using the String variable myStrLine.

2

Define and initialize a PrintWriter variable named outSS that
creates an output string stream using the underlying stream given
by
StringWriter simpleStream = new StringWriter();.

3

Write a statement that copies the contents of an output string
stream to a String variable called myStr. Assume the StringWriter
and PrintWriter variables are called simpleStream and outSS
respectively.

1/30/16, 11:01 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 22 of 30https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/9/print

Challenge
ActivityC 9.4.1: Reading from a string.

Write code that uses the input string stream inSS to read input data from string userInput, and updates variables userMonth, userDate,
and userYear. Sample output if userinput is "Jan 12 1992":

Month: Jan
Date: 12
Year: 1992

Run

public class StringInputStream {
 public static void main (String [] args) {
 Scanner inSS = null;
 String userInput = "Jan 12 1992";
 inSS = new Scanner(userInput);

 String userMonth = "";
 int userDate = 0;
 int userYear = 0;

 /* Your solution goes here */

 System.out.println("Month: " + userMonth);
 System.out.println("Date: " + userDate);
 System.out.println("Year: " + userYear);

 return;
 }
}

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

1/30/16, 11:01 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 23 of 30https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/9/print

Section 9.5 - File input/output
Sometimes a program should get input from a file rather than from a user typing on a keyboard. To
achieve this, a programmer can create a new input stream that comes from a file, rather than the
predefined input stream System.in that comes from the standard input (keyboard). That new input
stream can then be used just like the familiar Scanner and System.in combination, as the following
program illustrates. Assume a text file exists named myfile.txt with the contents shown (created for
example using Notepad on a Windows computer or using TextEdit on a Mac computer).

Challenge
ActivityC 9.4.2: Output using string stream.

Write code that inserts userItems into the output string stream itemsOSS until the user enters "Exit". Each item should be followed by a
space. Sample output if user input is "red purple yellow Exit":

red purple yellow

Run

 StringWriter itemCharStream = new StringWriter();
 PrintWriter itemsOSS = new PrintWriter(itemCharStream);

 System.out.println("Enter items (type Exit to quit):");
 userItem = scnr.next();

 while (!userItem.equals("Exit")) {

 /* Your solution goes here */

 userItem = scnr.next();
 }

 userItem = itemCharStream.toString();
 System.out.println(userItem);

 return;
 }
}

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

1/30/16, 11:01 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 24 of 30https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/9/print

Six lines are needed for the new file input stream, highlighted above.

The import statements import java.io.FileInputStream; and
import java.io.IOException; enable the use of the FileInputStream and
IOException classes respectively. The FileInputStream class, which is derived from
InputStream, allows a programmer to read bytes from a file, and the IOException
class provides mechanisms for exception throwing and handling, which are discussed

Figure 9.5.1: Input from a file.

import java.util.Scanner;
import java.io.FileInputStream;
import java.io.IOException;

public class FileReadNums {
 public static void main (String[] args) throws IOException {
 FileInputStream fileByteStream = null; // File input stream
 Scanner inFS = null; // Scanner object
 int fileNum1 = 0; // Data value from file
 int fileNum2 = 0; // Data value from file

 // Try to open file
 System.out.println("Opening file myfile.txt.");
 fileByteStream = new FileInputStream("myfile.txt");
 inFS = new Scanner(fileByteStream);

 // File is open and valid if we got this far (otherwise exception thrown)
 // myfile.txt should contain two integers, else problems
 System.out.println("Reading two integers.");
 fileNum1 = inFS.nextInt();
 fileNum2 = inFS.nextInt();

 // Output values read from file
 System.out.println("num1: " + fileNum1);
 System.out.println("num2: " + fileNum2);
 System.out.println("num1+num2: " + (fileNum1 + fileNum2));

 // Done with file, so try to close it
 System.out.println("Closing file myfile.txt.");
 fileByteStream.close(); // close() may throw IOException if fails

 return;
 }
}

myfile.txt with variable number of integers:
5
10

Opening file myfile.txt.
Reading two integers.
num1: 5
num2: 10
num1+num2: 15
Closing file myfile.txt.

1/30/16, 11:01 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 25 of 30https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/9/print

in more detail elsewhere.

The statement fileByteStream = new FileInputStream("myfile.txt");
creates a file input stream and opens the file denoted by the String literal for reading.
Note that FileInputStream's constructor allows a programmer to specify a file using a
String variable as well (e.g.,
fileByteStream = new FileInputStream(fileStr);).

The FileInputStream class only supports a basic byte stream, and thus the statement
inFS = new Scanner(fileByteStream); creates a new Scanner object using
the fileByteStream object.

Because of the high likelihood that the file fails to open, usually because the file does
not exist or is in use by another program, the main() method definition contains a
throws clause specifying that an exception of type IOException may be thrown within
the method causing the program to terminate.

If the statement
fileByteStream = new FileInputStream("myfile.txt"); does not throw
an exception, the successfully opened input stream and scanner object can then be
used to read from the file using the scanner's next() methods, e.g., using
num1 = inFS.nextInt(); to read an integer into num1.

When done using the stream, the program closes the file (and input stream) using
fileByteStream.close().

A common error is a mismatch between the variable data type and the file data, e.g., if the data type
is int but the file data is "Hello".

The following provides another example wherein the program reads items into an array. For this
program, myfile.txt's first entry must be the number of numbers to read, followed by those numbers,
e.g., 5 10 20 40 80 1.

Try 9.5.1: Good and bad file data.
File input, with good and bad data: Create myfile.txt with contents 5 and 10, and run the
above program. Then, change "10" to "Hello" and run again, observing the program
terminate due to a runtime exception.

Figure 9.5.2: Program that reads data from myfile.txt into an array.

import java.util.Scanner;
import java.io.FileInputStream;

1/30/16, 11:01 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 26 of 30https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/9/print

A program can read varying amounts of data in a file by using a loop that reads until valid data is

import java.io.FileInputStream;
import java.io.IOException;

public class FileReadNumsIntoArray {
 public static void main(String[] args) throws IOException {
 FileInputStream fileByteStream = null; // File input stream
 Scanner inFS = null; // Scanner object
 int[] userNums; // User numbers; memory allocated later
 int numElem = 0; // User-specified number of numbers
 int i = 0; // Loop index

 // Try to open file
 fileByteStream = new FileInputStream("myfile.txt");
 inFS = new Scanner(fileByteStream);

 // File is open and valid if we got this far (otherwise exception thrown)
 // Can use inFS stream via the Scanner object
 numElem = inFS.nextInt(); // Get number of numbers (first item)
 userNums = new int[numElem]; // Allocate enough memory for nums

 // Get numElem numbers. If too few, may encounter problems
 i = 1;
 while (i <= numElem) {
 userNums[i - 1] = inFS.nextInt();
 i = i + 1;
 }

 // Done with file, so try to close it
 fileByteStream.close(); // close() may throw IOException if fails

 // Print numbers
 System.out.print("Numbers: ");

 i = 0;
 while (i < numElem) {
 System.out.print(userNums[i] + " ");

 ++i;
 }

 System.out.println("");

 return;
 }
}

myfile.txt file contents:
5
10
20
40
80
1

Numbers: 10 20 40 80 1

1/30/16, 11:01 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 27 of 30https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/9/print

unavailable or the end of the file has been reached, as follows. The hasNextInt() method returns true
if an integer is available for reading. If the next item in the file is not an integer or if the previous stream
operation reached the end of the file, the method returns false. The Scanner class offers multiple
hasNext() methods for various data types such as int, double, String, etc..

Similarly, a program may write output to a file rather than to the standard output, as shown below. The

Figure 9.5.3: Reading a varying amount of data from a file.

import java.util.Scanner;
import java.io.FileInputStream;
import java.io.IOException;

public class FileReadVaryingAmount {
 public static void main(String[] args) throws IOException {
 FileInputStream fileByteStream = null; // File input stream
 Scanner inFS = null; // Scanner object
 int fileNum = 0; // Data value from file

 // Try to open file
 System.out.println("Opening file myfile.txt.");
 fileByteStream = new FileInputStream("myfile.txt");
 inFS = new Scanner(fileByteStream);

 // File is open and valid if we got this far (otherwise exception thrown)
 System.out.println("Reading and printing numbers.");
 fileNum = inFS.nextInt();

 while (inFS.hasNextInt()) {
 System.out.println("num: " + fileNum);

 fileNum = inFS.nextInt();
 }
 System.out.println("num: " + fileNum);

 // Done with file, so try to close it
 System.out.println("Closing file myfile.txt.");
 fileByteStream.close(); // close() may throw IOException if fails

 return;
 }
}

myfile.txt with variable number of integers:
111
222
333
444
555

Opening file myfile.txt.
Reading and printing numbers.
num: 5
num: 10
num: 20
num: 40
num: 80
Closing file myfile.txt.

1/30/16, 11:01 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 28 of 30https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/9/print

program creates an object of type FileOutputStream, which is a kind of (i.e., is derived from)
OutputStream. Because an OutputStream only supports a basic byte output stream, a PrintWriter
object is created that enables a programmer to use the print() and println() methods in order to write
various data types to the file (in manner similar to using print() and println() methods for System.out).

Figure 9.5.4: Sample code for writing to a file.

import java.io.PrintWriter;
import java.io.FileOutputStream;
import java.io.IOException;

public class FileWriteSample {
 public static void main(String[] args) throws IOException {
 FileOutputStream fileByteStream = null; // File output stream
 PrintWriter outFS = null; // Output stream

 // Try to open file
 fileByteStream = new FileOutputStream("myoutfile.txt");
 outFS = new PrintWriter(fileByteStream);

 // File is open and valid if we got this far (otherwise exception thrown)
 // Can now write to file
 outFS.println("Hello");
 outFS.println("1 2 3");
 outFS.flush();

 // Done with file, so try to close it
 fileByteStream.close(); // close() may throw IOException if fails

 return;
 }
}

myoutfile.txt with variable number of integers:
Hello
1 2 3

Participation
ActivityP 9.5.1: File input/output.

Question Your answer

What is the error in the following code?
FileInputStream fbStream;
Scanner inFS;
int[] num;
int numElem = 0;

The file stream is not big enough.

The file stream has not been properly opened.

1/30/16, 11:01 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 29 of 30https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/9/print

1
int numElem = 0;
int i = 0;
inFS = new Scanner(fbStream);
numElem = inFS.nextInt();
num = new int[numElem];

The file stream has not been properly opened.

The nextInt() method cannot be used here.

The code is fine.

2

Which statement opens a file outfile.txt
given
FileOutputStream obFS = null;

obFS.FileOutputStream("outfile.txt");

obFS(outfile.txt);

Declare a FileInputStream not a FileOutputStream.

obFS = new FileOutputStream("outfile.txt");

obFS("outfile.txt");

3

Given the following code, which
correctly initializes outFS to enable a
programmer to write to outfile.txt using
PrintWriter's print() methods.
FileOutputStream obFS =
 new
FileOutputStream("outfile.txt");
PrintWriter outFS = null;

outFS(obFS);

outFS = new PrintWriter(obFS);

obFS = new PrintWriter(obFS);

outFS = PrintWriter(obFS);

outFS = FileOutputStream(obFS);

4

Given the following code, which
correctly writes "apples" to file
outfile.txt?
FileOutputStream obFS =
 new
FileOutputStream("outfile.txt");
PrintWriter outFS =
 new PrintWriter(obFS);

outfile.print("apples");

obFS.print("apples");

outFS.print("apples");

PrintWriter.print(apples);

1/30/16, 11:01 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 30 of 30https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/9/print

FileOutputStream.print("apples");

Exploring further:
Oracle's Java FileOutputStream class specification
Oracle's Java PrintWriter class specification

http://docs.oracle.com/javase/7/docs/api/java/io/FileOutputStream.html
http://docs.oracle.com/javase/7/docs/api/java/io/PrintWriter.html

