
1/30/16, 11:01 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 1 of 22https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/8/print

Chapter 8 - Memory Management

Section 8.1 - Introduction to memory management
An ArrayList stores a list of items in contiguous memory locations, which enables immediate access to
any element at index i of ArrayList v by using the get() and set() methods -- the program just adds i to
the starting address of the first element in v to arrive at the element. The methods add(objRef) and
add(i, objRef) append and insert items into an ArrayList, respectively. Now recall that inserting
an item at locations other than the end of the ArrayList requires making room by shifting higher-
indexed items. Similarly, removing (via the remove(i) method) an item requires shifting higher-
indexed items to fill the gap. Each shift of an item from one element to another element requires a few
processor instructions. This issue exposes the ArrayList add/remove performance problem.

For ArrayLists with thousands of elements, a single call to add() or remove() can require thousands of
instructions, so if a program does many insert or remove operations on large ArrayLists, the program
may run very slowly. The following animation illustrates shifting during an insertion operation.

1/30/16, 11:01 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 2 of 22https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/8/print

The shifting of elements done by add() and remove() requires several processor instructions per
element. Doing many insertions/removes on large ArrayLists can take a significantly long time.

The following program can be used to demonstrate the issue. The user inputs an ArrayList size, and a
number of elements to insert. The program then carries out several tasks. The program creates an
ArrayList of size numElem, writes an arbitrary value to all elements, performs numOps appends,
numOps inserts, and numOps removes. The video shows the program running for different sizes and
numOps values; notice that for large values of numElem and numOps, the creation, writes, and
appends all run quickly, but the inserts and removes take a noticeably long time. The video uses C++,
but the main points apply equally to Java.

Participation
ActivityP 8.1.1: ArrayList add() performance problem.

Figure 8.1.1: Program illustrating how slow ArrayList add() and remove()
operations can be.

import java.util.ArrayList;
import java.util.Scanner;

...

vals.add(2, new Integer(29))
...

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

14
22

92
90
88
83
75
72
66
44
32
31
29

92
90
88
83
75
72
66
44
32
31

Start

vals.get(0)
vals.get(1)

v

vals.get(11)
vals.get(10)
vals.get(9)
vals.get(8)
vals.get(7)
vals.get(6)
vals.get(5)
vals.get(4)
vals.get(3)
vals.get(2)

vals.get(12)

1/30/16, 11:01 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 3 of 22https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/8/print

import java.util.Scanner;

public class ArrayListAddRemove {
 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 ArrayList<Integer> myInts = new ArrayList<Integer>(); // Dummy array list to demo ops
 int numElem = 0; // User defined array size
 int numOps = 0; // User defined number of inserts
 int i = 0; // Loop index

 System.out.print("\nEnter initial ArrayList size: ");
 numElem = scnr.nextInt();

 System.out.print("Enter number of ArrayList adds: ");
 numOps = scnr.nextInt();

 System.out.print(" Adding elements to ArrayList...");

 myInts.clear();
 for (i = 0; i < numElem; ++i) {
 myInts.add(new Integer(0));
 }

 System.out.println("done.");
 System.out.print(" Writing to each element...");

 for (i = 0; i < numElem; ++i) {
 myInts.set(i, new Integer(777)); // Any value
 }

 System.out.println("done.");
 System.out.print(" Doing " + numOps + " additions at the end...");

 for (i = 0; i < numOps; ++i) {
 myInts.add(new Integer(888)); // Any value
 }

 System.out.println("done.");
 System.out.print(" Doing " + numOps + " additions at index 0...");

 for (i = 0; i < numOps; ++i) {
 myInts.add(0, new Integer(444));
 }
 System.out.println("done.");
 System.out.print(" Doing " + numOps + " removes...");

 for (i = 0; i < numOps; ++i) {
 myInts.remove(0);
 }

 System.out.println("done.");
 }
}

Enter initial ArrayList size: 100000
Enter number of ArrayList adds: 40000
 Adding elements to ArrayList...done. (fast)
 Writing to each element...done. (fast)
 Doing 40000 additions at the end...done. (fast)
 Doing 40000 additions at index 0...done. (SLOW)
 Doing 40000 removes...done. (SLOW)

1/30/16, 11:01 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 4 of 22https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/8/print

The appends are fast because they do not involve any shifting of elements, whereas each insert
requires 500,000 elements to be shifted -- one at a time. 7,500 inserts thus requires 3,750,000,000
(over 3 billion) shifts.

One way to make inserts or removes faster is to use a different approach for storing a list of items. The
approach does not use contiguous memory locations. Instead, each item contains a "pointer" to the
next item's location in memory, as well as, the data being stored. Thus, inserting a new item B
between existing items A and C just requires changing A to refer to B's memory location, and B to
refer to C's location, as shown in the following animation.

Video 8.1.1: ArrayList inserts.

Programming example: Vector inserts

|V | V

https://www.youtube.com/watch?v=dP5ra6vovSM

1/30/16, 11:01 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 5 of 22https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/8/print

The animation begins with a list having some number of items, with the first two items being A and C.
The first item has data A and a next reference storing the address 88, which refers to the next item's
location in memory. That second item has data C, and a next reference storing address 113, which
refers to the next item (not shown). The animation shows a new item being created at memory
location 90, having data B. To keep the list in sorted order, item B should go between A and C in the
list. So item A's next reference is changed to point to B's location of 90, and B's next reference is set
to address 88.

A linked list is a list wherein each item contains not just data but also a reference -- a link -- to the
next item in the list. Comparing ArrayLists and linked lists:

ArrayList: Stores items in contiguous memory locations. Supports quick access to i'th
element via the set() and get() methods, but may be slow for inserts or removes on
large ArrayLists due to necessary shifting of elements.

Linked list: Stores each item anywhere in memory, with each item referring to the next

Participation
ActivityP 8.1.2: A list avoids the shifting problem.

 85

 86

 87

 88

 89

 90

 91

 92

|V

A C ...| Vlist

next
data item

next
data item

A

C
113

||||||V

B

B
next
data item

| V

||
||
||
V

88

9088

New list is (A, B, C, ...) -- no shifting of items after C

Add new item B at location 90.
Change item A to point to 90.
Set item B to point to 88.

Start

1/30/16, 11:01 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 6 of 22https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/8/print

item in the list. Supports fast inserts or removes, but access to i'th element may be
slow as the list must be traversed from the first item to the i'th item. Also uses more
memory due to storing a link for each item.

Section 8.2 - A first linked list
A common use of objects and references is to create a list of items such that an item can be efficiently
inserted somewhere in the middle of the list, without the shifting of later items as required for an
ArrayList. The following program illustrates how such a list can be created. A class is defined to
represent each list item, known as a list node. A node is comprised of the data to be stored in each
list item, in this case just one int, and a reference to the next node in the list. A special node named
head is created to represent the front of the list, after which regular items can be inserted.

Participation
ActivityP 8.1.3: ArrayList performance.

Question Your answer

1
Appending a new item to the end of a 1000 element
ArrayList requires how many elements to be shifted?

2

Inserting a new item at the beginning of a 1000
element ArrayList requires how many elements to be
shifted?

Figure 8.2.1: A basic example to introduce linked lists.
IntNode.java

public class IntNode {
 private int dataVal; // Node data
 private IntNode nextNodePtr; // Reference to the next node

 public IntNode() {
 dataVal = 0;
 nextNodePtr = null;
 }

1/30/16, 11:01 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 7 of 22https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/8/print

 }

 // Constructor
 public IntNode(int dataInit) {
 this.dataVal = dataInit;
 this.nextNodePtr = null;
 }

 // Constructor
 public IntNode(int dataInit, IntNode nextLoc) {
 this.dataVal = dataInit;
 this.nextNodePtr = nextLoc;
 }

 /* Insert node after this node.
 Before: this -- next
 After: this -- node -- next
 */
 public void insertAfter(IntNode nodeLoc) {
 IntNode tmpNext;

 tmpNext = this.nextNodePtr;
 this.nextNodePtr = nodeLoc;
 nodeLoc.nextNodePtr = tmpNext;
 return;
 }

 // Get location pointed by nextNodePtr
 public IntNode getNext() {
 return this.nextNodePtr;
 }

 public void printNodeData() {
 System.out.println(this.dataVal);
 return;
 }
}

CustomLinkedList.java

public class CustomLinkedList {
 public static void main (String[] args) {
 IntNode headObj; // Create intNode objects
 IntNode nodeObj1;
 IntNode nodeObj2;
 IntNode nodeObj3;
 IntNode currObj;

 // Front of nodes list
 headObj = new IntNode(-1);

 // Insert more nodes
 nodeObj1 = new IntNode(555);
 headObj.insertAfter(nodeObj1);

 nodeObj2 = new IntNode(999);
 nodeObj1.insertAfter(nodeObj2);

 nodeObj3 = new IntNode(777);
 nodeObj1.insertAfter(nodeObj3);

 // Print linked list
 currObj = headObj;

-1
555
777
999

1/30/16, 11:01 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 8 of 22https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/8/print

The most interesting part of the above program is the insertAfter() method, which inserts a new node
after a given node already in the list. The above animation illustrates the list construction process.

The value null indicates that a reference variable does not refer to any object. Notice that the program
in the animation above first initializes all reference variables to a value of null. This initialization allows
the programmer to traverse the list and detect when the last node is reached. Because the last node
in the list does not have a next node, the next field of the last node is equal to null.

 currObj = headObj;
 while (currObj != null) {
 currObj.printNodeData();
 currObj = currObj.getNext();
 }

 return;
 }
}

Participation
ActivityP 8.2.1: Inserting nodes into a basic linked list.

80

82

75

76

77

78

79

Memory
address

headObj

80

81

82

83

84

nodeObj1
nodeObj2
nodeObj3

85

86

87

-1
|V

headObj

Visualized
 list

82
80

86

-1

nodeObj1.insertAfter(nodeObj3);

555
|V

nodeObj1

84

tmpNext

dataVal
nextNodePtr

0

84

999
|V

null

nodeObj2
0

777
|VnodeObj3

tmpNext = this.nextNodePtr;
this.nextNodePtr = nodeLoc;
nodeLoc.nextNodePtr = tmpNext
;

82

80

82

Start

headObj
(IntNode Object)

nodeObj2
(IntNode Object)

555 dataVal
nextNodePtr

nodeObj2
(IntNode Object)

999 dataVal
nextNodePtr

nodeObj3
(IntNode Object)

777 dataVal
nextNodePtr

1/30/16, 11:01 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 9 of 22https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/8/print

Importantly, reference variables are not assigned to null by default. Instead, uninitialized reference
variables have an unknown default value, which means that a programmer cannot determine if a
reference variable points to a valid object or not. Explicitly initializing reference variables to null can
help a programmer determine if a particular reference variable refers to a valid object before
attempting to access the object's fields and methods. Attempting to access an object's fields or
methods via an uninitialized or null reference is a very common error that results in either a compilation
error or a runtime exception. The former occurs for errors detectable by the compiler (e.g., when a
programmer uses an invalid reference within the method it was defined). The latter, also known as a
null pointer exception, occurs for more complex errors undetectable by the compiler.

Participation
ActivityP 8.2.2: A first linked list.

Some questions refer to the above linked list code and animation.

Question Your answer

1

A linked list has what key advantage over a sequential
storage approach like an array or ArrayList?

An item can be
inserted somewhere in
the middle of the list
without having to shift
all subsequent items.

Uses less memory
overall.

Can store items other
than int variables.

2

What is the purpose of a list's head node? Stores the first item in
the list.

Provides a reference
to the first item's node
in the list, if such an
item exists.

Stores all the data of
the list.

3

After the above list is done having items inserted, at what
memory address is the last list item's node located?

80

82

1/30/16, 11:01 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 10 of 22https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/8/print

In contrast to the above program that defines one reference variable for each item allocated by the
new operator, a program commonly defines just one or a few variables to manage a large number of
items allocated using the new operator. The following example replaces the above main() method,
showing how just two reference variables, currObj and lastObj, can manage 20 allocated items in the
list.

3
84

86

4

After the above list has items inserted as above, if a fourth
item was inserted at the front of the list, what would happen
to the location of node1?

Changes from 84 to
86.

Changes from 84 to
82.

Stays at 84.

Figure 8.2.2: Managing many new items using just a few reference variables.
IntNode.java

public class IntNode {
 private int dataVal; // Node data
 private IntNode nextNodePtr; // Reference to the next node

 public IntNode() {
 dataVal = 0;
 nextNodePtr = null;
 }

 // Constructor
 public IntNode(int dataInit) {
 this.dataVal = dataInit;
 this.nextNodePtr = null;
 }

 // Constructor
 public IntNode(int dataInit, IntNode nextLoc) {
 this.dataVal = dataInit;
 this.nextNodePtr = nextLoc;
 }

 /* Insert node after this node.
 Before: this -- next
 After: this -- node -- next

1/30/16, 11:01 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 11 of 22https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/8/print

 After: this -- node -- next
 */
 public void insertAfter(IntNode nodeLoc) {
 IntNode tmpNext;

 tmpNext = this.nextNodePtr;
 this.nextNodePtr = nodeLoc;
 nodeLoc.nextNodePtr = tmpNext;
 return;
 }

 // Get location pointed by nextNodePtr
 public IntNode getNext() {
 return this.nextNodePtr;
 }

 public void printNodeData() {
 System.out.println(this.dataVal);
 return;
 }
}

CustomLinkedList.java

public class CustomLinkedList {
 public static void main (String[] args) {
 IntNode headObj; // Create IntNode objects
 IntNode currObj;
 IntNode lastObj;
 int i = 0; // Loop index

 headObj = new IntNode(-1); // Front of nodes list
 lastObj = headObj;

 for (i = 0; i < 20; ++i) { // Append 20 rand nums
 int rand = (int)(Math.random() * 100000); // random int (0-100000)
 currObj = new IntNode(rand);

 lastObj.insertAfter(currObj); // Append curr
 lastObj = currObj;
 }

 currObj = headObj; // Print the list
 while (currObj != null) {
 currObj.printNodeData();
 currObj = currObj.getNext();
 }

 return;
 }
}

-1
40271
6951
29273
86846
64952
65650
98162
51229
30690
61008

1/30/16, 11:01 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 12 of 22https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/8/print

Normally, a linked list would be maintained by member methods of another class, such as IntList.
Private fields of that class might include the list head (a list node allocated by the list class
constructor), the list size, and the list tail (the last node in the list). Public member methods might
include insertAfter (insert a new node after the given node), pushBack (insert a new node after the last
node), pushFront (insert a new node at the front of the list, just after the head), deleteNode (deletes the

61008
17489
87486
24318
44035
32368
10906
75441
88659
65688
18443

Participation
ActivityP 8.2.3: Managing a linked list.

Finish the program so that it finds and prints the smallest value in the linked list.

IntNode.java CustomLinkedList.java

public class IntNode {
 private int dataVal; // Node data
 private IntNode nextNodePtr; // Reference to the next node

 public IntNode() {
 dataVal = 0;
 nextNodePtr = null;
 }

 // Constructor
 public IntNode(int dataInit) {
 this.dataVal = dataInit;
 this.nextNodePtr = null;
 }

 // Constructor
 public IntNode(int dataInit, IntNode nextLoc) {
 this.dataVal = dataInit;

Run
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 11:01 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 13 of 22https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/8/print

node from the list), etc.

Section 8.3 - Memory regions: Heap/Stack
A program's memory usage typically includes four different regions:

Code -- The region where the program instructions are stored.

Exploring further:
More on linked lists from Oracle's Java tutorials

Challenge
ActivityC 8.2.1: Linked list negative values counting.

Assign negativeCntr with the number of negative values in the linked list.

Run

 while (currObj != null) {
 System.out.print(currObj.getDataVal() + ", ");
 currObj = currObj.getNext();
 }
 System.out.println("");

 currObj = headObj; // Count number of negative numbers
 while (currObj != null) {

 /* Your solution goes here */

 currObj = currObj.getNext();
 }
 System.out.println("Number of negatives: " + negativeCntr);

 return;
 }
}
// ===== end =====

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

http://docs.oracle.com/javase/tutorial/collections/implementations/list.html

1/30/16, 11:01 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 14 of 22https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/8/print

Static memory -- The region where static fields and local variables (variables defined
inside methods starting with the keyword "static") are allocated. The name "static"
comes from these variables not changing (static means not changing); they are
allocated once and last for the duration of a program's execution, their addresses
staying the same.

The stack -- The region where a method's local variables are allocated during a
method call. A method call adds local variables to the stack, and a return removes
them, like adding and removing dishes from a pile; hence the term "stack." Because
this memory is automatically allocated and deallocated, it is also called automatic

memory.

The heap -- The region where the "new" operator allocates memory for objects. The
region is also called free store.

In Java, the code and static memory regions are actually integrated into a region of memory called the
method area , which also stores information for every class type used in the program.

The following animation illustrates:

1/30/16, 11:01 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 15 of 22https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/8/print

Participation
ActivityP 8.3.1: Use of the four regions of memory.

1
2
3
4 Jmp 40

Add R1, R3, R5
Sub R3, #1, R4
Add R1, #1, R2

3000

3001

3200

3201

3202

3203

9400

9401

9402

Code mem

Static mem

Stack

Heap

myStaticField33

myInt
myInteger
myLocal

Integer object

555
null

222

null

Start
"new" allocates memory in the heap

// Program is stored in code memory
public class MemoryRegionEx {
 public static int myStaticField = 33;

 public static void myFct() {
 int myLocal = 999; // On stack
 System.out.print(" " + myLocal);
 return;
 }

 public static void main (String[] args) {
 int myInt = 555; // On stack
 Integer myInteger = null; // On stack

 myInteger = new Integer(222); // In heap
 System.out.print(myInteger.intValue() +
 " " + myInt);

 myInteger = null;

 myFct(); // Stack grows, then shrinks

 return;
 } // Object deallocated automatically
}

1/30/16, 11:01 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 16 of 22https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/8/print

Section 8.4 - Basic garbage collection
Because the amount of memory available to a program is finite, objects allocated to the heap must
eventually be deallocated when no longer needed by the program. The Java programming language
uses a mechanism called garbage collection wherein a program's executable includes automatic
behavior that at various intervals finds all unreachable -- i.e., unused -- allocated memory locations,
and automatically frees such memory locations in order to enable memory reuse. Garbage collection
can present the programmer with the illusion of a nearly unlimited memory supply at the expense of
runtime overhead.

In order to determine which allocated objects the program is currently using at runtime, the Java
virtual machine keeps a count, known as a reference count, of all reference variables that are

Participation
ActivityP 8.3.2: Stack and heap definitions.

Code Static memory Free store Automatic memory The stack The heap

Drag and drop above item A function's local variables are allocated in this region
while a function is called.

The memory allocation operator (new) affects this region.

Global and static local variables are allocated in this
region once for the duration of the program.

Another name for "The heap" because the programmer
has explicit control of this memory.

Instructions are stored in this region.

Another name for "The stack" because the programmer
does not explicitly control this memory.

Reset

1/30/16, 11:01 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 17 of 22https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/8/print

currently referring to an object. If the reference count is zero, then the object is considered an
unreachable object and is eligible for garbage collection, as no variables in the program refer to the
object. The Java virtual machine marks unreachable objects, and deallocation occurs the next time
the Java virtual machine invokes the garbage collector. The following animation illustrates.

The program initially allocates memory for an Integer object and assigns a reference to the object's
memory location to variables myInt and myOtherInt. Thus, the object's reference count is displayed as
two at that point in the program's execution. After the object is no longer needed, the reference
variables are assigned a value of null, indicating that the reference variables no longer refer to an
object. Consequently, the object's reference count decrements to zero, and the Java virtual machine
marks that object for deallocation.

Participation
ActivityP 8.4.1: Marking unused objects for deallocation.

Start

 Integer myInt = null;
Integer myOtherInt = null;

// Create object and assign reference
myInt = new Integer(10);

// Assign object reference
myOtherInt = myInt;

// Use object ...

// myInt does not refer to object
myInt = null;

// myOtherInt does not refer to object
myOtherInt = null;

// Other instructions ...

3200

3201

3202

Stack

Heap

myInt
myOtherInt

3203

9400

9401

9402

10 Integer object

null
null

Ref count = 0

 10

1/30/16, 11:01 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 18 of 22https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/8/print

Section 8.5 - Garbage collection and variable scope
A programmer does not explicitly have to set a reference variable to null in order to indicate that the
variable no longer refers to an object. The Java virtual machine can automatically infer a null reference
once the variable goes out of scope -- i.e., the reference variable is no longer visible to the program.
For example, local reference variables that are defined within a method go out of scope as soon as
the method returns. The Java virtual machine decrements the reference counts associated with the
objects referred to by any local variables within the method. The following animation illustrates.

Participation
ActivityP 8.4.2: Garbage collection.

Garbage collection Object reference count Unreachable object

Drag and drop above item Object that is not referenced by any valid reference
variables in the program.

Value updated by the Java virtual machine in order to
keep track of the number of variables referencing an
object.

Automatic process of finding unused allocated memory
locations and deallocating that unreachable memory.

Reset

1/30/16, 11:01 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 19 of 22https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/8/print

Every time CountBits() is invoked, the method defines a local reference variable called binaryStr, which
refers to a newly allocated String object used to store the binary representation of the integer num.
The initialization of binaryStr increments the object's reference count. When the method returns, the
reference variable binaryStr goes out of scope, and the Java virtual machine will decrement the
reference count for the String object. The reference count for that String object becomes zero and the
object is marked for deallocation, which occurs whenever the Java virtual machine invokes the
garbage collector.

Although CountBits() happens to allocate binaryStr in the same memory location whenever CountBits()
is called, note that Java makes no such guarantee. Also, recall that main() is itself a method. Thus, the
Java virtual machine will decrement the reference count of any objects associated with reference
variables defined in main() upon returning from main().

Participation
ActivityP 8.5.1: Marking unused objects in methods.

public class BitCounter {
 public static int countBits(int inNum) {
 int countInt = 0;
 String binaryStr=Integer.toBinaryString(inNum);

 countInt = binaryStr.length();
 return countInt;
 }

 public static void main (String[] args) {
 int numBits = 0;
 numBits = countBits(7); //Method call
 // Other instructions
 return;
 }
}

3200

3201

3202

3203

9400

9401

9402

Start

Stack

Heap

numBits

Ref count = 0

0

String object"111"

1/30/16, 11:01 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 20 of 22https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/8/print

Section 8.6 - Java example: Employee list using ArrayLists

Participation
ActivityP 8.5.2: Garbage collection and variable scope.

Question Your answer

1

A method's local reference variables automatically go out of
scope when the method returns.

True

False

2

A programmer must explicitly set all reference variables to null
in order to indicate that the objects to which the variables
referred are no longer in use.

True

False

Participation
ActivityP 8.6.1: Managing an employee list using an ArrayList.

The following program allows a user to add to and list entries from an ArrayList, which maintains a
list of employees.

1. Run the program, and provide input to add three employees' names and related
data. Then use the list option to display the list.

2. Modify the program to implement the deleteEntry method.
3. Run the program again and add, list, delete, and list again various entries.

Reset
import java.util.ArrayList;
import java.util.Scanner;

public class EmployeeManager {

 static Scanner scnr = new Scanner(System.in);

1
2
3
4
5
6

1/30/16, 11:01 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 21 of 22https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/8/print

Below is a solution to the above problem.

a
Rajeev Gupta
Sales
Sales Manager

 static Scanner scnr = new Scanner(System.in);

 public static void main(String[] args) {
 // Declare program variables. The ArrayLists have names, departments
 // and salaries

 final int MAX_ELEMENTS = 10;
 final char EXIT_CODE = 'X';
 final String PROMPT_ACTION = "Add, Delete, List or eXit (a,d,l,x): ";

 ArrayList<String> name = new ArrayList<String>(MAX_ELEMENTS);
 ArrayList<String> department = new ArrayList<String>(MAX_ELEMENTS);
 ArrayList<String> title = new ArrayList<String>(MAX_ELEMENTS);
 int nElements = 0;

Run

6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 11:01 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 22 of 22https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/8/print

Participation
ActivityP 8.6.2: Managing an employee list using an ArrayList (solution).

Reset

a
Rajeev Gupta
Sales
Sales Manager

import java.util.ArrayList;
import java.util.Scanner;

public class MemoryManagement {

 static Scanner scnr = new Scanner(System.in);

 public static void main(String[] args) {
 // Declare program variables. The ArrayLists have names, departments,
 // and salaries

 final int MAX_ELEMENTS = 10;
 final char EXIT_CODE = 'X';
 final String PROMPT_ACTION = "Add, Delete, List, or eXit (a,d,l,x): ";

 ArrayList<String> name = new ArrayList<String>(MAX_ELEMENTS);
 ArrayList<String> department = new ArrayList<String>(MAX_ELEMENTS);
 ArrayList<String> title = new ArrayList<String>(MAX_ELEMENTS);
 int nElements = 0;

Run

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

