
1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 1 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

Chapter 7 - Objects and Classes

Section 7.1 - Objects: Introduction
A large program thought of as thousands of variables and functions is hard to understand. A higher
level approach is needed to organize a program in a more understandable way.

In the physical world, we are surrounded by basic items made from
wood, metal, plastic, etc. But to keep the world understandable, we
think at a higher level, in terms of objects like an oven. The oven
allows us to perform a few specific operations, like put an item in the
oven, or set the temperature.

Thinking in terms of objects can be powerful when designing
programs. Suppose a program should record time and distance for
various runners, such as a runner ran 1.5 miles in 500 seconds, and
should compute speed. A programmer might think of an "object" called RunnerInfo. The RunnerInfo
object supports operations like setting distance, setting time, and computing speed. In a program, an
object consists of some internal data items plus operations that can be performed on that data.

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 2 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

Creating a program as a collection of objects can lead to a more understandable, manageable, and
properly-executing program.

P Participation
Activity

7.1.1: Grouping variables and methods into objects keeps
programs understandable

Participation
ActivityP 7.1.2: Objects.

Some of the variables and methods for a used-car inventory program are to be grouped into an
object named CarOnLot. Select True if the item should become part of the CarOnLot object, and
False otherwise.

Question Your answer

1

int carStickerPrice; True

False

double distRun;
int timeRun;
double getSpeed()

int numSpectators;
int ticketPriceNormal;

int calculateRevenue()

int numStudents;
int ticketPriceStudent;

void printRunnerStats()

RunnerInfo

CrowdInfo

Start

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 3 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

2

double todaysTemperature; True

False

3

int daysOnLot; True

False

4

int origPurchasePrice; True

False

5

int numSalespeople; True

False

6

incrementCarDaysOnLot() True

False

7

decreaseStickerPrice() True

False

8

determineTopSalesperson() True

False

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 4 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

Section 7.2 - Classes: Introduction
The class construct defines a new type that can group data and methods to form an object. The
below code defines and uses a class named RunnerInfo. First we discuss how to use a class, with
relevant code highlighted below. Later, we discuss how to define a class.

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 5 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

Figure 7.2.1: Simple class example: RunnerInfo.
RunnerInfo.java
public class RunnerInfo {

 // The class' private internal fields
 private int timeRun;
 private double distRun;

 // The class' public methods

 // Set time run in seconds
 public void setTime(int timeRunSecs) {
 timeRun = timeRunSecs; // timeRun refers to class member
 return;
 }

 // Set distance run in miles
 public void setDist(double distRunMiles) {
 distRun = distRunMiles;
 return;
 }

 // Get speed in miles/hour
 public double getSpeedMph() {
 // miles / (sec / (3600sec/hr))
 return distRun / (timeRun / 3600.0);
 }
}

RunnerTimes.java
import java.util.Scanner;

public class RunnerTimes {
 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 // User-created object of class type RunnerInfo
 RunnerInfo runner1 = new RunnerInfo();
 // A second object
 RunnerInfo runner2 = new RunnerInfo();

 runner1.setTime(360);
 runner1.setDist(1.2);

 runner2.setTime(200);
 runner2.setDist(0.5);

 System.out.println("Runner1's speed in MPH: " + runner1.getSpeedMph());
 System.out.println("Runner2's speed in MPH: " + runner2.getSpeedMph());

 return;
 }
}

Runner1's speed in MPH: 11.999999999999998
Runner2's speed in MPH: 9.0

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 6 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

To use a class, the programmer defined and initialized a variable of a class type, like runner1 in main(),
resulting in creation of an object (explained below). An object involves data and methods, whereas a
typical variable is just data. Like an engineer building multiple bridges from a single blueprint, a
programmer can create multiple objects from a single class definition. Above, the programmer also
created a second object, runner2, of the same class type.

The class user then called class member methods on the object, such as setTime(). A member
method is a method that is part of (a "member of") a class. The member methods are (typically) listed
after the public access modifier in the class definition. A member-method call uses the "." operator,
known as the member access operator.

A call to an object's member method operates on that object. The following animation provides an
example for a PhotoFrame class whose public methods allow setting height and width and calculating
area.

Construct 7.2.1: Calling a class member method for an object.
objectName.memberMthd();

Participation
ActivityP 7.2.1: Each object has methods that operate on that object.

...
PhotoFrame frame1 = new PhotoFrame();
PhotoFrame frame2 = new PhotoFrame();

frame1.setWidth(5);
frame1.setHeight(7);

frame2.setWidth(8);
frame2.setHeight(11);

System.out.println(frame1.calcArea());
System.out.println(frame2.calcArea());

frame1

width height setWidth()
setHeight()
calcArea()

width height

frame2

setWidth()
setHeight()
calcArea()

5 7

8 11

35

Start

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 7 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

The class user need only use a class' public member methods, called the class interface, and need
not directly access internal variables of the class. Such use is akin to a cook using an oven's interface
of knobs and buttons, and not reaching inside the oven to adjust the flame.

Creating an object actually consists of two steps. The first is to
define a variable of class type, known as a reference variable, or
reference type. The second is to explicitly allocate an instance of the
class type, known as an object. The new operator is used to
explicitly allocate an object.

Construct 7.2.2: Creating an object using the new operator.
ClassName variableName = new ClassName();

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 8 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

P Participation
Activity

7.2.2: A class definition defines a new type. The new
operator creates memory for each instance of the class.

...

RunnerInfo winningRunner = new RunnerInfo();

winningRunner.setTime(1080);
winningRunner.setDist(3.0);

System.out.print("Winner's speed in MPH: ");
System.out.println(winningRunner.getSpeedMph());

 97

 98

 96 1080

Accesses refer to an object member's
memory location Winner’s speed in MPH:

Start

10.0

distRun
timeRun

3.0

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 9 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

To define a class, a programmer starts by naming the class, declaring private member variables, and
declaring public member methods, as in the initial highlighted text for the RunnerInfo class above. A
class' member variables are known as fields. A class' fields and methods are collectively called class
members. The programmer defines each field after the private access modifier, making clear that a
class user cannot directly access the fields. Above, class RunnerInfo has fields timeRun and distRun.
Note that the compiler does not allocate memory for those variables when the class is defined, but
rather when an object is created of that class type.

Participation
ActivityP 7.2.3: Using a class.

The following questions consider using class RunnerInfo, not defining the class.

Question Your answer

1

In a single statement, type a variable definition that
creates a reference variable named runnerJoe and
creates a new object of class type RunnerInfo.

2

Type a statement that creates an object firstRunner,
followed by a statement that creates an object
secondRunner, both of class type RunnerInfo.

3
Object runner1 is of type RunnerInfo. Type a
statement that sets runner1's time to 100.

4

If runner1's time was set to 1600, and runner1's
distance to 2.0, what do you expect
runner1.getSpeedMph() will return? Type answer as
#.#

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 10 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

Next, the programmer defines the details of each member method, sometimes called the class'
implementation. An example from above is shown again below.

A class' private fields such as timeRun and distRun above, are automatically accessible within
member methods. For example, member method setTime assigns its parameter timeRunSecs to the
private field timeRun.

Construct 7.2.3: Defining a class by naming the class and declaring its
members.

public class ClassName {
 // Private fields
 private type fieldName;

 // Public member methods
 public type memberMthd(parameters) {
 }
}

Figure 7.2.2: Defining a member method setTime for class RunnerInfo.
public class RunnerInfo {
 // ...

 // Set time run in seconds
 public void setTime(int timeRunSecs) {
 timeRun = timeRunSecs; // timeRun refers to class member
 return;
 }

 // ...
}

Participation
ActivityP 7.2.4: Defining a class.

Help define class Employee. Follow the class definition examples from above.

Question Your answer

1
Type the first line of a class definition for a class
named Employee, ending with {.

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 11 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

The earlier RunnerTimes program utilizes two files named RunnerInfo.java and RunnerTimes.java.
These files correspond to the classes RunnerInfo and RunnerTimes respectively. The program's main()
is defined within a separate class named RunnerTimes, as the operation of main() is independent from
the RunnerInfo class. The RunnerInfo class could be used within numerous other programs that have
very different functionality. A good practice is to define a program's main() inside a separate class to
clearly distinguish between the program's functionality and any programmer-defined classes.

To compile a Java program consisting of multiple source files, the programmer must provide a

2
Define a private field named salary of type int.

3

Type the first line for a public member method
named setSalary, having parameter int salaryAmount
and returning void, ending with {.

4

Type the statement within member method setSalary
that assigns the value of parameter salaryAmount to
field salary.

5

Type the first line for a public member method
getSalary, having no parameters and returning int,
ending with {.

6

Suppose a user defined: Employee clerk1 = new
Employee();. Using information from earlier
questions, type a statement that sets clerk1's salary
to 20000.

7
Given: class Employee {...}. Is Employee an object?
Type yes or no.

8
Given: Employee clerk1 = new Employee() ;. Does
clerk1 refer to an object? Type yes or no.

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 12 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

complete list of all Java source files to the Java compiler. For example, to compile the above program,
which consists of two source files named RunnerInfo.java and RunnerTimes.java, the programmer
would run the command javac RunnerInfo.java RunnerTimes.java. A user can then run
the program using the command java RunnerTimes. When running a Java program, the user
must provide the name of the class containing main().

P Participation
Activity

7.2.5: Compiling and running Java programs with multiple
classes.

Question Your answer

1

Write a command using the Java compiler to
compile a program consisting of classes Ingredient,
Recipe, and FamilyCookbook. Preserve this class
ordering.

2

Assuming the FamilyCookbook class contains a
main method(), write a command to run the
program.

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 13 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

This section taught the common use of classes. The class construct is actually more general. For
example, fields could be made public. However, good practice is to make ALL fields of a class private,
using member methods to access those fields.

Participation
ActivityP 7.2.6: Class example: Right triangle.

Complete the program involving a class for a right triangle.

RightTriangle.java HypotenuseCalc.java

Exploring further:
Classes from Oracle's Java tutorial.

import java.lang.Math;

public class RightTriangle {
 private double side1;
 // FIXME: Define side2

 public void setSide1(double side1Val) {
 side1 = side1Val;

 return;
 }

 // FIXME: Define setSide2()

 public double getHypotenuse() {
 return -1.0; // FIXME: temporary until side2 defined
 // return Math.sqrt((side1 * side1) + (side2 * side2));
 }

Run
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

http://docs.oracle.com/javase/tutorial/java/javaOO/classes.html

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 14 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

Challenge
ActivityC 7.2.1: Basic class use.

Print person1's kids, apply the incNumKids() method, and print again, outputting text as below. End each line with newline.
Sample output for below program:

Kids: 3
New baby, kids now: 4

Run

 public int getNumKids() {
 return numKids;
 }
}
// ===== end =====

// ===== Code from file CallPersonInfo.java =====
public class CallPersonInfo {
 public static void main (String [] args) {
 PersonInfo person1 = new PersonInfo();

 person1.setNumKids(3);

 /* Your solution goes here */

 return;
 }
}
// ===== end =====

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 15 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

Section 7.3 - Mutators, accessors, and private helpers
A class' public methods are commonly classified as either mutators or accessors. A mutator method
may modify ("mutate") the class' fields. An accessor method accesses fields but may not modify
them.

The following example illustrates for a video game class that maintains two scores A and B for two
players.

Challenge
ActivityC 7.2.2: Basic class definition.

Define the missing method. licenseNum is created as: (100000 * customID) + licenseYear. Sample output:

Dog license: 77702014

Run

Figure 7.3.1: Mutator, accessor, and private helper methods.

 public int getLicenseNum() {
 return licenseNum;
 }
}
// ===== end =====

// ===== Code from file CallDogLicense.java =====
public class CallDogLicense {
 public static void main (String [] args) {
 DogLicense dog1 = new DogLicense();

 dog1.setYear(2014);
 dog1.createLicenseNum(777);
 System.out.println("Dog license: " + dog1.getLicenseNum());

 return;
 }
}
// ===== end =====

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 16 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

GameInfo.java

public class GameInfo { // Private fields
 private int player1PlayA;
 private int player1PlayB;
 private int player2PlayA;
 private int player2PlayB;

 // Private helper methods
 private int maxOfPair(int num1, int num2) {
 if (num1 > num2) {
 return num1;
 }
 else {
 return num2;
 }
 }

 // Public methods
 void setPlayer1PlayA(int playScore) {
 player1PlayA = playScore;
 }

 void setPlayer1PlayB(int playScore) {
 player1PlayB = playScore;
 }

 void setPlayer2PlayA(int playScore) {
 player2PlayA = playScore;
 }

 void setPlayer2PlayB(int playScore) {
 player2PlayB = playScore;
 }

 int getPlayer1PlayA() {
 return player1PlayA;
 }

 int getPlayer1PlayB() {
 return player1PlayB;
 }

 int getPlayer2PlayA() {
 return player2PlayA;
 }

 int getPlayer2PlayB() {
 return player2PlayB;
 }

 int getPlayer1HighScore() {
 return maxOfPair(player1PlayA, player1PlayB);
 }

 int getPlayer2HighScore() {
 return maxOfPair(player2PlayA, player2PlayB);

GameTest.java

public class GameTest {
 public static void main(String[]
 GameInfo funGame = new GameInfo

 funGame.setPlayer1PlayA(88);
 funGame.setPlayer1PlayB(97);
 funGame.setPlayer2PlayA(74);
 funGame.setPlayer2PlayB(40);

 System.out.println("Player1 playA: "
 + funGame

 System.out.println("Player1 max: "
 + funGame
 System.out.println("Player2 max: "
 + funGame
 return;
 }
}

Player1 playA: 88
Player1 max: 97
Player2 max: 74

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 17 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

Commonly, a field has a pair of associated methods: a mutator for setting its value, and an accessor
for getting its value, as above. Those methods are also known as a setter and getter methods,
respectively, and typically have names that start with set or get.

Additional mutators and accessors may exist that aren't directly associated with one field; the above
has two additional accessors for getting a player's high score. These additional mutators and
accessors often have names that start with words other than set or get, like compute, find, print, etc.

 return maxOfPair(player2PlayA, player2PlayB);
 }
}

Participation
ActivityP 7.3.1: Mutators and accessors.

Question Your answer

1

A mutator should not change a class' private data. True

False

2

An accessor should not change a class' private data. True

False

3

A private data item sometimes has a pair of associated set
and get methods.

True

False

4

An accessor method cannot change the value of a private
field.

True

False

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 18 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

A programmer commonly creates private methods to help public methods carry out their tasks,
known as private helper methods. Above, private method MaxOfPair() helps public methods
GetPlayer1HighScore() and GetPlayer2HighScore(), thus avoiding redundant code.

Section 7.4 - Constructors
A good practice is to initialize all variables when defined. Java provides a special class member
method, known as a constructor, that is called automatically when a variable of that class type is
allocated, and which can be used to initialize all fields. The following illustrates.

Participation
ActivityP 7.3.2: Private helper methods.

Question Your answer

1

A private helper method can be called from main(). True

False

2

A private helper method typically helps public methods carry
out their tasks.

True

False

3

A private helper method may not call another private helper
method.

True

False

4

A public member method may not call another public
member method.

True

False

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 19 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

The constructor has the same name as the class. The constructor method has no return type, not
even void.

A programmer specifies the constructor that should be called upon creating an object. For example,
the statement RunnerInfo runner1 = new RunnerInfo(); creates a new object of type
RunnerInfo using the constructor RunnerInfo(). The fields within the newly created RunnerInfo object
will be initialized to zeros by the constructor.

A constructor that can be called without any arguments is called a default constructor, like the
constructor above. If a class does not have a programmer-defined constructor, then the Java compiler
implicitly defines a default constructor that automatically initializes all fields to their default values.
Good practice is to explicitly define a default constructor for any class, initializing allfields.

Figure 7.4.1: Adding a constructor method to the RunnerInfo class.
public class RunnerInfo {

 // Private internal fields
 private int timeRun;
 private double distRun;

 // Default constructor
 public RunnerInfo() {
 timeRun = 0;
 distRun = 0.0;
 }

 // Other methods ...
}

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 20 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

Participation
ActivityP 7.4.1: Defining a default constructor.

Help define a default constructor for the following class.
public class BoardMeasurement {

 private double boardLength;
 private double boardWidth;
 private double boardThickness;

 // Class' public methods ...
}

Question Your answer

1
Type the first line of a default constructor for the
class named BoardMeasurement, ending with {.

2

Type three statements within the default constructor
that assign 0.0 to the fields boardLength,
boardWidth, and boardThickness, in that order.

Exploring further:
Constructors from Oracle's Java utorials.

http://docs.oracle.com/javase/tutorial/java/javaOO/constructors.html

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 21 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

Section 7.5 - Constructor overloading
Programmers often want to provide different initialization values when creating a new object. A class
creator can overload a constructor by defining multiple constructors differing in parameter types. The
following illustrates.

Challenge
ActivityC 7.4.1: Basic constructor definition.

Define a constructor as indicated. Sample output for below program:

Year: 0, VIN: -1
Year: 2009, VIN: 444555666

Run

 /* Your solution goes here */

}
// ===== end =====

// ===== Code from file CallCarRecord.java =====
public class CallCarRecord {
 public static void main (String [] args) {
 CarRecord familyCar = new CarRecord();

 familyCar.print();
 familyCar.setYearMade(2009);
 familyCar.setVehicleIdNum(444555666);
 familyCar.print();

 return;
 }
}
// ===== end =====

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 22 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

Figure 7.5.1: Overloaded constructor in a RunnerInfo class.
public class RunnerInfo {

 // The class' private internal fields
 private int timeRun;
 private double distRun;

 // Default constructor
 public RunnerInfo() {
 timeRun = 0;
 distRun = 0.0;
 }

 // A second constructor
 public RunnerInfo(int timeRunSecs, double distRunMiles) {
 timeRun = timeRunSecs;
 distRun = distRunMiles;
 }

 // The class' other methods ...
}

Table 7.5.1: Overloaded constructor example.

RunnerInfo runner1 = new RunnerInfo(); Calls the default
constructor.

RunnerInfo runner2 = new RunnerInfo(302, 1.1); Calls the second
constructor.

RunnerInfo runner3 = new RunnerInfo(200);

Yields a compiler error
because no constructor
has just one int
parameter.

RunnerInfo runner4;

Does not call a
constructor because no
new object has been
created.

P

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 23 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

Participation
ActivityP 7.5.1: Constructors.

Questions refer to the following class definition:
public class CarPerformance {
 private double currSpeed;
 private double currAccel;

 // Constructor definition
 public CarPerformance() {
 currSpeed = 0.0;
 currAccel = 0.0;
 }

 // Constructor definition
 public CarPerformance(double speedMph, double accelFpsps) {
 currSpeed = speedMph;
 currAccel = accelFpsps;
 }

 // Other methods ...
}

Question Your answer

1

The default constructor initializes the currSpeed field to the value of the
parameter speedMph.

True

False

2

The statement
CarPerformance car1 = new CarPerformance();
creates a CarPerformance object with both fields initialized to zero.

True

False

3

The statement
CarPerformance car2 = new CarPerformance(0.0, 60.0);
creates a CarPerformance object with the currSpeed field initialized to
60.0 and the currAccel field initialized to 0.0.

True

False

4

The reference variable initialization
CarPerformance car3 = new CarPerformance(25.0);
creates a CarPerformance object with the currSpeed field initialized to
25.0.

True

False

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 24 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

Section 7.6 - Unit testing (classes)
Like a chef who tastes the food before allowing it to be served to diners, a programmer should test a
class before allowing it to be used in a program. Testing a class can be done by creating a special
program, sometimes known as a testbench, whose job is to thoroughly test the class. The process
of creating and running a program that tests a specific item (or "unit"), such as a method or a class, is
known as unit testing.

Challenge
ActivityC 7.5.1: Constructor overloading.

Write a second constructor as indicated. Sample output:

User1: Minutes: 0, Messages: 0
User2: Minutes: 1000, Messages: 5000

Run

}
// ===== end =====

// ===== Code from file CallPhonePlan.java =====
public class CallPhonePlan {
 public static void main (String [] args) {
 PhonePlan user1Plan = new PhonePlan(); // Calls default constructor
 PhonePlan user2Plan = new PhonePlan(1000, 5000); // Calls newly-created constructor

 System.out.print("User1: ");
 user1Plan.print();

 System.out.print("User2: ");
 user2Plan.print();

 return;
 }
}
// ===== end =====

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 25 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

Participation
ActivityP 7.6.1: Unit testing of a class.

SampleClass
Public item1
Public item2
Public item3

User program
Create SampleClass object
Use public item 2

SampleClassTester

Test public item1
Test public item2
Test public item3

Create SampleClass object

Start

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 26 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

The testbench program creates an object of the class, then invokes public methods to ensure they
work as expected. Above, the test for num2's set/get methods failed. Likewise, the getAverage
method failed. You can examine those methods and try to find the bugs.

A good practice is to create the testbench program to automatically check for correct execution rather

Figure 7.6.1: Unit testing of a class.

Class to test: StatsInfo.java
public class StatsInfo {

 // Note: This class intentionally has errors

 private int num1;
 private int num2;

 public void setNum1(int numVal) {
 num1 = numVal;
 }

 public void setNum2(int numVal) {
 num2 = numVal;
 }

 public int getNum1() {
 return num1;
 }

 public int getNum2() {
 return num1;
 }

 public int getAverage() {
 return num1 + num2 / 2;
 }
}

Testbench: StatsInfoTest.java
public class StatsInfoTest {
 public static void main(String[] args
 StatsInfo testData = new StatsInfo

 // Typical testbench tests more thoroughly

 System.out.println("Beginning tests."

 // Check set/get num1
 testData.setNum1(100);
 if (testData.getNum1() != 100)
 System.out.println(" FAILED set/get num1"
 }

 // Check set/get num2
 testData.setNum2(50);
 if (testData.getNum2() != 50)
 System.out.println(" FAILED set/get num2"
 }

 // Check getAverage()
 testData.setNum1(10);
 testData.setNum2(20);
 if (testData.getAverage() != 15
 System.out.println(" FAILED GetAverage for 10, 20"
 }

 testData.setNum1(-10);
 testData.setNum2(0);
 if (testData.getAverage() != -
 System.out.println(" FAILED GetAverage for -10, 0"
 }

 System.out.println("Tests complete."

 return;
 }
}

Beginning tests.
 FAILED set/get num2
 FAILED GetAverage for 10, 20
 FAILED GetAverage for -10, 0
Tests complete.

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 27 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

than relying on a user reading program output, as done above. The program may print a message for
each failed test, but not each passed test, to ensure failures are evident. Assert statements are
commonly used for such checks (not discussed here). Also, good practice is to keep each test
independent from the previous case, as much as possible. Note, for example, that the get average
test did not rely on values from the earlier set/get tests. Also note that different values were used for
each set/get (100 for num1, 50 for num2) so that problems are more readily detected.

A goal of testing is to achieve complete code coverage, meaning all code is executed at least once.
Minimally for a class, that means every public method is called at least once. Of course, the
programmer of a class knows about a class' implementation and thus will want to also ensure that
every private helper method is called, and that every line of code within every method is executed at
least once, which may require multiple calls with different input values for a method with branches.

While achieving complete code coverage is a goal, achieving that goal still does not mean the code is
correct. Different input values can yield different behavior. Tests should include at least some typical
values and some border cases, which for integers may include 0, large numbers, negative numbers,
etc. A good testbench includes more test cases than the above example.

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 28 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

The testbench should be maintained for the lifetime of the class code, and run again (possibly
updated first) whenever a change is made to the class. Running an existing testbench whenever code
is changed is known as regression testing, due to checking whether the change caused the code to
"regress", meaning to fail previously-passed test cases.

Testbenches themselves can be complex programs, with thousands of test cases, each requiring tens
of statements, that may themselves contain errors. Many tools and techniques exist to support

Participation
ActivityP 7.6.2: Unit testing of a class.

Question Your answer

1

A class should be tested individually (as a "unit") before being
used in another program.

True

False

2

A testbench that calls each method at least once ensures
that a class is correct.

True

False

3

If every line of code was executed at least once (complete
code coverage) and all tests passed, the class must be bug
free.

True

False

4

A programmer should test all possible values when testing a
class, to ensure correctness.

True

False

5

A testbench should print a message for each test case that
passes and for each that fails.

True

False

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 29 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

testing, not discussed here. Due to testbench complexity and importance, many companies employ
test engineers whose sole job is to test. Testing commonly occupies a large percentage of program
development time, e.g., nearly half of a commercial software project's development effort may go into
testing.

Exploring further:
Unit testing frameworks (xUnit) from wikipedia.org.
JUnit testing framework for Java.

http://en.wikipedia.org/wiki/XUnit
http://junit.org/

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 30 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

Section 7.7 - Objects and references
A reference is a variable type that refers to an object. A reference may be thought of as storing the
memory address of an object. Variables of a class data type (and array types, discussed elsewhere)
are reference variables.

Challenge
ActivityC 7.6.1: Unit testing of a class.

Write a unit test for addInventory(). Call redSweater.addInventory() with parameter sweaterShipment. Print the shown error if the
subsequent quantity is incorrect. Sample output for failed unit test given initial quantity is 10 and sweaterShipment is 50:

Beginning tests.
 UNIT TEST FAILED: addInventory()
Tests complete.

Note: UNIT TEST FAILED is preceded by 3 spaces.

Run

 InventoryTag redSweater = new InventoryTag();
 int sweaterShipment = 0;
 int sweaterInventoryBefore = 0;

 sweaterInventoryBefore = redSweater.getQuantityRemaining();
 sweaterShipment = 25;

 System.out.println("Beginning tests.");

 // FIXME add unit test for addInventory

 /* Your solution goes here */

 System.out.println("Tests complete.");

 return;
 }
}
// ===== end =====

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 31 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

A statement like TimeHrMin travelTime; defines a reference to an object of type TimeHrMin,
while String firstName; defines a reference to an object of type String. The reference variables
do not store data for those class types. Instead, the programmer must assign each reference to an
object, which can be created using the new operator.

The statement TimeHrMin travelTime; defines a reference variable with an unknown value. A
common error is to attempt to use a reference variable that does not yet refer to a valid object.

The new operator allocates memory for an object, then returns a reference to the object's location in
memory. Thus, travelTime = new TimeHrMin(); sets travelTime to refer to a new TimeHrMin
object in memory. travelTime now refers to a valid object and the programmer may use travelTime to
access the object's methods. The reference variable definition and object creation may be combined
into a single statement: TimeHrMin travelTime = new TimeHrMin();

Java does not provide a direct way to determine the memory location of an object, or to determine the
exact address to which a reference variable refers. The "value" of a reference variable is unknown to
the programmer. This material's animations show the memory address of an object as the value for a
reference variable for illustrative purposes, to illustrate that a reference variable and its object are

Participation
ActivityP 7.7.1: A simple illustration of references and objects.

 95

 96

 97

 94// Reference variable does not refer
// to any object upon definition
TimeHrMin travelTime;

// New allocates memory for object, returns
// reference to object
travelTime = new TimeHrMin();

travelTime.hrVal = 2;
travelTime.minVal = 40;

travelTime.printTime();

travelTime

hrVal

minVal

96

2
40

2 hour(s) and 40 minute(s)

Start

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 32 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

separate entities in memory.

Two or more reference variables may refer to the same object, as illustrated below.

Participation
ActivityP 7.7.2: Referring to objects.

Question Your answer

1

Define a reference variable named flightPlan that can
refer to an object of type FlightInfo. Do not create a
new object.

2

Write a statement that creates an object of FlightInfo
and assigns the new object to the reference variable
flightPlan.

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 33 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

P Participation
Activity

7.7.3: Multiple reference variables may refer to the same
object.

RunnerInfo lastRun;
RunnerInfo currRun = new RunnerInfo();

currRun.setTime(300);
currRun.setDist(1.5);
System.out.print("Run speed: ");
System.out.println(currRun.getSpeed());

// Assign reference to lastRun
lastRun = currRun;
currRun.setTime(250);
currRun.setDist(1.5);

System.out.print("Run speed: ");
System.out.println(currRun.getSpeed());

Start

100

 97

 98

 99

 96

lastRun
currRun99

timeRun
distRun

Run speed: 18

99

250
1.5

Run speed: 21.6

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 34 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

Section 7.8 - The 'this' implicit parameter
An object's member method is called using the syntax objectReference.method(). The
compiler converts that syntax into a method call with the object's reference implicitly passed as a
parameter. So you can think of objectReference.method(...) getting converted to
method(objectReference, ...). The object is known as an implicit parameter of the
member method.

Participation
ActivityP 7.7.4: Multiple object references.

Questions refer to the following class definition:
DriveTime timeRoute1 = new DriveTime();
DriveTime timeRoute2;
DriveTime bestRoute;

timeRoute2 = new DriveTime();
bestRoute = timeRoute1;

Question Your answer

1

Variables timeRoute1 and timeRoute2 both refer to valid
objects.

True

False

2

Variables timeRoute1 and bestRoute refer to the same object. True

False

Exploring further:
Oracle's Java object class specification.

http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 35 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

Within a member method, the implicitly-passed object reference is accessible via the keyword this. In
particular, a class member can be accessed as this.classMember. The "." is the member access
operator.

Using this makes clear that a class member is being accessed. Such use is essential if a field
member and parameter have the same identifier, as in the above example, because the parameter
name dominates.

Figure 7.8.1: Using 'this' to refer to an object's members.

ShapeSquare.java:
public class ShapeSquare {
 // Private fields
 private double sideLength;

 // Public methods
 public void setSideLength(double sideLength) {
 this.sideLength = sideLength;
 // Field member Parameter
 }

 public double getArea() {
 return sideLength * sideLength; // Both refer to field
 }
}

ShapeTest.java:
public class ShapeTest {
 public static void main(String[] args) {
 ShapeSquare square1 = new ShapeSquare();

 square1.setSideLength(1.2);
 System.out.println("Square's area: " + square1.getArea());

 return;
 }
}

Square's area: 1.44

P

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 36 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

Participation
ActivityP 7.8.1: The 'this' implicit parameter.

Given a class Spaceship with private field numYears and method:
public void addNumYears(int numYears)

Question Your answer

1

In addNumYears(), which would set field numYears to 0? numYears = 0;

this(numYears) = 0;

this.numYears = 0;

2

In addNumYears(), which would assign the parameter
numYears to the field numYears?

numYears =
this.numYears;

this.numYears =
numYears;

3

In addNumYears(), which would add the parameter numYears
to the existing value of field numYears?

this.numYears =
this.numYears +
numYears;

this.numYears =
numYears +
numYears;

Not possible.

4

In main(), given variable definition: Spaceship ss1 = new
Spaceship(), which sets ss1's numYears to 5?

ss1.numYears = 5;

ss1(numYears) = 5;

this.numYears = 5;

None of the above.

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 37 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

The following animation illustrates how member methods work. When an object's member method is
called, the object's reference, which can be thought of as the object's memory address, is passed to
the method via the implicit 'this' parameter. An access in that member method to this.hours first
goes to the object's address, then to the hours field.

The 'this' keyword can also be used in a constructor to invoke a different (overloaded) constructor. In
the default constructor below, this(0, 0); invokes the other constructor to initialize both fields to
zero. For this example, a programmer could have just set both fields to zero within the default
constructor. However, invoking other constructors is useful when a class' initialization routine is
lengthy, avoiding rewriting the same code.

Participation
ActivityP 7.8.2: How class member methods work.

public class ElapsedTime {
 private int hours;
 private int minutes;

 public void setTime(int timeHrs, int timeMins) {
 this.hours = timeHrs;
 this.minutes = timeMins;
 return;
 }
}

97

98

 99

96 hours
minutes m

ain
ElapsedTim

e
SetTim

e

travTime

usrHrs
usrMins

this*

timeHrs

timeMins

100

101
102

Start

5

103

96
5

"this" contains the
address of the object
(a.k.a. a "pointer")

34

34

public class SimpleThisKeywordEx {
 public static void main (String [] args) {
 ElapsedTime travTime = new ElapsedTime();
 int usrHrs = 5;
 int usrMins = 34;

 travTime.setTime(usrHrs, usrMins);

 return;
 }
}

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 38 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

Figure 7.8.2: Calling overloaded constructor using this keyword.
public class ElapsedTime {
 private int hours;
 private int minutes;

 // Overloaded constructor definition
 public ElapsedTime(int timeHours, int timeMins) {
 hours = timeHours;
 minutes = timeMins;
 }

 // Default constructor definition
 public ElapsedTime() {
 this(0, 0);
 }

 // Other methods ...
}

Participation
ActivityP 7.8.3: The 'this' keyword.

Question Your answer

1

Write a statement that uses the
'this' keyword to initialize the field
minutes to 0.

2

Using the ElaspedTime class
declared above, complete the
default constructor so that the
hours and minutes fields are both
initialized to -1 by making a call to
the overloaded constructor.

public ElapsedTime() { ;

}

Exploring further:
Using the this keyword from Oracle's Java tutorial.

http://docs.oracle.com/javase/tutorial/java/javaOO/thiskey.html

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 39 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

Section 7.9 - Abstract data types: Introduction
An abstract data type (ADT) is a data type whose creation and update are constrained to specific
well-defined operations. A class can be used to implement an ADT. Information hiding is a key ADT
aspect wherein the internal implementation of an ADT's data and operations are hidden from the ADT
user. Information hiding allows an ADT user to be more productive by focusing on higher-level
concepts. Information hiding also allows an ADT developer to improve or modify the internal
implementation without requiring changes to programs using the ADT. Information hiding is also
known as encapsulation.

Challenge
ActivityC 7.8.1: The this implicit parameter.

Define the missing method. Use "this" to distinguish the local member from the parameter name.

Run

 public int getNumDays() {
 return numDays;
 }
}
// ===== end =====

// ===== Code from file CallCablePlan.java =====
public class CallCablePlan {
 public static void main (String [] args) {
 CablePlan house1Plan = new CablePlan();

 house1Plan.setNumDays(30);
 System.out.println(house1Plan.getNumDays());

 return;
 }
}
// ===== end =====

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 40 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

In the physical world, common kitchen appliances such as a coffee maker
have a well-defined interface. The interface for most drip coffee makers
include: a water tank for adding water, a basket for adding ground coffee,
a carafe for the brewed coffee, and an on/off switch. A user can brew
coffee with most coffee makers without understanding how the coffee
maker works internally. The manufacturers of those coffee makers can
make improvements to how the coffee maker works, perhaps by
increasing the size of the heating element to boil water faster. However,
such improvements do not change how the user uses the coffee maker.

Programmers refer to separating an object's interface from its
implementation; the user of an object need only know the object's
interface (public member method declarations) and not the object's implementation (member method
definitions and private data).

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 41 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

The String and ArrayList types are examples of ADTs. As those are part of the Java Class library, a
programmer does not have (easy) access to the actual Java code. Instead, programmers typically rely
on web pages describing an ADT's public member method signatures.

P Participation
Activity

7.9.1: Public class members define the interface for an
abstract data type.

ADT's internal implementation is hidden from ADT user

public class RunnerInfo {

 // The class' private internal fields
 private int timeRun;
 private double distRun;

 // The object's public methods
 public void setTime(int timeRunSecs) {
 timeRun = timeRunSecs;
 return;
 }

 // Set distance run in miles
 public void setDist(double distRunMiles) {
 distRun = distRunMiles;
 return;
 }

 // Get speed in miles/hour
 public double getSpeedMph() {
 // miles / (sec / (3600sec/hr))
 return distRun / (timeRun / 3600.0);
 }
}

Start

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 42 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

Section 7.10 - Primitive and reference types
Java variables are one of two types. A primitive type variable directly stores the data for that variable
type, such as int, double, or char. For example, int numStudents = 20; defines an int that
directly stores the data 20. A reference type variable can refer to an instance of a class, also known
as an object. For example, Integer maxPlayers = 10; defines an Integer reference variable
named maxPlayers that refers to an instance of the Integer class, also known as an Integer object.
That Integer object stores the integer value 10.

Many of Java's built-in classes, such as Java's Collection library, only work with objects. For example,
a programmer can create an ArrayList containing Integer elements, e.g.,
ArrayList<Integer> frameScores; but not an Array of int elements. Java provides several
primitive wrapper classes that are built-in reference types that augment the primitive types.
Primitive wrapper classes allow the program to create objects that store a single primitive type value,
such as an integer or floating-point value. The primitive wrapper classes also provide methods for
converting between primitive types (e.g., int to double), between number systems (e.g., decimal to

Participation
ActivityP 7.9.2: Abstract data types.

Question Your answer

1

All classes implement an abstract data type. True

False

2

Programmers must understand all details of an ADT's
implementation to use the ADT.

True

False

3

An ADT's interface is defined by the ADT's public member
method declarations.

True

False

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 43 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

binary), and between a primitive type and a String representation.

The Integer data type is a built-in class in Java that augments the int primitive type.

The following animation illustrates use of primitive type int. Note that the assignment statement
mins = 400; directly modifies mins' memory location (96).

In contrast, the following animation utilizes the primitive wrapper class Integer. A programmer may use
a primitive wrapper class variable like mins with expressions in the same manner as the primitive type
int. An expression may even combine Integers, ints, and integer literals.

Table 7.10.1: Commonly used primitive wrapper classes.

Reference type Associated primitive type

Character char

Integer int

Double double

Boolean boolean

Long long

Participation
ActivityP 7.10.1: Time calculation using primitives.

 97

 98

 99

 96int timeMins = 0;
int timeHrs = 0;

timeMins = 400;
timeHrs = timeMins/60;

timeMins
timeHrs

400
6

Start

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 44 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

When the result of an expression is assigned to an Integer reference variable, memory for a new
Integer object with the computed value is allocated, and the reference (or address) of this new object
is assigned to the reference variable. A new memory allocation occurs every time a new value is
assigned to an Integer variable, and the previous memory location to which the variable referred,
remains unmodified. In the animation, the variable hrs ultimately refers to an object located at memory
address 101, containing the computed value 6.

The other primitive wrapper classes can be used in the same manner. The following uses the Double
class to calculate the amount of time necessary to drive or fly a certain distance.

Participation
ActivityP 7.10.2: Time calculation using Integer class.

Start

Integer timeMins = 0;
Integer timeHrs = 0;

timeMins = 400;
timeHrs = timeMins/60;

94

95

96

97

98

99

100

101

timeMins
timeHrs

Integer object0
Integer object0
Integer object400

100

6 Integer object

101

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 45 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

A variable for a primitive wrapper class may be initialized when defined similarly to variables of primitive
types, as in Double distMiles = 0.0;. Alternatively, the new operator can be used, as in
Double distMiles = new Double(0.0);, which is equivalent to
Double distMiles = 0.0;.

A primitive wrapper object (as well as a String object) is immutable, meaning a programmer cannot
change the object via methods or variable assignments after object creation. For example,
jerseyNumber = 24; does not change the value in jerseyNumber's object. Instead, the
assignment allocates a new Integer object with value 24, returns a reference to that new object, and
assigns the reference to variable jerseyNumber. jerseyNumber refers to the new Integer object, and
the original Integer object is unchanged.

When using a literal for initialization, the programmer must ensure that the literal's value falls within the
appropriate numeric range, e.g., -2,147,483,648 to 2,147,483,647 for an integer. The primitive

Figure 7.10.1: Program using the Double class to calculate flight and driving
times.

import java.util.Scanner;

public class FlyDrive {
 public static void main (String [] args) {
 Scanner scnr = new Scanner(System.in);
 Double distMiles = 0.0;
 Double hoursFly = 0.0;
 Double hoursDrive = 0.0;

 System.out.print("Enter a distance in miles: ");
 distMiles = scnr.nextDouble();

 hoursFly = distMiles / 500.0;
 hoursDrive = distMiles / 60.0;

 System.out.println(distMiles + " miles would take:");
 System.out.println(hoursFly + " hours to fly");
 System.out.println(hoursDrive + " hours to drive");

 return;
 }
}

Enter a distance in miles: 450
450.0 miles would take:
0.9 hours to fly
7.5 hours to drive
...
Enter a distance in miles: 20.5
20.5 miles would take:
0.041 hours to fly
0.3416666666666667 hours to drive

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 46 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

wrapper classes (except for Character and Boolean) define the MAX_VALUE and MIN_VALUE fields,
which are static fields initialized with the maximum and minimum values a type may represent,
respectively. A programmer may access these fields to check the supported numeric range by typing
the primitive wrapper class' name followed by a dot and the field name, as in Integer.MIN_VALUE,
which returns -2,147,483,648.

For reference variables of primitive wrapper classes (e.g., Integer, Double, Boolean), a common error is
to use the equality operators == and != when comparing values, which does not work as expected.
Using the equality operators on any two reference variables evaluates to either true or false depending
on each operand's referenced object. For example, given two Integers num1 and num2, the
expression num1 == num2 compares if both num1 and num2 reference the same Integer object, but
does not compare the Integers' contents. Because those references will (usually) be different,
num1 == num2 will evaluate to false. This is not a syntax error, but clearly a logic error.

Although a programmer should never compare two reference variables of primitive wrapper classes
using the equality operators, a programmer may use the equality operators when comparing a
primitive wrapper class object with a primitive variable or a literal constant. The relational operators <,

Participation
ActivityP 7.10.3: Defining primitive wrapper objects.

Question Your answer

1

Define a variable called gameScore that refers to a
primitive wrapper object with an int value of 81. Use
the object initialization style.

2

Define a variable called trackCircumference that
refers to a primitive wrapper object with a double
value of 29.5. Do not use the object initialization
style.

3

Define a variable called logoChar that refers to a
primitive wrapper object with a char value of 'U'. Do
not use the object initialization style.

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 47 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

<=, >, and >= may be used to compare primitive wrapper class objects. However, note that relational
operators are not typically valid for other reference types. The following table summarizes allowable
comparisons.

Reference variables of primitive wrapper classes can also be compared using the equals() and
compareTo() methods. These method descriptions are presented for the Integer class, but apply
equally well to the other primitive wrapper classes. Although the use of comparison methods is slightly
cumbersome in comparison to relational operators, these comparison methods may be preferred by
programmers who do not wish to memorize exactly which comparison operators work as expected.

Table 7.10.2: Comparing primitive wrapper class objects using relational
operators.

objectVar == objectVar

(also applies to !=)

DO NOT USE. Compares references to objects, not
the value of the objects.

objectVar == primitiveVar

(also applies to !=)

OK. Compares value of object to value of primitive
variable.

objectVar == 100

(also applies to !=)
OK. Compares value of object to literal constant.

objectVar < objectVar

(also applies to <=, >, and >=)
OK. Compares values of objects.

objectVar < primitiveVar

(also applies to <=, >, and >=)
OK. Compares values of object to value of primitive.

objectVar < 100

(also applies to <=, >, and >=)
OK. Compares values of object to literal constant.

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 48 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

Table 7.10.3: equals() and compareTo() methods for primitive wrapper types.

Given:
Integer num1 = 10;
Integer num2 = 8;
Integer num3 = 10;
int regularInt = 20;

equals(otherInt)

true if both Integers contain the same value. otherInteger may be an Integer
object, int variable, or integer literal.

num1.equals(num2) // Evaluates to false
num1.equals(10) // Evaluates to true
!(num2.equals(regularInt)) // Evaluates to true because 8 != 20

compareTo(otherInt)

return 0 if the two Integer values are equal, returns a negative number if the
Integer value is less than otherInteger's value, and returns a positive number if
the Integer value is greater than otherInteger's value. otherInteger may be an
Integer object, int variable, or integer literal.

num1.compareTo(num2) // Returns value greater than 0, because 10 > 8
num2.compareTo(8) // Returns 0 because 8 == 8
num1.compareTo(regularInt) // Returns value less than 0, because 10 < 20

Participation
ActivityP 7.10.4: Comparing primitive wrapper objects.

Given the following primitive wrapper objects, determine whether the provided comparisons

evaluate to true or false:
Integer score1 = new Integer(95);
Integer score2 = new Integer(91);
Integer score3 = 95;
int maxScore = score1;

Question Your answer

1

score1 < score2 True

False

2

score1 <= score3 True

False

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 49 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

The Integer, Double, and Long primitive wrapper classes provide methods for converting objects to
primitive types.

3

score2 < maxScore True

False

4

score1 == score3 True

False

5

98 < score3 True

False

6

score1.equals(score3) True

False

7

score2.compareTo(score1) > 0 True

False

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 50 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

The Character and Boolean classes support the charValue() and booleanValue() methods,
respectively, which perform similar functions.

Table 7.10.4: Converting primitive wrapper objects to primitive types.

Given:
Integer num1 = 14;
Double num2 = 6.7643;
Double num3 = 5.6e12;

intValue()

Returns the value of the primitive wrapper object as a primitive
int value, type casting if necessary.

num2.intValue() // Returns 6

doubleValue()

Returns the value of the primitive wrapper object as a primitive
double value, type casting if necessary.

num1.doubleValue() // Returns 14.0

longValue()

Returns the value of the primitive wrapper object as a primitive
long value, type casting if necessary.

num3.longValue() // Returns 5600000000000

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 51 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

Primitive wrapper classes feature methods that are useful for converting to and from Strings. Several
of these methods are static methods, meaning they can be called by a program without creating an
object. To call a static method, the name of the class and a '.' must precede the static method name,
as in Integer.toString(16);.

Participation
ActivityP 7.10.5: Converting to primitive types.

Question Your answer

1

Write a statement that assigns the int representation
of the value held by the Integer objects totalPins to a
primitive int variable pinScore.

2

Write a statement that assigns the double
representation of the value held by the Integer
objects numElements to a double variable named
calcSize.

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 52 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

Table 7.10.5: Conversions: Strings and numeral systems.

Given:
Integer num1 = 10;
Double num2 = 3.14;
String str1 = "32";
int regularInt = 20;

toString()

Returns a String containing the decimal representation of the value
contained by the primitive wrapper object.

num1.toString() // Returns "10"
num2.toString() // Returns "3.14"

Integer.toString(someInteger)

Returns a String containing the decimal representation of the value of
someInteger. someInteger may be be an Integer object, a int variable, or
an integer literal. This static method is also available for the other
primitive wrapper classes (e.g., Double.toString(someDouble)

Integer.toString(num1) // Returns "10"
Integer.toString(regularInt) // Returns "20"
Integer.toString(3) // Returns "3"

Integer.parseInt(someString)

Parses someString and returns an int representing the value encoded by
someString. This static method is also available for the other primitive
wrapper classes (e.g., Double.parseDouble(someString)
returning the corresponding primitive type.

Integer.parseInt(str1) // Returns int value 32
Integer.parseInt("2001") // Returns int value 2001

Integer.valueOf(someString)

Parses someString and returns a new Integer object with the value
encoded by someString. This static method is also available for the other
primitive wrapper classes (e.g., Double.valueOf(someString)
returning a new object of the corresponding type.

Integer.valueOf(str1) // Returns Integer object with value 32
Integer.valueOf("2001") // Returns Integer object with value 2001

Integer.toBinaryString(someInteger)

Returns a String containing the binary representation of someInteger.
someInteger may be be an Integer object, a int variable, or an integer
literal. This static method is also available for the Long classes (e.g.,
 Long.toBinaryString(someLong)).

Integer.toBinaryString(num1) // Returns "1010"
Integer.toBinaryString(regularInt) // Returns "10100"
Integer.toBinaryString(7) // Return "111"

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 53 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

Figure 7.10.2: A program to convert a decimal number to binary.
import java.util.Scanner;

public class DecimalToBinary {
 public static void main (String [] args) {
 Scanner scnr = new Scanner(System.in);
 int decimalInput = 0;
 String binaryOutput = "";

 System.out.print("Enter a decimal number: ");
 decimalInput = scnr.nextInt();

 binaryOutput = Integer.toBinaryString(decimalInput);

 System.out.println("The binary representation of " + decimalInput +
 " is " + binaryOutput);

 return;
 }
}

Enter a decimal number: 10
The binary representation of 10 is 1010
...
Enter a decimal number: 256
The binary representation of 256 is 100000000

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 54 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

Section 7.11 - ArrayList
Sometimes a programmer wishes to maintain a list of items, like a grocery list, or a course roster. An
ArrayList is an ordered list of reference type items, that comes with Java. Each item in an ArrayList is
known as an element. The statement import java.util.ArrayList; enables use of an
ArrayList. The following illustrates ArrayList use.

Participation
ActivityP 7.10.6: String representations.

Question Your answer

1

Write a statement that
assigns the String
representation of the value
held by the Double
trackRadius to a String
variable called radiusText.

radiusText = ;

2

Write a statement that
converts the text
representation of an integer
within String numberText,
storing the value in an int
variable numLanes.

numLanes = ;

Exploring further: Links to Oracle's Java specification for wrapper classes:
Number
Character
Boolean

http://docs.oracle.com/javase/7/docs/api/java/lang/Number.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Character.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Boolean.html

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 55 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

The definition creates reference variable vals that refers to a new ArrayList object consisting of Integer
objects; the list size can grow to contain the desired elements. ArrayList does not support primitive
types like int, but rather reference types like Integer. A common error among beginners is to define an
ArrayList of a primitive type like int, as in ArrayList<int> myVals, yielding a compilation error:
"unexpected type, found : int, required: reference."

The above example shows use of some common ArrayList methods, each described below.

P Participation
Activity

7.11.1: An ArrayList allows a programmer to maintain a list
of items.

 95

 96

 97

 94
ArrayList<Integer> vals = new ArrayList<Integer>();

// Creating space for 3 Integers
vals.add(new Integer(31));
vals.add(new Integer(41));
vals.add(new Integer(59));

System.out.println(vals.get(1));

// Setting the value of existing elements
vals.set(1, new Integer(119));

System.out.println(vals.get(1));

vals
31 index 0

index 1
59 index 2

119

41

Start

119

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 56 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

Besides reducing the number of variables a programmer must define, a powerful aspect of an
ArrayList is that the index is an expression, so an access can be written as vals.get(i) where i is
an int variable. As such, an ArrayList is useful to easily lookup the N item in a list. Consider the
following program that allows a user to print the name of the Nth most popular operating system.

Table 7.11.1: Common ArrayList methods.

add()

add(element)
Create space for and add
the element at the end of
the list.

// List originally empty
vals.add(new Integer(31)); // List now: 31
vals.add(new Integer(41)); // List now: 31 41

get()

get(index)
Returns the element at the
specified list location known
as the index. Indices start
at 0.

// List originally: 31 41 59. Assume x is an int.
x = vals.get(0); // Assigns 31 to x
x = vals.get(1); // Assigns 41
x = vals.get(2); // Assigns 59
x = vals.get(3); // Error: No such element

set()

set(index, element)
Replaces the element at the
specified position in this list
with the specified element.

// List originally: 31 41 59
vals.set(1, new Integer(119)); // List now 31 119 59

th

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 57 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

The program can quickly access the N most popular operating system using
operatingSystems.get(nthOS - 1);. Note that the index is nthOS - 1 rather than just nthOS
because an ArrayList's indices start at 0, so the 1 operating system is at index 0, the 2 at index 1,
etc.

Figure 7.11.1: ArrayList's ith element can be directly accessed using .get(i):
Most popular OS program.

import java.util.ArrayList;
import java.util.Scanner;

public class MostPopularOS {
 public static void main (String [] args) {
 Scanner scnr = new Scanner(System.in);
 ArrayList<String> operatingSystems = new ArrayList<String>();
 int nthOS = 1; // User input, Nth most popular OS

 // Source: Wikipedia.org, 2013
 operatingSystems.add(new String("Windows 7"));
 operatingSystems.add(new String("Windows XP"));
 operatingSystems.add(new String("OS X"));
 operatingSystems.add(new String("Windows Vista"));
 operatingSystems.add(new String("Windows 8"));
 operatingSystems.add(new String("Linux"));
 operatingSystems.add(new String("Other"));

 System.out.println("Enter N (1-7): ");
 nthOS = scnr.nextInt();

 if ((nthOS >= 1) && (nthOS <= 7)) {
 System.out.print("The " + nthOS + "th most popular OS is ");
 System.out.println(operatingSystems.get(nthOS - 1));
 }

 return;
 }
}

Enter N (1-7): 1
The 1th most popular OS is Windows 7
...
Enter N (1-7): 4
The 4th most popular OS is Windows Vista
...
Enter N (1-7): 9
...
Enter N (1-7): 0
...
Enter N (1-7): 3
The 3th most popular OS is OS X

th

st nd

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 58 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

Participation
ActivityP 7.11.2: ArrayList: Most popular OS program.

Modify the program to print "1st", "2nd", "3rd", "4th" and "5th" rather than "1th", "2th", etc.,
without introducing redundant statements (Hint: Precede the "if-else" statement with a separate if-
else statement that determines the appropriate ending based on the number).

Reset

 3

import java.util.ArrayList;
import java.util.Scanner;

public class MostPopularOS {
 public static void main (String [] args) {
 Scanner scnr = new Scanner(System.in);
 ArrayList<String> operatingSystems = new ArrayList<String>();
 int nthOS = 1; // User input, Nth most popular OS

 // Source: Wikipedia.org, 2013
 operatingSystems.add(new String("Windows 7"));
 operatingSystems.add(new String("Windows XP"));
 operatingSystems.add(new String("OS X"));
 operatingSystems.add(new String("Windows Vista"));
 operatingSystems.add(new String("Windows 8"));
 operatingSystems.add(new String("Linux"));
 operatingSystems.add(new String("Other"));

Run

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 59 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

While a technique exists to initialize an ArrayList's elements with specific values in the object creation,
the syntax is rather messy and thus we do not describe such initialization here.

An ArrayList's index must be an integer type. The index cannot be a floating-point type, even if the
value is 0.0, 1.0, etc.

A key advantage of ArrayLists becomes evident when used in conjunction with loops. To illustrate, the
following program allows a user to enter 8 numbers, then prints the average of those 8 numbers.

With an ArrayList and loops, the program could easily be changed to support say 100 numbers; the
code would be the same, and only the value of NUM_ELEMENTS would be changed to 100.

Figure 7.11.2: ArrayLists with loops.

import java.util.ArrayList;
import java.util.Scanner;

public class ArrayListAverage {
 public static void main (String [] args) {
 final int NUM_ELEMENTS = 8;
 Scanner scnr = new Scanner(System.in);
 ArrayList<Double> userNums = new ArrayList<Double>(); // User numbers
 Double sumVal = 0.0;
 Double averageVal = 0.0; // Computed average
 int i = 0; // Loop index

 System.out.println("Enter " + NUM_ELEMENTS + " numbers...");
 for (i = 0; i < NUM_ELEMENTS; ++i) {
 System.out.print("Number " + (i + 1) + ": ");
 userNums.add(new Double(scnr.nextDouble()));
 }

 // Determine average value
 sumVal = 0.0;
 for (i = 0; i < NUM_ELEMENTS; ++i) {
 sumVal = sumVal + userNums.get(i); // Calculate sum of all numbers
 }

 averageVal = sumVal / NUM_ELEMENTS; // Calculate average

 System.out.println("Average: " + averageVal);

 return;
 }
}

Enter 8 numbers...
Number 1: 1.2
Number 2: 3.3
Number 3: 5.5
Number 4: 2.4
Number 5: 3.14
Number 6: 3.0
Number 7: 5.3
Number 8: 3.1
Average: 3.3675

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 60 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

An ArrayList is one of several Collections supported by Java for keeping groups of items. Other
collections include LinkedList, Set, Queue, Map, and more. A programmer selects the collection
whose features best suit the desired task. For example, an ArrayList can efficiently access elements at
any valid index but inserts are expensive, whereas a LinkedList supports efficient inserts but access
requires iterating through elements. So a program that will do many accesses and few inserts might
use an ArrayList.

Participation
ActivityP 7.11.3: ArrayList definition, initialization, and use.

Question Your answer

1

In a single statement, define and initialize a reference
variable for an ArrayList named frameScores that
stores items of type Integer.

2
Assign the Integer element at index 8 of ArrayList
frameScores to a variable currFrame.

3
Assign the value 10 to element at index 2 of
ArrayList frameScores.

4
Expand the size of ArrayList frameScores by
appending an element with an Integer value of 9.

Exploring further:
Collections from Oracle's Java tutorial.

http://docs.oracle.com/javase/tutorial/collections/interfaces/collection.html

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 61 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

Section 7.12 - Classes, ArrayLists, and methods: A seat
reservation example
A programmer commonly uses classes, methods, and ArrayLists together. Consider a system that
allows a reservations agent to reserve seats for people, as might be useful for a theater, an airplane,
etc. The below program utilizes several methods and an ArrayList of custom Seat objects to allow the
user to reserve seats or print the seating arrangements.

Figure 7.12.1: A seat reservation system involving a class, ArrayLists, and
methods.

Seat.java
public class Seat {
 private String firstName;
 private String lastName;
 private int amountPaid;

 // Method to initialize Seat fields
 public void reserve(String resFirstName, String resLastName, int resAmountPaid)
 firstName = resFirstName;
 lastName = resLastName;
 amountPaid = resAmountPaid;
 return;
 }

 // Method to empty a Seat
 public void makeEmpty() {
 firstName = "empty";
 lastName = "empty";
 amountPaid = 0;
 return;
 }

 // Method to check if Seat is empty
 public boolean isEmpty() {
 return (firstName.equals("empty"));
 }

 // Method to print Seat fields
 public void print() {
 System.out.print(firstName + " ");
 System.out.print(lastName + " ");
 System.out.println("Paid: " + amountPaid);
 return;
 }

 public String getFirstName() {
 return firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public int getAmountPaid() {
 return amountPaid;

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 62 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

 return amountPaid;
 }
}

SeatReservation.java
import java.util.ArrayList;
import java.util.Scanner;

public class SeatReservation {
 /*** Methods for ArrayList of Seat objects ***/
 public static void makeSeatsEmpty(ArrayList<Seat> seats) {
 int i = 0;
 for (i = 0; i < seats.size(); ++i) {
 seats.get(i).makeEmpty();
 }
 return;
 }

 public static void printSeats(ArrayList<Seat> seats) {
 int i = 0;
 for (i = 0; i < seats.size(); ++i) {
 System.out.print(i + ": ");
 seats.get(i).print();
 }
 return;
 }

 public static void addSeats(ArrayList<Seat> seats, int numSeats) {
 int i = 0;
 for (i = 0; i < numSeats; ++i) {
 seats.add(new Seat());
 }
 return;
 }
 /*** End methods for ArrayList of Seat objects ***/

 public static void main (String [] args) {
 Scanner scnr = new Scanner(System.in);
 String usrInput = "";
 String firstName, lastName;
 int amountPaid = 0;
 int seatNumber = 0;
 Seat newSeat;
 ArrayList<Seat> allSeats = new ArrayList<Seat>();

 // Add 5 seat objects to ArrayList
 addSeats(allSeats, 5);

 // Make all seats empty
 makeSeatsEmpty(allSeats);

 while (!usrInput.equals("q")) {

 System.out.println();
 System.out.print("Enter command (p/r/q): ");
 usrInput = scnr.next();

 if (usrInput.equals("p")) { // Print seats
 printSeats(allSeats);
 }
 else if (usrInput.equals("r")) { // Reserve seat

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 63 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

The program defines a Seat class whose fields are a person's first name, last name, and the amount
paid. The class also contains methods that allow a programmer to reserve a seat, check if a seat is
empty, or empty a seat. The program creates an ArrayList of 5 seats, which represents, for example,
the entire theater, airplane, etc. The program then initializes all seats to empty (indicated by a first
name of "empty"), and then allows a user to enter commands to print all seats, reserve a seat, or quit.

Notice that the SeatReservation class defines some useful methods that operate on an ArrayList of
Seat objects. Each method iterates through the ArrayList in order to perform a specific operation on
each element. The addSeats() method takes an empty ArrayList and adds the desired number of
seats; the makeSeatsEmpty() method is invoked within main() to initially make all seats empty; and
finally, the printSeats() method prints the status of each seat.

Note that statements such as allSeats.get(i).makeEmpty(); utilize method chaining to make
code more readable. allSeats.get(i) returns the i Seat object in the ArrayList, and
.makeEmpty(); immediately invokes the returned object's makeEmpty() method. The chained
statement could have been written as two statements , i.e.,
Seat tempSeat = allSeats.get(i); and tempSeat.makeEmpty();. However, method

 else if (usrInput.equals("r")) { // Reserve seat
 System.out.print("Enter seat num: ");
 seatNumber = scnr.nextInt();

 if (!(allSeats.get(seatNumber).isEmpty())) {
 System.out.println("Seat not empty.");
 }
 else {
 System.out.print("Enter first name: ");
 firstName = scnr.next();
 System.out.print("Enter last name: ");
 lastName = scnr.next();
 System.out.print("Enter amount paid: ");
 amountPaid = scnr.nextInt();

 newSeat = new Seat(); // Create new Seat object
 newSeat.reserve(firstName, lastName, amountPaid); // Set fields
 allSeats.set(seatNumber, newSeat); // Add new object to ArrayList

 System.out.println("Completed.");
 }
 }
 // FIXME: Add option to delete reservations
 else if (usrInput.equals("q")) { // Quit
 System.out.println("Quitting.");
 }
 else {
 System.out.println("Invalid command.");
 }
 }

 return;
 }
}

th

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 64 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

chaining avoids the temporary variable (tempSeat) and is still easy to read.

The "FIXME" comment indicates that the program still requires the ability to delete a reservation. That
functionality is straightforward to introduce, just requiring the user to enter a seat number and then
using the existing makeEmpty() method.

Notice that main() is relatively clean, dealing mostly with the user commands, and then using methods
to carry out the appropriate work. Actually, the "reserve seat" command could be improved; main()
currently fills the reservation information (e.g., "Enter first name..."), but main() would be cleaner if it just
called a method such as makeSeatReservations(ArrayList<Seat> seats).

Participation
ActivityP 7.12.1: Seat reservation program.

Modify the program to have a command to delete a reservation.
Modify the program to define and use a method
public static void makeSeatReservations(ArrayList<Seat> seats)
so that the program's main() is cleaner.

SeatReservation.java Seat.java

Reset

 p
r
2
John

import java.util.ArrayList;
import java.util.Scanner;

public class SeatReservation {
 /*** Methods for ArrayList of Seat objects ***/
 public static void makeSeatsEmpty(ArrayList<Seat> seats) {
 int i = 0;
 for (i = 0; i < seats.size(); ++i) {
 seats.get(i).makeEmpty();
 }
 return;
 }

 public static void printSeats(ArrayList<Seat> seats) {
 int i = 0;
 for (i = 0; i < seats.size(); ++i) {
 System.out.print(i + ": ");
 seats.get(i).print();

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 65 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

Section 7.13 - Classes with classes

John

Participation
ActivityP 7.12.2: ArrayList and classes.

Note: The Seat class is defined above.

Question Your answer

1

In a single statement, define and initialize a reference
variable called mySeats for an ArrayList of Seat
objects.

2
Add a new element of type Seat to an ArrayList
called trainSeats.

3

Use method chaining to get the element at index 0
in ArrayList trainSeats and make a reservation for
John Smith, who paid $44.

Run

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 66 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

Creating a new program may start by determining how to decompose the program into objects. The
programmer considers what "things" or objects exist, and what each object contains and does.
Sometimes this results in creating multiple classes where one class uses another class.

Above, the programmer realized that a "Person" object would be useful to represent coaches and
players. The programmer sketches a Person class. Each Person will have private (indicated by "-")
data like name and age (other data omitted for brevity). Each Person will have public (indicated by "+")
methods like get/set name, get/set age, print, and more.

Next, the programmer realized that a "Team" object would be useful. The programmer sketches a
Team class with private and public items. Note that the Team class uses the Person class.

Participation
ActivityP 7.13.1: Creating a program as objects

My program
Will have many soccer teams
Each team will have a head coach, assistant coach, a list of players, a name, etc.
Each coach and player will have a name, age, phone, etc.

I need a class for a "person" (coaches, players)

Person

+get/set name
+get/set age
+print

And for a "team"

Team

-name : string
-age : int

-head coach : Person
-asst coach : Person

+get/set head coach
+get/set asst coach
+print

Start

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 67 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

Participation
ActivityP 7.13.2: Class using a class.

Question Your answer

1

There is exactly one way to decompose a program into
objects.

True

False

2

The - in the above sketch indicates a class' private item. True

False

3

The + in the above sketch indicates additional private items. True

False

4

The Team class uses the Person class. True

False

5

The Person class uses the Team class. True

False

Figure 7.13.1: A class using a class: Team has Persons as data.

TeamPerson.java
public class TeamPerson {
 private String fullName;

SoccerTeam.java
public class SoccerTeam {
 private TeamPerson headCoach
 private TeamPerson assistantCoach
 // Players omitted for brevity

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 68 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

Section 7.14 - ArrayList ADT
The Java Collection Framework (or JCF) defines interfaces and classes for common ADTs known

 private int ageYears;

 public void setFullName(String firstAndLastName) {
 fullName = firstAndLastName;
 return;
 }

 public void setAgeYears(int ageInYears) {
 ageYears = ageInYears;
 return;
 }

 public String getFullName() {
 return fullName;
 }

 public int getAgeYears() {
 return ageYears;
 }

 public void print() {
 System.out.println("Full name: " + fullName);
 System.out.println("Age (years): " + ageYears);
 return;
 }
}

 public void setHeadCoach(TeamPerson teamPerson
 headCoach = teamPerson;
 return;
 }

 public void setAssistantCoach
 assistantCoach = teamPerson
 return;
 }

 public TeamPerson getHeadCoach
 return headCoach;
 }

 public TeamPerson getAssistantCoach
 return assistantCoach;
 }

 public void print() {
 System.out.println("HEAD COACH: "
 headCoach.print();
 System.out.println();

 System.out.println("ASSISTANT COACH: "
 assistantCoach.print();
 System.out.println();
 return;
 }
}

SoccerTeamPrinter.java
public class SoccerTeamPrinter {
 public static void main(String[] args) {
 SoccerTeam teamCalifornia = new SoccerTeam();
 TeamPerson headCoach = new TeamPerson();
 TeamPerson asstCoach = new TeamPerson();

 headCoach.setFullName("Mark Miwerds");
 headCoach.setAgeYears(42);
 teamCalifornia.setHeadCoach(headCoach);

 asstCoach.setFullName("Stanley Lee");
 asstCoach.setAgeYears(30);
 teamCalifornia.setAssistantCoach(asstCoach);

 teamCalifornia.print();

 return;
 }
}

HEAD COACH:
Full name: Mark Miwerds
Age (years): 42

ASSISTANT COACH:
Full name: Stanley Lee
Age (years): 30

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 69 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

as collections in Java. A Collection represents a generic group of objects known as elements. Java
supports several different Collections, including List, Queue, Map, and others. Refer to Introduction to
Collection Interfaces and Java Collections Framework overview from Oracle's Java documentation for
detailed information on each Collection type. Each Collection type is an interface that declares the
methods accessible to programmers. The List interface is one of the most commonly used Collection
types as it represents an ordered group of elements -- i.e., a sequence. Both an ArrayList and
LinkedList are ADTs implementing the List interface. Although both ArrayList and LinkedList implement
a List, a programmer should select the implementation that is appropriate for the intended task. For
example, an ArrayList offers faster positional access -- e.g., myArrayList.get(2) -- while a
LinkedList offers faster element insertion and removal.

The ArrayList type is an ADT implemented as a class (actually as a generic class that supports
different types such as ArrayList<Integer> or ArrayList<String>, although generics are discussed
elsewhere).

For the commonly-used public member functions below, assume an ArrayList defined as:

ArrayList<T> arrayList = new ArrayList<T>();

where T represents the ArrayList's type, such as:

ArrayList<Integer> teamNums = new ArrayList<Integer>();

Assume ArrayList teamNums has existing Integer elements of 5, 9, 23, 11, 14.

Table 7.14.1: ArrayList ADT methods.

get()
T get(int index)

Returns element at specified index.
x = teamNums.get(3); // Assigns element 3's value 11 to x

set()

T set(int index, T newElement)

Replaces element at specified index with
newElement. Returns element previously at
specified index.

teamNums.set(0, new Integer(25))

x = teamNums.set(3, 88);

size()
int size()

Returns the number of elements in the ArrayList.

if (teamNums.size() > 0) {
 ...
}

isEmpty()

boolean isEmpty()

Returns true if the ArrayList does not contain any
elements. Otherwise, returns false.

if (teamNums.isEmpty()) {
 ...
}

clear()
void clear()

Removes all elements from the ArrayList.

teamNums.clear();
System.out.println(teamNums.size())

http://docs.oracle.com/javase/tutorial/collections/interfaces/index.html
http://docs.oracle.com/javase/8/docs/technotes/guides/collections/overview.html

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 70 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

Use of get(), set(), size(), isEmpty(), and clear() should be straightforward.

Removes all elements from the ArrayList.

add()

boolean add(T newElement)

Adds newElement to the end of the ArrayList.
ArrayList's size is increased by one.

boolean add(int index, T newElement)

Adds newElement to the ArrayList at the specified
index. Elements at that specified index and higher
are shifted over to make room. ArrayList's size is
increased by one.

// Assume ArrayList is empty
teamNums.add(new Integer(77))
teamNums.add(88);
System.out.println(teamNums.size())
teamNums.add(0, new Integer(23))
teamNums.add(2, 34);
System.out.println(teamNums.size())

remove()

boolean remove(T existingElement)

Removes the first occurrence of an element which
refers to the same object as existingElement.
Elements from higher positions are shifted back to
fill gap. ArrayList size is decreased by one. Return
true if specified element was found and removed.

E remove(int index)

Removes element at specified index. Elements
from higher positions are shifted back to fill gap.
ArrayList size is decreased by one. Returns
reference to element removed from ArrayList.

// Assume ArrayList is: 23, 77, 34, 88
teamNums.remove(1);
System.out.println(teamNums.size())

Participation
ActivityP 7.14.1: ArrayList functions get(), size(), isEmpty(), and clear().

Given the following code declaring and initializing an ArrayList:
ArrayList<Integer> itemList = new ArrayList<Integer>();

itemList.add(0);
itemList.add(0);
itemList.add(0);
itemList.add(0);
itemList.add(99);
itemList.add(98);
itemList.add(97);
itemList.add(96);

Question Your answer

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 71 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

Both add() methods are useful for appending new items at certain locations in an ArrayList. Similarly,
the remove() method enables a programmer to remove certain elements. Resizing of the ArrayList is
handled automatically by these methods. The following animation illustrates the use of the add() and
remove() methods.

Question Your answer

1

itemList().size returns 8. True

False

2

itemList.size(8) returns 8. True

False

3

itemList.size() returns 8. True

False

4

itemList.get(8) returns 96. True

False

5

itemList.isEmpty() removes all elements. True

False

6

After itemList.clear(), itemList.get(0) is an invalid access. True

False

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 72 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

You can probably deduce that the ArrayList class has a private field that stores the current size. In
fact, the ArrayList class has several private fields, but as users we only need to know the public
abstraction of the ArrayList shown in the above animation.

Below is an example using the add() method. The program assists a soccer coach in scouting players,
allowing the coach to enter the jersey number of players, enter the jersey number of players the coach
wants to cut, and printing a list of those numbers when requested.

Participation
ActivityP 7.14.2: ArrayList add() and remove() methods.

Figure 7.14.1: Using ArrayList member methods: A player jersey numbers
program.

import java.util.ArrayList;
import java.util.Scanner;

public class PlayerManager {
 // Adds playerNum to end of ArrayList
 public static void addPlayer (ArrayList<Integer> players, int playerNum) {
 players.add(new Integer(playerNum));

 return;
 }

 // Deletes playerNum from ArrayList
 public static void deletePlayer (ArrayList<Integer> players, int playerNum) {
 int i = 0;

int i;
ArrayList<Integer> v = new ArrayList<Integer>();

v.add(new Integer(27));
v.add(new Integer(44));
v.add(new Integer(9));
v.add(new Integer(17));
v.remove(1);
v.add(0, new Integer(88));
v.remove(3);

System.out.println("Contents:");
for (i = 0; i < v.size(); i++) {
 System.out.println(" " + v.get(i));
}

 94

 95

 96

 93 index 0
index 1
index 2

27
9

v

88

(size 3)

Contents:

9
27
 88

Start

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 73 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

 int i = 0;
 boolean found = false;

 // Search for playerNum in vector
 found = false;
 i = 0;

 while ((!found) && (i < players.size())) {
 if (players.get(i).equals(playerNum)) {
 players.remove(i); // Remove
 found = true;
 }

 ++i;
 }

 return;
 }

 // Prints player numbers currently in ArrayList
 public static void printPlayers(ArrayList<Integer> players) {
 int i = 0;

 for (i = 0; i < players.size(); ++i) {
 System.out.println(" " + players.get(i));
 }

 return;
 }

 // Maintains ArrayList of player numbers
 public static void main (String [] args) {
 Scanner scnr = new Scanner(System.in);
 ArrayList<Integer> players = new ArrayList<Integer>();
 String userInput = "-";
 int playerNum = 0;

 System.out.println("Commands: 'a' add, 'd' delete,");
 System.out.println("'p' print, 'q' quit: ");

 while (!userInput.equals("q")) {
 System.out.print("Command: ");
 userInput = scnr.next();

 if (userInput.equals("a")) {
 System.out.print(" Player number: ");
 playerNum = scnr.nextInt();

 addPlayer(players, playerNum);
 }
 if (userInput.equals("d")) {
 System.out.print(" Player number: ");
 playerNum = scnr.nextInt();

 deletePlayer(players, playerNum);
 }
 else if (userInput.equals("p")) {
 printPlayers(players);
 }
 }

 return;

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 74 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

The line highlighted in the addPlayer() method illustrates use of the add() member method. Note from
the sample input/output that the items are stored in the ArrayList in the order they were added. The
program's deletePlayer() method uses a common while loop form for finding an item in an ArrayList.
The loop body checks if the current item is a match; if so, the item is deleted using the remove()
method, and the variable found is set to true. The loop expression exits the loop if found is true, since
no further search is necessary. A while loop is used rather than a for loop because the number of
iterations is not known beforehand.

Note that the programmer did not specify an initial ArrayList size in main(), meaning the size is 0. Note
from the output that the items are stored in the ArrayList in the order they were added.

 return;
 }
}

Commands: 'a' add, 'd' delete,
'p' print, 'q' quit:
Command: p
Command: a
 Player number: 27
Command: a
 Player number: 44
Command: a
 Player number: 9
Command: p
 27
 44
 9
Command: d
 Player number: 9
Command: p
 27
 44
Command: q

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 75 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

The overloaded add() methods are especially useful for maintaining a list in sorted order.

Participation
ActivityP 7.14.3: ArrayList's add() method.

Given: ArrayList<Integer> itemsList = new ArrayList<Integer>();
If appropriate type: Error
Answer the questions in order; each may modify the ArrayList.

Question Your answer

1
What is the initial ArrayList's size?

2
After itemsList.set(0, 99), what is the ArrayList's
size?

3
After itemsList.add(99), what is the ArrayList's size?

4

After itemLists.add(77), what are the ArrayList's
contents? Type element values in order separated
by one space as in: 44 66

5
After itemLists.add(44), what is the ArrayList's size?

6
What does itemsList.get(itemsList.size()) return?

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 76 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

P Participation
Activity

7.14.4: Intuitive depiction of how
to add items to an ArrayList while
maintaining items in ascending
order.

index 0

index 1

v
86

87

88

85

90

91

89

index 4

index 3

index 227

9

44

17

55

279 441755

Start

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 77 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

Participation
ActivityP 7.14.5: Insert in sorted order.

Run the program and observe the output to be: 55 4 50 19. Modify the addPlayer function to insert
each number in sorted order. The new program should output: 4 19 50 55

import java.util.ArrayList;
import java.util.Scanner;

public class PlayerManager {
 // Adds playerNum to end of ArrayList
 public static void addPlayer (ArrayList<Integer> players
 int i = 0;
 boolean foundHigher = false;

 // Look for first item greater than playerNum
 foundHigher = false;
 i = 0;

 while ((!foundHigher) && (i < players.size())) {
 if (players.get(i) > playerNum) {
 // FIXME: insert playerNum at element i
 foundHigher = true;
 }

Run
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 78 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

Participation
ActivityP 7.14.6: The add() and remove() functions.

Given: ArrayList<Integer> itemsList = new ArrayList<Integer>();
Assume itemList currently contains: 33 77 44.
Answer questions in order, as each may modify the vector.

Question Your answer

1

itemList.get(1) returns 77. True

False

2

itemList.add(1, 55) changes itemList to:
33 55 77 44.

True

False

3

itemList.add(0, 99) inserts 99 at the front of the list. True

False

4

Assuming itemList is 99 33 55 77 44, then
itemList.remove(55) results in:
99 33 77 44

True

False

5

To maintain a list in ascending sorted order, a given new item
should be inserted at the position of the first element that is
greater than the item.

True

False

6

To maintain a list in descending sorted order, a given new
item should be inserted at the position of the first element
that is equal to the item.

True

False

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 79 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

Exploring further:
Oracle's Java String class specification
Oracle's Java ArrayList class specification
Oracle's Java LinkedList class specification
Introduction to Collection Interfaces from Oracle's Java tutorials
Introduction to List Implementations from Oracle's Java tutorials

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/util/ArrayList.html
http://docs.oracle.com/javase/7/docs/api/java/util/LinkedList.html
http://docs.oracle.com/javase/tutorial/collections/interfaces/index.html
http://docs.oracle.com/javase/tutorial/collections/implementations/list.html

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 80 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

Section 7.15 - Java documentation for classes
The Javadoc tool parses source code along with specially formatted comments to generate
documentation. The documentation generated by Javadoc is known as an API for classes and class
members. API is short for application programming interface.

The specially formatted comments for Javadoc are called Doc comments, which are multi-line
comments consisting of all text enclosed between the /** and */ characters. Importantly, Doc
comments are distinguished by the opening characters /**, which include two asterisks. The following

Challenge
ActivityC 7.14.1: Modifying ArrayList using add() and remove().

Modify the existing ArrayLists's contents, by erasing 200, then inserting 100 and 102 in the shown locations. Use
add() only. Sample output of below program:

100 101 102 103

Run

 System.out.println("");
 }

 public static void main (String [] args) {
 ArrayList<Integer> numsList = new ArrayList<Integer>();
 int numOfElem = 4;

 numsList.add(new Integer(101));
 numsList.add(new Integer(200));
 numsList.add(new Integer(103));

 /* Your solution goes here */

 printArray(numsList, numOfElem);

 return;
 }
}

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 81 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

illustrates.

Figure 7.15.1: Using Javadoc comments to document the ElapsedTime and
TimeDifference classes.

ElapsedTime.java
/**
 * A class representing an elapsed time measurement
 * in hours and minutes.
 * @author Mary Adams
 * @version 1.0
 */
public class ElapsedTime {
 /**
 * The hours portion of the time
 */
 private int hours;

 /**
 * The minutes portion of the time
 */
 private int minutes;

 /**
 * Constructor initializing hours to timeHours and
 * minutes to timeMins.
 * @param timeHours hours portion of time
 * @param timeMins minutes portion of time
 */
 public ElapsedTime(int timeHours, int timeMins) {
 hours = timeHours;
 minutes = timeMins;
 }

 /**
 * Default constructor initializing all fields to 0.
 */
 public ElapsedTime() {
 hours = 0;
 minutes = 0;
 }

 /**
 * Prints the time represented by an ElapsedTime
 * object in hours and minutes.
 */
 public void printTime() {
 System.out.print(hours + " hour(s) " + minutes + " minute(s)");
 return;
 }

 /**
 * Sets the hours to timeHours and minutes fields to
 * timeMins.
 * @param timeHours hours portion of time
 * @param timeMins minutes portion of time
 */
 public void setTime(int timeHours, int timeMins) {

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 82 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

 public void setTime(int timeHours, int timeMins) {
 hours = timeHours;
 minutes = timeMins;
 return;
 }

 /**
 * Returns the total time in minutes.
 * @return an int value representing the elapsed time in minutes.
 */
 public int getTimeMinutes() {
 return ((hours * 60) + minutes);
 }
}

TimeDifference.java
import java.util.Scanner;

/**
 * This program calculates the difference between two
 * user-entered times. This class contains the
 * program's main() method and is not meant to be instantiated.
 * @author Mary Adams
 * @version 1.0
 */
public class TimeDifference {
 /**
 * Asks for two times, creating an ElapsedTime object for each,
 * and uses ElapsedTime's getTimeMinutes() method to properly
 * calculate the difference between both times.
 * @param args command-line arguments
 * @see ElapsedTime#getTimeMinutes()
 */
 public static void main (String[] args) {
 Scanner scnr = new Scanner(System.in);
 int timeDiff = 0; // Stores time difference
 int userHours = 0;
 int userMins = 0;
 ElapsedTime startTime = new ElapsedTime(); // Staring time
 ElapsedTime endTime = new ElapsedTime(); // Ending time

 // Read starting time in hours and minutes
 System.out.print("Enter starting time (hrs mins): ");
 userHours = scnr.nextInt();
 userMins = scnr.nextInt();
 startTime.setTime(userHours, userMins);

 // Read ending time in hours and minutes
 System.out.print("Enter ending time (hrs mins): ");
 userHours = scnr.nextInt();
 userMins = scnr.nextInt();
 endTime.setTime(userHours, userMins);

 // Calculate time difference by converting both times to minutes
 timeDiff = endTime.getTimeMinutes() - startTime.getTimeMinutes();

 System.out.println("Time difference is " + timeDiff + " minutes");

 return;
 }

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 83 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

A Doc comment associated with a class is written immediately before the class definition. The main
description typically describes the class' purpose. The tag section of the Doc comment may include
block tags such as @author and @version to specify the class' author and version number
respectively. For the classes above, the Doc comments specify "Mary Adams" as the author of the first
version of both classes.

Each class also contains Doc comments describing member methods. Programmers can use the
@param and @return block tags to specify a method parameter and method return value
respectively.

Doc comments may be used to describe a class's fields as well. Unlike classes or methods, a field's
Doc comment is not typically associated with specific block tags. However, generic block tags, such
as @see and others described by the Javadoc specification, may be used to provide more
information. For example, the main() method's Doc comment uses the @see block tag to refer to
ElapsedTime's getTimeMinutes() method, as in @see ElapsedTime#getTimeMinutes(). Note
that when referring to a method, the @see block tag requires the programmer to precede the method
name with the class name followed by the # character. The following table summarizes commonly
used block tags.

Private class members are not included by default in the API documentation generated by the
Javadoc tool. API documentation is meant to provide a summary of all functionality available to
external applications interfacing with the described classes. Thus, private class members, which

 }
}

Table 7.15.1: Common block tags used in Javadoc comments.

Block
tag Compatibility Description

@author classes Used to specify an author.

@version classes Used to specify a version number.

@param methods,
constructors Used to describe a parameter.

@return methods Used to describe the value or object returned by the
method.

@see all Used to refer reader to relevant websites or class
members.

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 84 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

cannot be accessed by other classes, are not typically included in the documentation. The Java
Scanner class specification, for example, only describes the public class members available to
programmers using the class.

Similarly, the resulting API documentation for the above classes need only include information that
enables their use by other programmers. However, if a programmer needs to document a class's
complete structure, the Javadoc tool can be executed with the -private flag, as in
javadoc -private -d destination class1.java class2.java, to enable the
documentation of private class members.

Participation
ActivityP 7.15.1: Javadoc tool and Doc comments.

Question Your answer

1

The Javadoc tool generates API documentation for classes
and their members.

True

False

2

The @author block tag can be used to specify a method's
author.

True

False

3

The block tag specification below creates a reference to
ElapsedTime's printTime() method.
@see ElapsedTime#printTime()

True

False

4

The generated API documentation includes private class
members by default.

True

False

Exploring further:

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 85 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

Section 7.16 - Parameters of reference types
A reference variable is a variable that points to, or refers to, an object or array. Internally, a reference
variable stores a reference, or the memory location, of the object to which it refers. A programmer can
only access the data or functionality provided by objects through the use of reference variables.
Because reference variables store object locations and not the object data itself, passing a reference
variable as a method argument assigns the argument's stored reference to the corresponding method
parameter. Similarly, returning a reference variable returns an object reference.

The Javadoc specification from Oracle's Java documentation
How to write Javadoc comments from Oracle's Java documentation
How to run the Javadoc tool from Oracle's Java documentation

http://docs.oracle.com/javase/7/docs/technotes/tools/windows/javadoc.html
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://www.oracle.com/technetwork/java/javase/documentation/index-137483.html#howdoirunjavadoc

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 86 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

Instances of primitive wrapper classes, such as Integer and Double, and the String class are defined
as immutable, meaning that a programmer cannot modify the object's contents after initialization;
new objects must be created instead. The statement Integer travelTime = 10; is equivalent
to the more complex statement Integer travelTime = new Integer(10);, which creates a
new Integer object and assigns its reference to the variable travelTime. For convenience, a
programmer can assign a literal to reference variables of type String, Integer, Double, or other primitive
wrapper classes, and the Java compiler will automatically convert the assigned literal to a new object
of the correct type.

Participation
ActivityP 7.16.1: Methods with reference variables as parameters.

public class TimeTravelingAstronaut {
 public static Double calcTimeElapsed(Double speedRatio, Integer time) {
 // Lorentz factor (source: Wikipedia.org)
 Double lorentzFactor = 1.0 / Math.sqrt(1 - (Math.pow(speedRatio, 2)));
 Double timeElapsed = time * lorentzFactor;

 return timeElapsed;
 }

 public static void main(String[] args) {
 Double astronautSpeed = 0.9; // % of the speed of light
 Integer travelTime = 10; // In years
 Double earthTime = 0.0; // In years

 earthTime = calcTimeElapsed(astronautSpeed, travelTime);

 System.out.println(earthTime +
 " years have passed on Earth!");

 return;
 }
}

26

27

28

42
43

42
43
45
46

0.9
10
0.0

2.294
22.94

36

37

38

39

42

43

44

45

46

46

22.94 years have passed on Earth!

Start

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 87 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

A programmer-defined object is passed to a method by passing a reference (i.e., memory location) to
the object. The reference to the object is copied to the method's parameter, so the method can
modify the object. The following example uses the DeviceOrientation class to represent the
smartphone's orientation in terms of pitch and roll of a device such as a smartphone. This information
is typically used to track a device for purposes such as changing screen orientation. The
updateOrientation method modifies a DeviceOrientation object by calling the object's member

Participation
ActivityP 7.16.2: Methods with primitive wrapper class parameters.

Consider the following code example. Assume the Integer object to which x refers is created in
memory location 42, and that the Double object to which y refers is created in memory location 43.
public class Adder {
 public static double add(Integer in1, Double in2, int in3) {
 return in1 + in2 + in3;
 }

 public static void main(String[] args) {
 Integer x = 10;
 Double y = 12.0;
 int z = 5;

 double answer = add(x, y, z);
 System.out.println(answer);

 return;
 }
}

Question Your answer

1
Type the value stored in the parameter in1 when the
add() method is called.

2
Type the value stored in the parameter in2 when the
add() method is called.

3
Type the value stored in the parameter in3 when the
add() method is called.

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 88 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

methods that modify the object.

A parameter of reference type allows object modification only through the object's public methods or
fields. Assigning a different value to a parameter variable of reference type, as in
device = new DeviceOrientation();, assigns a new object to the reference variable, but
does not modify the original object to which the variable first referred.

P Participation
Activity

7.16.3: Methods with user-defined reference variables as
parameters

public class SmartPhoneTracking {
 public static void updateOrientation(DeviceOrientation device,
 double samplingPeriod,
 double gyroX, double gyroY) {

 double pitchAngle = device.getPitch() + (gyroX * samplingPeriod);
 double rollAngle = device.getRoll() + (gyroY * samplingPeriod);

 device.setPitch(pitchAngle);
 device.setRoll(rollAngle);

 return;
 }

 public static void main(String[] args) {
 DeviceOrientation phoneOrientation = new DeviceOrientation();

 phoneOrientation.setPitch(45.0);
 phoneOrientation.setRoll(0.0);

 updateOrientation(phoneOrientation, 0.01, 100.0, 10.0);
 System.out.println("iPhone's pitch: " + phoneOrientation.getPitch());
 System.out.println("iPhone's roll: " + phoneOrientation.getRoll());

 return;
 }
}

26

27

28

36

37

38

39

42

43

phoneOrientation

44

44

45

pitchAngle

rollAngle
46.0
0.1

iPhone's pitch:

iPhone's roll:

46.0

0.1

Start

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 89 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

Section 7.17 - Java example: Salary calculation with classes

Participation
ActivityP 7.16.4: Programmer-defined objects as parameters.

Question Your answer

1

A parameter of reference type allows a method to access the
class members of the object to which the parameter refers.

True

False

2

Assigning a different value to a parameter variable of
reference type within the method deletes the original object.

True

False

3

The value of an Integer passed to a method can be modified
within the method.

True

False

Participation
ActivityP 7.17.1: Calculate salary: Using classes.

The program below uses a class, TaxTableTools, which has a tax table built in. The main method
prompts for a salary, then uses a TaxTableTools method to get the tax rate. The program then
calculates the tax to pay and displays the results to the user. Run the program with annual salaries
of 10000, 50000, 50001, 100001 and -1 (to end the program) and note the output tax rate and tax
to pay.

1. Modify the TaxTableTools class to use a setter method that accepts a new salary
and tax rate table.

2. Modify the program to call the new method, and run the program again, noting the
same output.

Note that the program's two classes are in separate tabs at the top.

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 90 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

Note that the program's two classes are in separate tabs at the top.

IncomeTaxMain.java TaxTableTools.java

Reset

 10000 50000 50001 100001 -1

Participation
ActivityP 7.17.2: Salary calculation: Overloading a constructor.

import java.util.Scanner;

public class IncomeTaxMain {

 // Method to prompt for and input an integer
 public static int getInteger(Scanner input, String prompt) {
 int inputValue = 0;

 System.out.println(prompt + ": ");
 inputValue = input.nextInt();

 return inputValue;
 } //

 // ***

 public static void main (String [] args) {
 final String PROMPT_SALARY = "\nEnter annual salary (-1 to exit)";
 Scanner scnr = new Scanner(System.in);

Run

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 91 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

The program below calculates a tax rate and tax to pay given an annual salary. The program uses a
class, TaxTableTools, which has the tax table built in. Run the program with annual salaries of
10000, 50000, 50001, 100001 and -1 (to end the program) and note the output tax rate and tax to
pay.

1. Overload the constructor.
a. Add to the TaxTableTools class an overloaded constructor that accepts the

base salary table and corresponding tax rate table as parameters.
b. Modify the main method to call the overloaded constructor with the two

tables (arrays) provided in the main method. Be sure to set the nEntries
value, too.

c. Note that the tables in the main method are the same as the tables in the
TaxTableTools class. This sameness facilitates testing the program with the
same annual salary values listed above.

d. Test the program with the annual salary values listed above.

2. Modify the salary and tax tables
a. Modify the salary and tax tables in the main method to use different salary

ranges and tax rates.
b. Use the just-created overloaded constructor to initialize the salary and tax

tables.
c. Test the program with the annual salary values listed above.

IncomeTaxMain.java TaxTableTools.java

Reset

import java.util.Scanner;

public class IncomeTaxMain {
 public static void main (String [] args) {
 final String PROMPT_SALARY = "\nEnter annual salary (-1 to exit)";
 Scanner scnr = new Scanner(System.in);
 int annualSalary = 0;
 double taxRate = 0.0;
 int taxToPay = 0;
 int i = 0;

 // Tables to use in the exercise are the same as in the TaxTableTools class
 int [] salaryRange = { 0, 20000, 50000, 100000, Integer.MAX_VALUE };
 double [] taxRates = { 0.0, 0.10, 0.20, 0.30, 0.40 };

 // Access the related class

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 92 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

Section 7.18 - Java example: Domain name availability with
classes

10000
50000
50001
100001

Participation
ActivityP 7.18.1: Domain name availability: Using classes.

The program below uses a class, DomainAvailabilityTools, which includes a table of registered
domain names. The main method prompts for domain names until the user presses Enter at the
prompt. The domain name is checked against a list of the registered domains in the
DomainAvailabilityTools class. If the domain name is not available, the program displays similar
domain names.

1. Run the program and observe the output for the given input.
2. Modify the DomainAvailabilityClass's method named getSimilarDomainNames so

that some unavailable domain names do not get a list of similar domain names.
Run the program again and observe that unavailable domain names with TLDs of
.org or .biz do not have similar names.

DomainAvailabilityMain.java DomainAvailabilityTools.java

Reset

 // Access the related class
 TaxTableTools table = new TaxTableTools();

Run

17
18
19

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 93 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

Reset

programming.com
apple.com
oracle.com
NonProfit.org

import java.util.Scanner;

public class DomainAvailabilityMain {

 // ***

 /**
 getString - Prompts for an input string from the user
 @param input - the source of the input (a Scanner object)
 @param prompt - the prompt to show the user
 @return The string entered by the user (which could be empty)
 */

 public static String getString(Scanner input, String prompt) {
 String userInput;

 System.out.println(prompt);
 userInput = input.nextLine();

Run

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 94 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

Participation
ActivityP 7.18.2: Domain validation: Using classes (solution).

A solution to the above problem follows.

DomainAvailabilityMain.java DomainAvailabilityTools_Solution.java

Reset

programming.com
apple.com
oracle.com
NonProfit.org

import java.util.Scanner;

public class DomainAvailabilityMain {

 // ***

 /**
 getString - Prompts for an input string from the user
 @param input - the source of the input (a Scanner object)
 @param prompt - the prompt to show the user
 @return The string entered by the user (which could be empty)
 */

 public static String getString(Scanner input, String prompt) {
 String userInput;

 System.out.println(prompt);
 userInput = input.nextLine();

Run

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 95 of 95https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/7/print

