
1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 1 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

Chapter 6 - User-Defined Methods

Section 6.1 - User-defined method basics
A method is a named list of statements. Invoking a method's name, known as a method call,
causes the method's statements to execute. The following illustrates.

A method definition consists of the new method's name and a block of statements, as appeared
above: public static void printFace() { ... }. The name can be any valid identifier. A block is a list of
statements surrounded by braces.

Methods must be defined within a class. The line: public class SimpleFace { begins a new
class. The class has two methods, printFace() and main(). Both use the access modifiers

Participation
ActivityP 6.1.1: Method example: Printing a face.

public class SimpleFace {

 public static void printFace() {
 char faceChar = 'o';

 System.out.println(" " + faceChar + " " + faceChar); // Eyes
 System.out.println(" " + faceChar); // Nose
 System.out.println(" " + faceChar + faceChar + faceChar); // Mouth

 return;
 }

 public static void main (String [] args) {
 printFace();
 return;
 }
}

 o o
 o
 ooo

Start

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 2 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

public static. public tells the compiler that the method may be called from any class in the
program, and static that the method only uses values that are passed to the method; details of such
items are discussed elsewhere. For now, just know that a method defined using public static can be
called from the program's main() method.

The method call printFace() causes execution to jump to the method's statements. The method's
return causes execution to jump back to the original calling location.

Other aspects of the method definition, like the () and the word void, are discussed later.

Participation
ActivityP 6.1.2: Method basics.

Given the printFace() method defined above, and the following main() method:

public static void main (String [] args) {
 printFace();
 printFace();
 return;
}

Question Your answer

1
How many method calls to printFace() exist in
main()?

2
How many method definitions of printFace() exist
within main()?

3
How many output statements would execute in
total?

4
How many output statements exist in printFace()?

5
Is main() itself a method? Answer yes or no.

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 3 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

Participation
ActivityP 6.1.3: Adding to the face printing program.

1. Run the following program, observe the face output.
2. Modify main() to print that same face twice.
3. Complete the method definition of printFaceB() to print a different face of your

choice, and then call that method from main() also.

Exploring further:
Methods tutorial from Oracle's Java tutorials.

public class FacePrinterSimple {
 public static void printFaceB() {
 // FIXME: FINISH
 return;
 }

 public static void printFaceA() {
 char faceChar = 'o';
 System.out.println(" " + faceChar + " " + faceChar
 System.out.println(" " + faceChar);
 System.out.println(" " + faceChar + faceChar + faceChar
 return;
 }

 public static void main (String [] args) {
 printFaceA();
 return;
 }

Run
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

http://docs.oracle.com/javase/tutorial/java/javaOO/methods.html

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 4 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

Challenge
ActivityC 6.1.1: Basic method call.

Complete the method definition to print five asterisks ***** when called once (do NOT print a newline). Output for sample program:

Run

public class CharacterPrinter {

 public static void printPattern() {

 /* Your solution goes here */

 }

 public static void main (String [] args) {
 printPattern();
 printPattern();
 System.out.println("");
 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 5 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

Section 6.2 - Parameters
Programmers can influence a method's behavior via an input to the method known as a parameter.
For example, a face-printing method might have an input that indicates the character to print when
printing the face.

Challenge
ActivityC 6.1.2: Basic method call.

Complete the printShape() method to print the following shape. End with newline.
Example output:

Run

public class MethodShapePrinter {
 public static void printShape() {

 /* Your solution goes here */

 return;
 }

 public static void main (String [] args) {
 printShape();
 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 6 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

The code void printFace(char faceChar) indicates that the method has a parameter of type
char named faceChar.

The method call printFace('o') passes the value 'o' to that parameter. The value passed to a
parameter is known as an argument. An argument is an expression, such as 99, numCars, or
numCars + 99.

In contrast to an argument being an expression, a parameter is like a variable definition. Upon a call,
the parameter's memory location is allocated, and the argument's value is assigned to the parameter.
Upon a return, the parameter is deleted from memory,

Participation
ActivityP 6.2.1: Method example: Printing a face.

public class SimpleFace {

 public static void printFace(char faceChar) {
 System.out.println(" " + faceChar + " " + faceChar); // Eyes
 System.out.println(" " + faceChar); // Nose
 System.out.println(" " + faceChar + faceChar + faceChar); // Mouth

 return;
 }

 public static void main (String [] args) {
 printFace('o');
 return;
 }
}

 o o
 o
 ooo

Start

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 7 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

A method may have multiple parameters, which are separated by commas. Argument values are
assigned to parameters by position: First argument to the first parameter, second to the second, etc.

A method definition with no parameters must still have the parentheses, as in:
 void printSomething() { ... }. The call to such a method there must be parentheses, and
they must be empty, as in: PrintSomething().

Participation
ActivityP 6.2.2: Parameters.

Question Your answer

1
Complete the method beginning to have a
parameter named userAge of type int.

void printAge() {

2
Call a method named printAge, passing the value
21 as an argument.

3

Is the following a valid method definition
beginning? Type yes or no.
void myMthd(int userNum + 5) { ... }

4

Assume a method
void printNum(int userNum) simply prints
the value of userNum without any space or new
line. What will the following output?
printNum(43);
printNum(21);

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 8 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

Participation
ActivityP 6.2.3: Multiple parameters.

Question Your answer

1

Which correctly defines two integer parameters x and y for a
method definition:
void calcVal(...)?

(int x; int y)

(int x, y)

(int x, int y)

2

Which correctly passes two integer arguments for the
method call calcVal(...)?

(99, 44 + 5)

(int 99, 44)

(int 99, int 44)

3

Given a method definition:
void calcVal(int a, int b, int c)
what value is assigned to b during this method call:
calcVal(42, 55, 77);

Unknown

42

55

4

Given a method definition:
void calcVal(int a, int b, int c)
and given int variables i, j, and k, which are valid arguments in
the call calcVal(...)?

(i, j)

(k, i + j, 99)

(i + j + k)

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 9 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

Participation
ActivityP 6.2.4: Multiple parameters.

Modify printFace() to have three parameters: char eyeChar, char noseChar, char mouthChar. Call
the method with arguments 'o', '*', and '#', which should draw this face:

 o o
 *
 ###

public class SimpleFace {
 public static void printFace(char faceChar) {
 System.out.println(" " + faceChar + " " + faceChar
 System.out.println(" " + faceChar);
 System.out.println(" " + faceChar + faceChar + faceChar
 return;
 }

 public static void main (String [] args) {
 printFace('o');
 return;
 }
}

Run
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 10 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

Participation
ActivityP 6.2.5: Calls with multiple parameters.

Given:

public static void printSum(int num1, int num2) {
 System.out.print(num1 + " + " + num2 + " is " + (num1 + num2));
 return;
}

Question Your answer

1
What will be printed for the following method call?
 printSum(1, 2);

2

Write a method call using printSum() to print the sum
of x and 400 (providing the arguments in that order).
End with ;

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 11 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

Challenge
ActivityC 6.2.1: Method call with parameter: Print tic-tac-toe board.

Complete the printTicTacToe method with char parameters horizChar and vertChar that prints a tic-tac-toe board with the characters as
follows. End with newline. Ex: printTicTacToe('~', '!') prints:

x!x!x
~~~~~
x!x!x
~~~~~
x!x!x

Hint: To ensure printing of characters, start your print statement as: System.out.println("" + horizChar ...).

Run

import java.util.Scanner;

public class GameBoardPrinter {
 public static void printTicTacToe(char horizChar, char vertChar) {

 /* Your solution goes here */

 return;
 }

 public static void main (String [] args) {
 printTicTacToe('~', '!');

 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 12 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

Section 6.3 - Return
A method may return a value using a return statement, as follows.

C Challenge
Activity

6.2.2: Method call with parameter: Printing formatted
measurement.

Define a method printFeetInchShort, with int parameters numFeet and numInches, that prints using ' and " shorthand.
printFeetInchShort(5, 8) prints:

5' 8"

Hint: Use \" to print a double quote.

Run

import java.util.Scanner;

public class HeightPrinter {

 /* Your solution goes here */

 public static void main (String [] args) {
 printFeetInchShort(5, 8);
 System.out.println("");

 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 13 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

The computeSquare method is defined to have a return type of int. So the method's return statement
must also have an expression that evaluates to an int.

Other return types are allowed, such as char, double, etc. A method can only return one item, not two
or more. A return type of void indicates that a method does not return any value, in which case the
return statement should simply be: return;

A return statement may appear as any statement in a method, not just as the last statement. Also,
multiple return statements may exist in a method.

Participation
ActivityP 6.3.1: Method returns computed square

Participation
ActivityP 6.3.2: Return.

Given:
int calculateSomeValue(int num1, int num2) { ... }
Are the following appropriate return statements?

Question Your answer

return 9; Yes

public class SquareComputation {

 public static int computeSquare(int numToSquare) {
 return numToSquare * numToSquare;
 }

 public static void main (String [] args) {
 int numSquared = 0;
 numSquared = computeSquare(7);
 System.out.println("7 squared is " + numSquared);

 return;
 }
}

7 squared is 49Start

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 14 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

1

return 9; Yes

No

2

return 9 + 10; Yes

No

3

return num1; Yes

No

4

return (num1 + num2) + 1 ; Yes

No

5

return; Yes

No

6

return void; Yes

No

7

return num1 num2; Yes

No

8

return (0); Yes

No

Given: void printSomething (int num1) { ... }.
Is return 0; a valid return statement?

Yes

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 15 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

A method evaluates to its returned value. Thus, a method call often appears within an expression. For
example, 5 + ComputeSquare(4) would become 5 + 16, or 21. A method with a void return type
cannot be used as such within an expression.

9
Is return 0; a valid return statement?

No

Participation
ActivityP 6.3.3: Calls in an expression.

Given:

double squareRoot(double x) { ... }
void printVal(double x) { ... }

which of the following are valid statements?

Question Your answer

1

y = squareRoot(49.0); True

False

2

squareRoot(49.0) = z; True

False

3

y = 1.0 + squareRoot(144.0); True

False

4

y = squareRoot(squareRoot(16.0)); True

False

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 16 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

A method is commonly defined to compute a mathematical function involving several numerical
parameters and returning a numerical result. For example, the following program uses a method to
convert a person's height in U.S. units (feet and inches) into total centimeters.

5

y = squareRoot; True

False

6

y = squareRoot(); True

False

7

squareRoot(9.0); True

False

8

y = printVal(9.0); True

False

9

y = 1 + printVal(9.0); True

False

10

printVal(9.0); True

False

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 17 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

(Sidenotes: Most Americans only know their height in feet/inches, not in total inches or centimeters.
Human average height is increasing, attributed to better nutrition (Source: Wikipedia: Human height)).

Figure 6.3.1: Program with a method to convert height in feet/inches to
centimeters.

import java.util.Scanner;

public class HeightConverter {

 /* Converts a height in feet/inches to centimeters */
 public static double heightFtInToCm(int heightFt, int heightIn) {
 final double CM_PER_IN = 2.54;
 final int IN_PER_FT = 12;
 int totIn = 0;
 double cmVal = 0.0;

 totIn = (heightFt * IN_PER_FT) + heightIn; // Total inches
 cmVal = totIn * CM_PER_IN; // Conv inch to cm
 return cmVal;
 }

 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 int userFt = 0; // User defined feet
 int userIn = 0; // User defined inches

 // Prompt user for feet/inches
 System.out.print("Enter feet: ");
 userFt = scnr.nextInt();

 System.out.print("Enter inches: ");
 userIn = scnr.nextInt();

 // Output converted feet/inches to cm result
 System.out.print("Centimeters: ");
 System.out.println(heightFtInToCm(userFt, userIn));

 return;
 }
}

Enter feet: 5
Enter inches: 8
Centimeters: 172.72

http://en.wikipedia.org/wiki/Human_height

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 18 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

Participation
ActivityP 6.3.4: Temperature conversion.

Complete the program by writing and calling a method that converts a temperature from Celsius
into Fahrenheit.

 100
import java.util.Scanner;

public class CelsiusToFahrenheit {

 // FINISH: Define celsiusToFahrenheit method here

 public static void main (String [] args) {
 Scanner scnr = new Scanner(System.in);
 double tempF = 0.0;
 double tempC = 0.0;

 System.out.println("Enter temperature in Celsius: "
 tempC = scnr.nextDouble();

 // FINISH

Run

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 19 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

A method's statements may include method calls, known as hierarchical method calls or nested

method calls. Note that main() itself is a method, being the first method called when a program
begins executing, and note that main() calls other methods in the earlier examples.

C Challenge
Activity

6.3.1: Enter the output of the returned value.

Start

Enter the output of the following program.

public class returnMethodOutput {
 public static int changeValue(int x) {
 return x + 3;
 }

 public static void main (String [] args) {
 System.out.print(changeValue(1));

 return;
 }
}

4

1 2 3

 Check Next

Exploring further:
Defining methods from Oracle's Java Tutorial.

http://docs.oracle.com/javase/tutorial/java/javaOO/methods.html

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 20 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

Challenge
ActivityC 6.3.2: Method call in expression.

Assign to maxSum the max of (numA, numB) PLUS the max of (numY, numZ). Use just one statement. Hint: Call findMax() twice in an
expression.

Run

 maxVal = num2; // num2 is the maxVal.
 }
 return maxVal;
 }

 public static void main(String [] args) {
 double numA = 5.0;
 double numB = 10.0;
 double numY = 3.0;
 double numZ = 7.0;
 double maxSum = 0.0;

 /* Your solution goes here */

 System.out.print("maxSum is: " + maxSum);

 return;
 }
}

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 21 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

Section 6.4 - Reasons for defining methods
Several reasons exist for defining new methods in a program.

1: Improve program readability

A program's main() method can be easier to understand if it calls high-level methods, rather than
being cluttered with computation details. The following program converts steps walked into distance
walked and into calories burned, using two user-defined methods. Note how main() is easy to
understand.

Challenge
ActivityC 6.3.3: Method definition: Volume of a pyramid.

Define a method pyramidVolume with double parameters baseLength, baseWidth, and pyramidHeight, that returns as a double the volume
of a pyramid with a rectangular base. Relevant geometry equations:
Volume = base area x height x 1/3
Base area = base length x base width.
(Watch out for integer division).

Run

import java.util.Scanner;

public class CalcPyramidVolume {

 /* Your solution goes here */

 public static void main (String [] args) {
 System.out.println("Volume for 1.0, 1.0, 1.0 is: " + pyramidVolume(1.0, 1.0, 1.0
 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 22 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

Figure 6.4.1: User-defined methods make main() easy to understand.
import java.util.Scanner;

public class CalorieCalc {
 // Method converts steps to feet walked
 public static int stepsToFeet(int baseSteps) {
 final int FEET_PER_STEP = 3; // Unit conversion
 int feetTot = 0; // Corresponding feet to steps

 feetTot = baseSteps * FEET_PER_STEP;

 return feetTot;
 }

 // Method converts steps to calories burned
 public static double stepsToCalories(int baseSteps) {
 final double STEPS_PER_MINUTE = 70.0; // Unit Conversion
 final double CALORIES_PER_MINUTE_WALKING = 3.5; // Unit Conversion
 double minutesTot = 0.0; // Corresponding min to steps
 double caloriesTot = 0.0; // Corresponding calories to min

 minutesTot = baseSteps / STEPS_PER_MINUTE;
 caloriesTot = minutesTot * CALORIES_PER_MINUTE_WALKING;

 return caloriesTot;
 }

 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 int stepsInput = 0; // User defined steps
 int feetTot = 0; // Corresponding feet to steps
 double caloriesTot = 0; // Corresponding calories to steps

 // Prompt user for input
 System.out.print("Enter number of steps walked: ");
 stepsInput = scnr.nextInt();

 // Call methods to convert steps to feet/calories
 feetTot = stepsToFeet(stepsInput);
 System.out.println("Feet: " + feetTot);

 caloriesTot = stepsToCalories(stepsInput);
 System.out.println("Calories: " + caloriesTot);

 return;
 }
}

Enter number of steps walked: 1000
Feet: 3000
Calories: 50.0

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 23 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

2: Modular program development

A method has precisely-defined input and output. As such, a programmer can focus on developing a
particular method (or module) of the program independently of other methods.

Programs are typically written using incremental development, meaning a small amount of code is
written, compiled, and tested, then a small amount more (an incremental amount) is written, compiled,
and tested, and so on. To assist with that process, programmers commonly introduce method

stubs, which are method definitions whose statements haven't been written yet. The benefit of a
method stub is that the high-level behavior of main() can be captured before diving into details of each
method, akin to planning the route of a roadtrip before starting to drive. The following illustrates.

Participation
ActivityP 6.4.1: Improved readability.

Question Your answer

1

A common reason for using methods is to create code that is
easier to understand.

True

False

Figure 6.4.2: Method stub used in incremental program development.
import java.util.Scanner;

/* Program calculates price of lumber. Hardwoods are sold
 by the board foot (measure of volume, 12"x12"x1"). */

public class LumberCostCalc {
 // Method determines board foot based on lumber dimensions
 public static double calcBoardFoot(double boardHeight, double boardLength,
 double boardThickness) {

 // board foot = (h * l * t)/144
 System.out.println("FIXME: finish board foot calc");

 return 0;
 }

// Method calculates price based on lumber type and quantity
 public static double calcLumberPrice(int lumberType, double boardFoot) {
 final double CHERRY_COST_BF = 6.75; // Price of cherry per board foot
 final double MAPLE_COST_BF = 10.75; // Price of maple per board foot
 final double WALNUT_COST_BF = 13.00; // Price of walnut per board foot

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 24 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

 final double WALNUT_COST_BF = 13.00; // Price of walnut per board foot
 double lumberCost = 0.0; // Total lumber cost

 // Determine cost of lumber based on type
 // (Note: switch statements need not be understood to
 // appreciate function stub usage in this example)
 switch (lumberType) {
 case 0:
 lumberCost = CHERRY_COST_BF;
 break;
 case 1:
 lumberCost = MAPLE_COST_BF;
 break;
 case 2:
 lumberCost = WALNUT_COST_BF;
 break;
 default:
 lumberCost = -1.0;
 break;
 }

 lumberCost = lumberCost * boardFoot;
 return lumberCost;
 }

 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 double heightDim = 0.0; // Board height
 double lengthDim = 0.0; // Board length
 double thickDim = 0.0; // Board thickness
 int boardType = 0; // Type of lumber
 double boardFoot = 0.0; // Volume of lumber

 // Prompt user for input
 System.out.print("Enter lumber height (in):");
 heightDim = scnr.nextDouble();

 System.out.print("Enter lumber length (in):");
 lengthDim = scnr.nextDouble();

 System.out.print("Enter lumber width (in):");
 thickDim = scnr.nextDouble();

 System.out.print("Enter lumber type (0: Cherry, 1: Maple, 2: Walnut):");
 boardType = scnr.nextInt();

 // Call Method to calculate lumber cost
 boardFoot = calcBoardFoot(heightDim, lengthDim, thickDim);
 System.out.println("Cost of Lumber = $" + calcLumberPrice(boardType, boardFoot

 return;
 }
}

Enter lumber height (in):30.6
Enter lumber length (in):10
Enter lumber width (in):2
Enter lumber type (0: Cherry, 1: Maple, 2: Walnut):0
FIXME: finish board foot calc
Cost of Lumber = $0.0

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 25 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

The program can be compiled and executed, and the user can enter numbers, but then the above
FIXME messages will be printed. Alternatively, the FIXME message could be in a comment. The
programmer can later complete calcBoardFoot().

Participation
ActivityP 6.4.2: Incremental development.

Question Your answer

1

Incremental development may involve more frequent
compilation, but ultimately lead to faster development of a
program.

True

False

2

A key benefit of method stubs is faster running programs. True

False

3

Modular development means to divide a program into
separate modules that can be developed and tested
separately and then integrated into a single program.

True

False

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 26 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

Participation
ActivityP 6.4.3: Method stubs.

Run the lumber cost calculator with the test values from the above example. Finish the incomplete
method and test again.

Reset

30.6 10 2 0

import java.util.Scanner;

/* Program calculates price of lumber. Hardwoods are sold
 by the board foot (measure of volume, 12"x12"x1"). */

public class LumberCostCalc {
 // Method determines board foot based on lumber dimensions
 public static double calcBoardFoot(double boardHeight, double boardLength,
 double boardThickness) {

 // board foot = (h * l * t)/144
 System.out.println("FIXME: finish board foot calc");

 return 0;
 }

// Method calculates price based on lumber type and quantity
 public static double calcLumberPrice(int lumberType, double boardFoot) {

Run

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 27 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

3: Avoid writing redundant code

A method can be defined once, then called from multiple places in a program, thus avoiding
redundant code. Examples of such methods are math methods like pow() and abs() that prevent a
programmer from having to write several lines of code each time he/she wants to compute a power or
an absolute value.

The skill of decomposing a program's behavior into a good set of methods is a fundamental part of
programming that helps characterize a good programmer. Each method should have easily-
recognizable behavior, and the behavior of main() (and any method that calls other methods) should

Figure 6.4.3: Method call from multiple locations in main.

import java.util.Scanner;

/* Program calculates X = | Y | + | Z |
 */

public class AbsoluteValueAdder {
 // Method returns the absolute value
 public static int absValueConv(int origValue) {
 int absValue = 0; // Resulting abs val

 if (origValue < 0) { // origVal is neg
 absValue = -1 * origValue;
 }
 else { // origVal is pos
 absValue = origValue;
 }

 return absValue;
 }

 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 int userValue1 = 0; // First user value
 int userValue2 = 0; // Second user value
 int sumValue = 0; // Resulting value

 // Prompt user for inputs
 System.out.print("Enter first value: ");
 userValue1 = scnr.nextInt();

 System.out.print("Enter second value: ");
 userValue2 = scnr.nextInt();

 sumValue = absValueConv(userValue1) + absValueConv(userValue2);
 System.out.println("Total: " + sumValue);

 return;
 }
}

Enter first value: 2
Enter second value: 7
Total: 9

...

Enter first value: -1
Enter second value: 3
Total: 4

...

Enter first value: -2
Enter second value: -6
Total: 8

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 28 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

be easily understandable via the sequence of method calls. As an analogy, the main behavior of
"Starting a car" can be described as a sequence of method calls like "Buckle seat belt," "Adjust
mirrors," "Place key in ignition," and "Turn key." Note that each method itself consists of more detailed
operations, as in "Buckle seat belt" actually consisting of "Hold belt clip," "Pull belt clip across lap,"
and "Insert belt clip into belt buckle until hearing a click." "Buckle seat belt" is a good method
definition because its meaning is clear to most people, whereas a coarser method definition like
"GetReady" for both the seat belt and mirrors may not be as clear, while finer-grained methods like
"Hold belt clip" are distracting from the purpose of the "Starting a car" method.

As general guidance (especially for programs written by beginner programmers), a method's
statements should be viewable on a single computer screen or window, meaning a method usually
shouldn't have more than about 30 lines of code. This is not a strict rule, but just guidance.

Participation
ActivityP 6.4.4: Reasons for defining methods.

Question Your answer

1

A key reason for creating methods is to help main() run faster. True

False

2

Avoiding redundancy means to avoid calling a method from
multiple places in a program.

True

False

3

If a method's internal statements are revised, all method calls
will have to be modified too.

True

False

4

A benefit of methods is to increase redundant code. True

False

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 29 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

Section 6.5 - Methods with branches/loops
A method's block of statements may include branches, loops, and other statements. The following
example uses a method to compute the amount that an online auction/sales website charges a
customer who sells an item online.

Challenge
ActivityC 6.4.1: Method stubs: Statistics.

Define stubs for the methods called by the below main(). Each stub should print "FIXME: Finish methodName()" followed by a newline,
should return -1. Example output:

FIXME: Finish getUserNum()
FIXME: Finish getUserNum()
FIXME: Finish computeAvg()
Avg: -1

Run

public class MthdStubsStatistics {

 /* Your solution goes here */

 public static void main() {
 int userNum1 = 0;
 int userNum2 = 0;
 int avgResult = 0;

 userNum1 = getUserNum();
 userNum2 = getUserNum();

 avgResult = computeAvg(userNum1, userNum2);

 System.out.println("Avg: " + avgResult);

 return;
 }
}

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 30 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

Figure 6.5.1: Method example: Determining fees given an item selling price for
an auction website.

import java.util.Scanner;

/* Returns fee charged by ebay.com given the selling
 price of fixed-price books, movies, music, or video-games.
 Fee is $0.50 to list plus 13% of selling price up to $50.00,
 5% of amount from $50.01 to $1000.00, and
 2% for amount $1000.01 or more.
 Source: http://pages.ebay.com/help/sell/fees.html, 2012.

 Note: double variables are not normally used for dollars/cents
 due to the internal representation's precision, but are used
 here for simplicity.
 */

public class EbayFeeCalc {
 // Method determines the eBay price given item selling price
 public static double ebayFee(double sellPrice) {
 final double BASE_LIST_FEE = 0.50; // Listing Fee
 final double PERC_50_OR_LESS = 0.13; // % $50 or less
 final double PERC_50_TO_1000 = 0.05; // % $50.01..$1000.00
 final double PERC_1000_OR_MORE = 0.02; // % $1000.01 or more
 double feeTot = 0.0; // Resulting eBay fee

 feeTot = BASE_LIST_FEE;

 // Determine additional fee based on selling price
 if (sellPrice <= 50.00) { // $50.00 or lower
 feeTot = feeTot + (sellPrice * PERC_50_OR_LESS);
 }
 else if (sellPrice <= 1000.00) { // $50.01..$1000.00
 feeTot = feeTot + (50 * PERC_50_OR_LESS)
 + ((sellPrice - 50) * PERC_50_TO_1000);
 }
 else { // $1000.01 and higher
 feeTot = feeTot + (50 * PERC_50_OR_LESS)
 + ((1000 - 50) * PERC_50_TO_1000)
 + ((sellPrice - 1000) * PERC_1000_OR_MORE);
 }

 return feeTot;
 }

 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 double sellingPrice = 0.0; // User defined selling price

 // Prompt user for selling price, call eBay fee method
 System.out.print("Enter item selling price (e.g., 65.00): ");
 sellingPrice = scnr.nextDouble();
 System.out.println("eBay fee: $" + ebayFee(sellingPrice));

 return;
 }
}

Enter item selling price (e.g., 65.00): 9.95
eBay fee: $1.7934999999999999

...

Enter item selling price (e.g., 65.00): 40
eBay fee: $5.7

...

Enter item selling price (e.g., 65.00): 100
eBay fee: $9.5

...

Enter item selling price (e.g., 65.00): 500.15
eBay fee: $29.5075

...

Enter item selling price (e.g., 65.00): 2000
eBay fee: $74.5

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 31 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

The following is another example with user-defined methods. The methods keep main()'s behavior
readable and understandable.

Participation
ActivityP 6.5.1: Analyzing the eBay fee calculator.

Question Your answer

1

For any call to ebayFee() method, how many
assignment statements for the variable feeTot will
execute? Do not count variable initialization as an
assignment.

2
What does ebayFee() method return if its argument
is 0.0 (show your answer in the form #.##)?

3
What does ebayFee() method return if its argument
is 100.00 (show your answer in the form #.##)?

Figure 6.5.2: User-defined methods make main() easy to understand.

import java.util.Scanner;
import java.lang.Math;

public class LeastCommonMultiple {

 // Method prompts user to enter postiive non-zero number
 public static int getPositiveNumber() {
 Scanner scnr = new Scanner(System.in);
 int userNum = 0;

 while (userNum <= 0) {
 System.out.println("Enter a positive number (>0): ");
 userNum = scnr.nextInt();

 if (userNum <= 0) {
 System.out.println("Invalid number.");
 }
 }

 return userNum;

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 32 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

 return userNum;
 }

 // Method returns greatest common divisor of two inputs
 public static int findGCD(int aVal, int bVal) {
 int numA = aVal;
 int numB = bVal;

 while (numA != numB) { // Euclid's algorithm
 if (numB > numA) {
 numB = numB - numA;
 } else {
 numA = numA - numB;
 }
 }

 return numA;
 }

 // Method returns least common multiple of two inputs
 public static int findLCM(int aVal, int bVal) {
 int lcmVal = 0;

 lcmVal = Math.abs(aVal * bVal) / findGCD(aVal, bVal);

 return lcmVal;
 }

 public static void main(String[] args) {
 int usrNumA = 0;
 int usrNumB = 0;
 int lcmResult = 0;

 System.out.println("Enter value for first input");
 usrNumA = getPositiveNumber();

 System.out.println("\nEnter value for second input");
 usrNumB = getPositiveNumber();

 lcmResult = findLCM(usrNumA, usrNumB);

 System.out.println("\nLeast common multiple of " + usrNumA
 + " and " + usrNumB + " is " + lcmResult);

 return;
 }
}

Enter value for first input
Enter a positive number (>0):
13

Enter value for second input
Enter a positive number (>0):
7

Least common multiple of 13 and 7 is 91

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 33 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

Participation
ActivityP 6.5.2: Analyzing the least common multiple program.

Question Your answer

1

Other than main(), which user-defined method calls
another user-defined method? Just write the
method name.

2
How many user-defined method calls exist in the
program code?

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 34 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

Challenge
ActivityC 6.5.1: Method with branch: Popcorn.

Complete method printPopcornTime(), with int parameter bagOunces, and void return type. If bagOunces is less than 3, print "Too small".
If greater than 10, print "Too large". Otherwise, compute and print 6 * bagOunces followed by "seconds". End with a newline. Example
output for ounces = 7:

42 seconds

Run

import java.util.Scanner;

public class PopcornTimer {
 public static void printPopcornTime(int bagOunces) {

 /* Your solution goes here */

 }

 public static void main (String [] args) {
 printPopcornTime(7);

 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 35 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

Section 6.6 - Unit testing (methods)
Testing is the process of checking whether a program behaves correctly. Testing a large program can
be hard because bugs may appear anywhere in the program, and multiple bugs may interact. Good
practice is to test small parts of the program individually, before testing the entire program, which can
more readily support finding and fixing bugs. Unit testing is the process of individually testing a small

Challenge
ActivityC 6.5.2: Method with loop: Shampoo.

Write a method printShampooInstructions(), with int parameter numCycles, and void return type. If numCycles is less than 1, print "Too
few.". If more than 4, print "Too many.". Else, print "N: Lather and rinse." numCycles times, where N is the cycle number, followed by
"Done.". End with a newline. Example output for numCycles = 2:

1: Lather and rinse.
2: Lather and rinse.
Done.

Hint: Define and use a loop variable.

Run

import java.util.Scanner;

public class ShampooMethod {

 /* Your solution goes here */

 public static void main (String [] args) {
 printShampooInstructions(2);

 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 36 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

part or unit of a program, typically a method. A unit test is typically conducted by creating a
testbench, a.k.a. test harness, which is a separate program whose sole purpose is to check that a
method returns correct output values for a variety of input values. Each unique set of input values is
known as a test vector.

Consider a method hrMinToMin() that converts time specified in hours and minutes to total minutes.
The figure below shows a test harness that tests that method. The harness supplies various input
vectors like (0,0), (0,1), (0,99), (1,0), etc.

Manually examining the program's printed output reveals that the method works for the first several
vectors, but fails on the next several vectors, highlighted with colored background. Examining the
output, one may note that the output minutes is the same as the input minutes; examining the code
indeed leads to noticing that parameter origMinutes is being returned rather than variable totMinutes.
Returning totMinutes and rerunning the test harness yields correct results.

Each bug a programmer encounters can improve a programmer by teaching him/her to program
differently, just like getting hit a few times by an opening door teaches a person not to stand near a
closed door.

Figure 6.6.1: Test harness for the method hrMinToMin().

public class HrMinToMinTestHarness {
 public static double hrMinToMin(int origHours, int origMinutes) {
 int totMinutes = 0; // Resulting minutes

 totMinutes = (origHours * 60) + origMinutes;

 return origMinutes;
 }

 public static void main(String[] args) {
 System.out.println("Testing started");

 System.out.println("0:0, expecting 0, got " + hrMinToMin(0, 0));
 System.out.println("0:1, expecting 1, got " + hrMinToMin(0, 1));
 System.out.println("0:99, expecting 99, got " + hrMinToMin(0, 99));
 System.out.println("1:0, expecting 60, got " + hrMinToMin(1, 0));
 System.out.println("5:0, expecting 300, got " + hrMinToMin(5, 0));
 System.out.println("2:30, expecting 150, got " + hrMinToMin(2, 30));
 // Many more test vectors would be typical...

 System.out.println("Testing completed");

 return;
 }
}

Testing started
0:0, expecting 0, got 0.0
0:1, expecting 1, got 1.0
0:99, expecting 99, got 99.0
1:0, expecting 60, got 0.0
5:0, expecting 300, got 0.0
2:30, expecting 150, got 30.0
Testing completed

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 37 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

Manually examining a program's printed output is cumbersome and error prone. A better test harness
would only print a message for incorrect output. The language provides a compact way to print
an error message when an expression evaluates to false. assert is an operator that prints an error
message and exits the program if the provided test expression evaluates to false, having the form:

The complete error message includes the current line number and a detailed message denoted by
detailedMessage, which is typically a String literal or any expression that can be represented as a
String. The following illustrates.

Participation
ActivityP 6.6.1: Unit testing.

Question Your answer

1

A test harness involves temporarily modifying an existing
program to test a particular method within that program.

True

False

2

Unit testing means to modify method inputs in small steps
known as units.

True

False

PrintIf

Construct 6.6.1: Assert operator.
assert testExpression : detailedMessage;

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 38 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

Note that assertions are not enabled by default. A programmer must compile and execute Java
programs with additional command-line options in order to enable assertions. Specifically, the
command-line option -ea is necessary for compilation (e.g.,
javac -ea HrMinToMinTestHarness.java).

The assert operator enables compact readable test harnesses, and also eases the task of examining
the program's output for correctness; a program without detected errors would simply output "Testing
started" followed by "Testing completed".

A programmer should choose test vectors that thoroughly exercise a method. Ideally the programmer
would test all possible input values for a method, but such testing is simply not practical due to the
large number of possibilities -- a method with one integer input has over 4 billion possible input values,
for example. Good test vectors include a number of normal cases that represent a rich variety of
typical input values. For a method with two integer inputs as above, variety might include mixing small
and large numbers, having the first number large and the second small (and vice-versa), including
some 0 values, etc. Good test vectors also include border cases that represent fringe scenarios. For
example, border cases for the above method might include inputs 0 and 0, inputs 0 and a huge
number like 9999999 (and vice-versa), two huge numbers, a negative number, two negative numbers,

Figure 6.6.2: Test harness with assertion for the method hrMinToMin().
public class HrMinToMinTestHarness {
 public static double hrMinToMin(int origHours, int origMinutes) {
 int totMinutes = 0; // Resulting minutes

 totMinutes = (origHours * 60) + origMinutes;

 return origMinutes;
 }

 public static void main(String[] args) {
 System.out.println("Testing started");

 assert (hrMinToMin(0, 0) == 0) : "Assertion (hrMinToMin(0, 0) == 0) failed";
 assert (hrMinToMin(0, 1) == 1) : "Assertion (hrMinToMin(0, 1) == 1) failed";
 assert (hrMinToMin(0, 99) == 99) : "Assertion (hrMinToMin(0, 99) == 99) failed"
 assert (hrMinToMin(1, 0) == 60) : "Assertion (hrMinToMin(1, 0) == 60) failed";
 assert (hrMinToMin(5, 0) == 300) : "Assertion (hrMinToMin(5, 0) == 300) failed"
 assert (hrMinToMin(2, 30) == 150) : "Assertion (hrMinToMin(2, 30) == 150) failed"
 // Many more test vectors would be typical...

 System.out.println("Testing completed");

 return;
 }
}

Testing started
Exception in thread "main" java.lang.AssertionError: Assertion (hrMinToMin(1, 0) == 60) failed
 at HrMinToMinTestHarness.main(HrMinToMinTestHarness.java:16)

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 39 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

etc. The programmer tries to think of any extreme (or "weird") inputs that might cause the method to
fail. For a simple method with a few integer inputs, a typical test harness might have dozens of test
vectors. For brevity, the above examples had far fewer test vectors than typical.

Participation
ActivityP 6.6.2: Assertions and test cases.

Question Your answer

1

Using assertions is a preferred way to test a method. True

False

2

For method, border cases might include 0, a very large
negative number, and a very large positive number.

True

False

3

For a method with three integer inputs, about 3-5 test vectors
is likely sufficient for testing purposes.

True

False

4

A good programmer takes the time to test all possible input
values for a method.

True

False

Exploring further:
Programming with assertions from Oracle's Java guides.

http://docs.oracle.com/javase/7/docs/technotes/guides/language/assert.html

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 40 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

(*PrintIf) If you have studied branches, you may recognize that each print statement in main() could be
replaced by an if statement like:

if (hrMinToMin(0, 0) != 0) {
 System.out.println("0:0, expecting 0, got: " + hrMinToMin(0, 0));
}

But the assert is more compact.

Section 6.7 - How methods work
Each method call creates a new set of local variables, forming part of what is known as a stack

frame. A return causes those local variables to be discarded.

Challenge
ActivityC 6.6.1: Unit testing.

Add two more statements to main() to test inputs 3 and -1. Use print statements similar to the existing one (don't use assert).

Run

public class UnitTesting {
 // Function returns origNum cubed
 public static int cubeNum(int origNum) {
 return origNum * origNum * origNum;
 }

 public static void main (String [] args) {

 System.out.println("Testing started");
 System.out.println("2, expecting 8, got: " + cubeNum(2));

 /* Your solution goes here */

 System.out.println("Testing completed");

 return;
 }
}

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 41 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

Participation
ActivityP 6.7.1: Method calls and returns.

public class LengthConverter {
 public static int ftInToIn(int inFeet, int inInches){
 int totInches = 0;
 ...
 return totInches;
 }

 public static double ftInToCm(int inFeet, int inInches){
 int totIn = 0;
 double totCm = 0.0;
 ...
 totIn = ftInToIn(inFeet, inInches);
 ...
 return totCm;
 }

 public static void main (String [] args) {
 int userFt = 0;
 int userIn = 0;
 int userCm = 0;
 ...
 userCm = ftInToCm(userFt, userIn);
 ...
 return;
 }
}

userFt m
ainuserIn

userCm

inFeet
inInches
totInches

FtInToIn

inFeet ftInToC
m

inInches
totIn
totCm

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 42 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

Some knowledge of how a method call and return works at the bytecode level can not only satisfy
curiosity, but can also lead to fewer mistakes when parameter and return items become more
complex. The following animation illustrates by showing, for a method named findMax(), some sample
high-level code, compiler-generated bytecode instructions in memory, and data in memory during
runtime. This animation presents advanced material intended to provide insight and appreciation for
how a method call and return works.

The compiler generates instructions to copy arguments to parameter local variables, and to store a
return address. A jump instruction jumps from main to the method's instructions. The method

Participation
ActivityP 6.7.2: Function calls and returns.

int FtInToIn(int inFeet, int inInches) {
 int totInches = 0;
 ...
 return totInches;
}

double FtInToCm(int inFeet, int inInches) {
 int totIn = 0;
 double totCm = 0.0;
 ...
 totIn = FtInToIn(inFeet, inInches);
 ...
 return totCm;
}

int main() {
 int userFt = 0;
 int userIn = 0;
 int userCm = 0;
 ...
 userCm = FtInToCm(userFt, userIn);
 ...
 return 0;
}

Start

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 43 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

executes and stores results in a designated return value location. When the method completes, an
instruction jumps back to the caller's location using the previously-stored return address. Then, an
instruction copies the method's return value to the appropriate variable.

Press Compile to see how the compiler generates the machine instructions. Press Run to see how
those instructions execute the method call.

Participation
ActivityP 6.7.3: How method call/return works.

BackCompile Run

import java.util.Scanner;

public class MaxInt {
 public static int Max(int a, int b)
 int m = 0;
 if (a > b) {
 m = a;
 }
 else {
 m = b;
 }

 return m;
 }

 public static void main (String [] args) {
 Scanner scnr = new Scanner(System.in);
 int x = 0, y = 0, z = 0;

 x = scnr.nextInt();
 y = scnr.nextInt();
 z = Max(x, y);
 System.out.println(z);

 return;
 }
}

3

...

7
...

25

...

30

31

...

40

50

Instrs to init scnr,
x(96), y(97) and

z(98)
Instrs to call

"scnr.nextInt()

Instrs to copy
x(96) an y(97) to

a(100) and b(101),
set ret addr(103) to

31

Jmp 50
Instr to set

z(98) to ret val(102)

Instrs for
System.out.print

Jmp 7

Instrs to set m(102)
to 0, then to a(100)

or b(101)

Jmp to ret addr
in 103

Method call/ret
instrs

M
ax instrs

96

97

98
99

100

101

102

103

m
ain instrs

m
ain data

findM
ax data

x
y
z

a
b
c

ret val

ret addr

777
888
888

777
888

31

888

import java.util.Scanner;

public class MaxInt {
 public static int findMax(int a, int b)
 int m = 0;
 if (a > b) {
 m = a;
 }
 else {
 m = b;
 }

 return m;
 }

 public static void main (String [] args) {
 Scanner scnr = new Scanner(System.in);
 int x = 0, y = 0, z = 0;

 x = scnr.nextInt();
 y = scnr.nextInt();
 z = findMax(x, y);
 System.out.println(z);

 return;
 }
}

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 44 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

Section 6.8 - Methods: Common errors
A common error is to copy-and-paste code among methods but then not complete all necessary
modifications to the pasted code. For example, a programmer might have developed and tested a
method to convert a temperature value in Celsius to Fahrenheit, and then copied and modified the
original method into a new method to convert Fahrenheit to Celsius as shown:

Participation
ActivityP 6.7.4: How methods work.

Question Your answer

1

After a method returns, its local variables keep their values,
which serve as their initial values the next time the method is
called.

True

False

2

A return address indicates the value returned by the method. True

False

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 45 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

The programmer forgot to change the return statement to return celVal rather than fahVal. Copying-
and-pasting code is a common and useful time-saver, and can reduce errors by starting with known-
correct code. Our advice is that when you copy-paste code, be extremely vigilant in making all
necessary modifications. Just as the awareness that dark alleys or wet roads may be dangerous can
cause you to vigilantly observe your surroundings or drive carefully, the awareness that copying-and-
pasting is a common source of errors, may cause you to more vigilantly ensure you modify a pasted
method correctly.

Figure 6.8.1: Copy-paste common error. Pasted code not properly modified.
Find error on the right.

public static double cel2Fah(double celVal) {
 double convTmp = 0.0;
 double fahVal = 0.0;

 convTmp = (9.0 / 5.0) * celVal;
 fahVal = convTmp + 32;

 return fahVal;
}

public static double fah2Cel(double fahVal) {
 double convTmp = 0.0;
 double celVal = 0.0;

 convTmp = fahVal - 32;
 celVal = convTmp * (5.0 / 9.0);

 return fahVal;
}

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 46 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

Another common error is to return the wrong variable, such as typing return convTmp; instead of
fahVal or celVal. The method will work and sometimes even return the correct value.

Failing to return a value for a method is another common error. The omission of a return statement for
methods that should return non-void values (e.g., int, char, boolean) results in a compilation error such
as "missing return statement". For a method with a void return type, the method automatically returns
upon reaching the end of the method's statements, but some programmers recommend always
including a return statement for clarity.

Participation
ActivityP 6.8.1: Copy-pasted sum-of-squares code.

Original parameters were num1, num2, num3. Original code was:

int sum = 0;

sum = (num1 * num1) + (num2 * num2) + (num3 * num3);

return sum;

New parameters are num1, num2, num3, num4. Find the error in the copy-pasted new code
below.

Question

1

int sum = 0;

sum = (num1 * num1) + (num2 * num2) + (num3 * num3) +
(num3 * num4) ;

return sum;

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 47 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

Participation
ActivityP 6.8.2: Common function errors.

Find the error in the method's code.

Question

1

public static int computeSumOfSquares(int num1, int num2) {
 int sum = 0;

 sum = (num1 * num1) + (num2 * num2) ;

 return;
}

2

public static int computeEquation1(int num, int val, int k) {
 int sum = 0;

 sum = (num * val) + (k * val) ;

 return num;
}

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 48 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

Participation
ActivityP 6.8.3: Common method errors.

Forgetting to return a value from a method with a non-void return type is a common error. A
missing return statement will result in a compilation error.

Question Your answer

1

Forgetting to return a value from a method with a non-void
return type is a common error.

True

False

2

Copying-and-pasting code can lead to common errors if all
necessary changes are not made to the pasted code.

True

False

3

Returning the incorrect variable from a method is a common
error.

True

False

4

Is this method correct for squaring an integer?
public static int sqr(int a) {
 int t;
 t = a * a;
}

Yes

No

5

Is this method correct for squaring an integer?
public static int sqr(int a) {
 int t;
 t = a * a;
 return a;
}

Yes

No

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 49 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

Section 6.9 - Array parameters
A variable of primitive type (like int or char) is passed to a method by passing the value of the variable,
meaning the argument's value is copied into a local variable for the parameter. As such, any
assignments to parameters do not affect the arguments, because the parameter is a copy.

Challenge
ActivityC 6.8.1: Method errors: Copying one function to create another.

Using the celsiusToKelvin function as a guide, create a new function, changing the name to kelvinToCelsius, and modifying the function
accordingly.

Run

 return valueKelvin;
 }

 /* Your solution goes here */

 public static void main (String [] args) {
 double valueC = 0.0;
 double valueK = 0.0;

 valueC = 10.0;
 System.out.println(valueC + " C is " + celsiusToKelvin(valueC) + " K");

 valueK = 283.15;
 System.out.println(valueK + " is " + kelvinToCelsius(valueK) + " C");

 return;
 }
}

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 50 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

An array is passed to a method by passing a reference to the array. The array reference is copied to
the method's parameter, so a method can modify the elements of an array argument.

P Participation
Activity

6.9.1: Assigning parameters of primitive types has no impact
on arguments.

#include <iostream>
using namespace std;

void ConvHrMin
 (int tot, int hrs, int mins) {
 hrs = tot / 60;
 mins = tot % 60;
 return;
}

int main() {
 int totMin = 0;
 int hours = 0;
 int minutes = 0;

 cout << "Enter tot minutes: ";
 cin >> totMin;
 ConvHrMin(totMin, hours, minutes);
 cout << "Equals: ";
 cout << hours << " hrs ";
 cout << minutes << " mins" << endl;

 return 0;
}

Enter tot minutes:

97

98

99

96 totTime
usrHr
usrMin

100

101

m
ain0

0

102

156

156

Fails: hrVal/minVal are copies,
updates don't impact
arguments usrHr/usrMin

Equals: 0 hrs 0 mins

Start

import java.util.Scanner;

public class TimeConverter {
 public static void convHrMin (int timeVal,
 int hrVal,
 int minVal) {
 hrVal = timeVal / 60;
 minVal = timeVal % 60;
 return;
 }

 public static void main (String [] args) {
 Scanner scnr = new Scanner(System.in);
 int totTime = 0;
 int usrHr = 0;
 int usrMin = 0;

 System.out.print("Enter tot minutes: ");
 totTime = scnr.nextInt();
 convHrMin(totTime, usrHr, usrMin);
 System.out.print("Equals: ");
 System.out.print(usrHr + " hrs ");
 System.out.println(usrMin + " mins");

 return;
 }
}

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 51 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

While the contents of an array (or object) parameter can be changed in a method, the array reference
passed to the method cannot. Assigning the array parameter only updates the local reference, leaving
the argument unchanged. Above, setting parameter arrVals = something would have no
impact on the userVals argument. A common error is to assign a method's array (or object) parameter
believing that assignment will update the array argument.

Figure 6.9.1: Modifying an array parameter: A method that reverses an array.

import java.util.Scanner;

public class ArrayReversal {

 public static void reverseVals(int[] arrVals, int arrSize) {
 int i = 0; // Loop index
 int tmpStore = 0; // Temp variable for swapping

 for (i = 0; i < (arrSize / 2); ++i) {
 tmpStore = arrVals[i]; // Do swap
 arrVals[i] = arrVals[arrSize - 1 - i];
 arrVals[arrSize - 1 - i] = tmpStore;
 }

 return;
 }

 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 final int NUM_VALUES = 8; // Array size
 int[] userVals = new int[NUM_VALUES]; // User values
 int i = 0; // Loop index

 // Prompt user to populate array
 System.out.println("Enter " + NUM_VALUES + " values...");
 for (i = 0; i < NUM_VALUES; ++i) {
 System.out.print("Value: ");
 userVals[i] = scnr.nextInt();
 }

 // Call method to reverse array values
 reverseVals(userVals, NUM_VALUES);

 // Print updated arrays
 System.out.print("\nNew values: ");
 for (i = 0; i < NUM_VALUES; ++i) {
 System.out.print(userVals[i] + " ");
 }
 System.out.println();

 return;
 }
}

Enter 8 values...
Value: 10
Value: 20
Value: 30
Value: 40
Value: 50
Value: 60
Value: 70
Value: 80

New values: 80 70 60 50 40 30 20 10

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 52 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

Participation
ActivityP 6.9.2: Array parameters.

Question Your answer

1

A method cannot modify an argument of primitive type True

False

2

An array parameter is a copy of the array passed to the
method.

True

False

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 53 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

Section 6.10 - Scope of variable/method definitions
The name of a defined variable or method item is only visible to part of a program, known as the
item's scope. A variable defined in a method has scope limited to inside that method. In fact, because
a compiler scans a program line-by-line from top-to-bottom, the scope starts after the definition until
the method's end. The following highlights the scope of local variable cmVal.

Challenge
ActivityC 6.9.1: Modify an array parameter.

Write a method swapArrayEnds() that swaps the first and last elements of its array parameter. Ex: sortArray = {10, 20, 30, 40} becomes
{40, 20, 30, 10}. The array's size may differ from 4.

Run

 int[] sortArray = new int[numElem];
 int i = 0;

 sortArray[0] = 10;
 sortArray[1] = 20;
 sortArray[2] = 30;
 sortArray[3] = 40;

 swapArrayEnds(sortArray, numElem);

 for (i = 0; i < numElem; ++i) {
 System.out.print(sortArray[i]);
 System.out.print(" ");
 }
 System.out.println("");

 return;
 }
}

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 54 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

Note that variable cmVal is invisible to the method main(). A statement in main() like
newLen = cmVal; would yield a compiler error, e.g., the "cannot find symbol". Likewise, variables
userFt and userIn are invisible to the methodheightFtInToCm(). Thus, a programmer is free to define
items with names userFt or userIn in method heightFtInToCm.

A variable defined within a class but outside any method is called a class member variable or field, in
contrast to a local variable defined inside a method. A field's scope extends from the class's opening
brace to the class's closing brace, and reaches into methods regardless of where the field is defined
within the class. For example, heightFtInToCm() above accesses fields CM_PER_IN and IN_PER_FT.
Fields are sometimes called global variables, in contrast to local variables.

If a method's local variable (including a parameter) has the same name as a field, then in that method
the name refers to the local item and the field is inaccessible. Such naming can confuse a reader.
Furthermore, if a method updates a field, the method has effects that go beyond its parameters and

Figure 6.10.1: Local variable scope.
import java.util.Scanner;

public class HeightConverter {
 final static double CM_PER_IN = 2.54;
 final static int IN_PER_FT = 12;

 /* Converts a height in feet/inches to centimeters */
 public static double heightFtInToCm(int heightFt, int heightIn) {
 int totIn = 0;
 double cmVal = 0.0;

 totIn = (heightFt * IN_PER_FT) + heightIn; // Total inches
 cmVal = totIn * CM_PER_IN; // Conv inch to cm
 return cmVal;
 }

 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 int userFt = 0; // User defined feet
 int userIn = 0; // User defined inches

 // Prompt user for feet/inches
 System.out.print("Enter feet: ");
 userFt = scnr.nextInt();

 System.out.print("Enter inches: ");
 userIn = scnr.nextInt();

 // Output converted feet/inches to cm result
 System.out.print("Centimeters: ");
 System.out.println(heightFtInToCm(userFt, userIn));

 return;
 }
}

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 55 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

return value, sometimes known as side effects, which unless done carefully can make program
maintenance hard. Beginning programmers sometimes use globals to avoid having to use
parameters, which is bad practice.

A method also has scope, which extends from the class's opening brace to the class's closing brace.
Thus, a method can access any other method defined in the same class, regardless of the order in

Participation
ActivityP 6.10.1: Variable/method scope.

Question Your answer

1

A local variable is defined inside a method, while a field is
defined outside any method.

True

False

2

A local variable's scope extends from a method's opening
brace to the method's closing brace.

True

False

3

If a method's local variable has the same name as a method
parameter, the name will refer to the local variable.

True

False

4

If a method's local variable has the same name as a field, the
name will refer to the local variable.

True

False

5

A method that changes the value of a field is sometimes said
to have "side effects".

True

False

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 56 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

which the methods are defined. For example, the main() method can access heightFtInToCm() even if
the programmer defines heightFtInToCm() below main(), provided that both main() and
heightFtInToCm() are defined in the same class. Access specifiers additionally affect the visibility of
both methods and fields in other classes in the program. The public access modifier, for example,
allows the programmer to write code that accesses fields and methods from within a different class.
Although other access modifiers are available to the programmer, these constitute a more advanced
topic and are discussed elsewhere.

The main() method can access heightFtInToCm() even if the programmer defines heightFtInToCm()
below main(), provided that both methods are defined in the same class.

Figure 6.10.2: Method scope.
import java.util.Scanner;

public class HeightConverter {
 final static double CM_PER_IN = 2.54;
 final static int IN_PER_FT = 12;

 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 int userFt = 0; // User defined feet
 int userIn = 0; // User defined inches

 // Prompt user for feet/inches
 System.out.print("Enter feet: ");
 userFt = scnr.nextInt();

 System.out.print("Enter inches: ");
 userIn = scnr.nextInt();

 // Output converted feet/inches to cm result
 System.out.print("Centimeters: ");
 System.out.println(heightFtInToCm(userFt, userIn));

 return;
 }

 /* Converts a height in feet/inches to centimeters */
 public static double heightFtInToCm(int heightFt, int heightIn) {
 int totIn = 0;
 double cmVal = 0.0;

 totIn = (heightFt * IN_PER_FT) + heightIn; // Total inches
 cmVal = totIn * CM_PER_IN; // Conv inch to cm
 return cmVal;
 }

}

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 57 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

Section 6.11 - Method name overloading
Sometimes a program has two methods with the same name but differing in the number or types of
parameters, known as method name overloading or just method overloading. The following two
methods print a date given the day, month, and year. The first method has parameters of type int, int,
and int, while the second has parameters of type int, string, and int.

Participation
ActivityP 6.10.2: Method declaration and definition.

Question Your answer

1

A method can access any other method defined in the same
class.

True

False

Exploring further:
Method Definition and Overloading from Oracles' Java tutorials

http://docs.oracle.com/javase/tutorial/java/javaOO/methods.html

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 58 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

The compiler determines which method to call based on the argument types. datePrint(30, 7, 2012)
has argument types int, int, int, so calls the first method. datePrint(30, "July", 2012) has argument
types int, string, int, so calls the second method.

More than two same-named methods is allowed as long as each has distinct parameter types. Thus,
in the above program:

datePrint(int month, int day, int year, int style) can be added because the types int,
int, int, int differ from int, int, int, and from int, string, int.

datePrint(int month, int day, int year) yields a compiler error, because two methods
have types int, int, int (the parameter names are irrelevant).

A method's return type does not influence overloading. Thus, having two same-named method
definitions with the same parameter types but different return types still yield a compiler error.

Figure 6.11.1: Overloaded method name.

public class DatePrinter {
 public static void datePrint(int currDay, int currMonth, int currYear) {

 System.out.print(currMonth + "/" + currDay + "/" + currYear);
 return;
 }

 public static void datePrint(int currDay, String currMonth, int currYear) {

 System.out.print(currMonth + " " + currDay + ", " + currYear);
 return;
 }

 public static void main(String[] args) {

 datePrint(30, 7, 2012);
 System.out.println();

 datePrint(30, "July", 2012);
 System.out.println();

 return;
 }
}

7/30/2012
July 30, 2012

Participation
ActivityP 6.11.1: Method name overloading.

Given the following method definitions, type the number that each method call would print. If the
method call would not compile, choose Error.

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 59 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

public class DatePrinter {
 public static void datePrint(int day, int month, int year) {
 System.out.println("1");
 return;
 }

 public static void datePrint(int day, String month, int year) {
 System.out.println("2");
 return;
 }

 public static void datePrint(int month, int year) {
 System.out.println("3");
 return;
 }
}

Question Your answer

1

datePrint(30, 7, 2012); 1

2

3

Error

2

datePrint(30, "July", 2012); 1

2

3

Error

3

datePrint(7, 2012); 1

2

3

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 60 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

Error

4

datePrint(30, 7); 1

2

3

Error

5

datePrint("July", 2012); 1

2

3

Error

Exploring further:
Method definition and overloading from Oracles' Java tutorials

http://docs.oracle.com/javase/tutorial/java/javaOO/methods.html

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 61 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

Challenge
ActivityC 6.11.1: Overload salutation printing.

Complete the second printSalutation() method to print the following given personName "Holly" and customSalutation "Welcome":

Welcome, Holly

Run

import java.util.Scanner;

public class MultipleSalutations {
 public static void printSalutation(String personName) {
 System.out.println("Hello, " + personName);
 return;
 }

 //Define void printSalutation(String personName, String customSalutation)...

 /* Your solution goes here */

 public static void main (String [] args) {
 printSalutation("Holly", "Welcome");
 printSalutation("Sanjiv");

 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 62 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

Section 6.12 - Java documentation for methods
An important part of a program is its documentation, which is a written description of a program and
its various parts, intended to be read by programmers who must maintain or interface with the
program. Documentation written separately from a program is hard to keep consistent with the
program. Preferably, documentation could be written directly in the program itself.

Javadoc is a tool that parses specially formatted multi-line comments to generate program
documentation in HTML format. The program documentation is also known as an API (application
programming interface). Those special doc comments begin with /** and end with */; the beginning
two asterisks distinguish doc comments from regular comments.

Challenge
ActivityC 6.11.2: Convert a height into inches.

Write a second convertToInches() with two double parameters, numFeet and numInches, that returns the total number of inches. Ex:
convertToInches(4.0, 6.0) returns 54.0 (from 4.0 * 12 + 6.0).

Run

Figure 6.12.1: Using Javadoc comments to document the EbayFeeCalc

public class FunctionOverloadToInches {

 public static double convertToInches(double numFeet) {
 return numFeet * 12.0;
 }

 /* Your solution goes here */

 public static void main (String [] args) {
 double totInches = 0.0;

 totInches = convertToInches(4.0, 6.0);
 System.out.println("4.0, 6.0 yields " + totInches);

 totInches = convertToInches(5.9);
 System.out.println("5.9 yields " + totInches);
 return;
 }
}

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 63 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

Figure 6.12.1: Using Javadoc comments to document the EbayFeeCalc
program.

import java.util.Scanner;

/**
 * Program reports the fees charged by ebay.com given an item's
 * selling price.
 *
 * @author Zyante Developers
 * @version 1.0
 */
public class EbayFeeCalc {
 /**
 * Returns fees charged by ebay.com given selling price of
 * fixed-price books/movies/music/video-games. $0.50 to list
 * plus 13% of selling price up to $50.00, %5 of amount from
 * $50.01 to$1000.00, and 2% for amount $1000.01 or more.
 *
 * @param sellPrice the item's selling price
 * @return a double representing the imposed fees
 * @see "http://pages.ebay.com/help/sell/fees.html"
 */
 public static double ebayFee(double sellPrice) {
 final double BASE_LIST_FEE = 0.50; // Listing Fee
 final double PERC_50_OR_LESS = 0.13; // % $50 or less
 final double PERC_50_TO_1000 = 0.05; // % $50.01..$1000.00
 final double PERC_1000_OR_MORE = 0.02; // % $1000.01 or more
 double feeTot = 0.0; // Resulting eBay fee

 feeTot = BASE_LIST_FEE;

 // Determine additional fee based on selling pricd
 if (sellPrice <= 50.00) { // $50.00 or lower
 feeTot = feeTot + (sellPrice * PERC_50_OR_LESS);
 }
 else if (sellPrice <= 1000.00) { // $50.01..$1000.00
 feeTot = feeTot + (50 * PERC_50_OR_LESS)
 + ((sellPrice - 50) * PERC_50_TO_1000);
 }
 else { // $1000.01 and higher
 feeTot = feeTot + (50 * PERC_50_OR_LESS)
 + ((1000 - 50) * PERC_50_TO_1000)
 + ((sellPrice - 1000) * PERC_1000_OR_MORE);
 }

 return feeTot;
 }

 /**
 * Asks for an item's selling price and calls ebayFee() to
 * calculate the imposed fees.
 *
 * @param args command-line arguments
 */
 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 double sellingPrice = 0.0; // User defined selling price

 // Prompt user for selling price, call eBay fee method
 System.out.print("Enter item selling price (e.g., 65.00): ");

> javadoc EbayFeeCalc.java
Loading source file EbayFeeCalc.java...
Constructing Javadoc information...
Standard Doclet version 1.6.0_65
Building tree for all the packages and classes...
Generating EbayFeeCalc.html...
Generating package-frame.html...
Generating package-summary.html...
Generating package-tree.html...
Generating constant-values.html...
Building index for all the packages and classes...
Generating overview-tree.html...
Generating index-all.html...
Generating deprecated-list.html...
Building index for all classes...
Generating allclasses-frame.html...
Generating allclasses-noframe.html...
Generating index.html...
Generating help-doc.html...
Generating stylesheet.css...
>

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 64 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

 System.out.print("Enter item selling price (e.g., 65.00): ");
 sellingPrice = scnr.nextDouble();
 System.out.println("eBay fee: $" + ebayFee(sellingPrice));

 return;
 }
}

Figure 6.12.2: HTML output (index.html) of javadoc tool for above eBay fee
program.

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 65 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

Doc comments can only describe specific program items, like methods or classes. The doc comment
must immediately precede the item (whitespace is OK). Javadoc silently ignores incorrectly placed doc
comments.

Doc comments consist of an overall description, and a tags section.

The overall description describes the items purpose and extends to the first @, which denotes the
beginning of the tags section. A Javadoc comment tags section consists of block tags, each of the
form @keyword plus text, each block tag on its own line.

A method's doc comment typically has an overall description summarizing the method, and tags for
parameters, return types, and other items. Each class (described elsewhere) typically also has doc
comments. See examples in the above program. Good practice is to include a doc comment for every

Figure 6.12.3: Doc comments: Overall description, and tags.

/**
 * The overall description is written here.
 * The text below is the tag section.
 * @blockTag text associated with tag
 * @blockTag text associated with tag
 */

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 66 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

method, having at least an overall description, a @param block tag for each parameter, and a @return
block tag if not void.

Doc comments not only help a programmer who is working with the code, but also produces
standalone HTML documentation of a program and its methods, as shown above. The format is the
same as Oracle uses to describe the Java class library, e.g., Java String documentation.

A programmer can indicate the destination directory for documentation:
javadoc -d destination myProg.java.

Table 6.12.1: Common block tags in doc comments.

Block tag Description

@author Lists the item's author.

@version Indicates the items's version number (typically for a program).

@param Describes a method parameter's type, purpose, etc.

@return Describes a method's return type, purpose, etc. Optional if return type is void.

@see Refers to relevant information like a website, another method, etc.

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 67 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

Participation
ActivityP 6.12.1: Javadoc terms.

@param @author @version Doc comment @see @return Javadoc

Block tag

Drag and drop above item Tool that parses source code to generate HTML
documentation.

A block tag that refers to relevant information like a
website or another method.

A multi-line comment specially formatted to be
interpreted by the Javadoc tool. Can describe a program
and its methods.

A block tag that describes a single method parameter.

A block tag that specifies an author.

A keyword beginning with the "@" character. Used within
Doc comments.

A block tag that specifies a version number.

A block tag that describes the value returned by a
method.

Reset

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 68 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

Section 6.13 - Java example: Salary calculation with methods

Participation
ActivityP 6.12.2: Javadoc.

Question Your answer

1

A key advantage of javadoc comments is that a change to a
comment in the java source automatically updates
documentation on an HTML webpage.

True

False

2

A key advantage of javadoc comments is that the
documentation is close to the source code so is easier to
keep consistent with the source code.

True

False

3

Javadoc comments can be useful to a programmer
maintaining the code, as well as to other programmers that
must interface with that code.

True

False

Exploring further:
The Javadoc specification from Oracle's Java documentation
How to write Javadoc comments from Oracle's Java documentation
How to run the Javadoc tool from Oracle's Java documentation

Participation
ActivityP 6.13.1: Calculate salary: Using methods.

Separating calculations into methods simplifies modifying and expanding programs.

http://docs.oracle.com/javase/7/docs/technotes/tools/windows/javadoc.html
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://www.oracle.com/technetwork/java/javase/documentation/index-137483.html#howdoirunjavadoc

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 69 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

Separating calculations into methods simplifies modifying and expanding programs.

The following program calculates the tax rate and tax to pay, using methods. One method returns a
tax rate based on an annual salary.

1. Run the program below with annual salaries of 40000, 60000 and 0.
2. Change the program to use a method to input the annual salary.
3. Run the program again with the same annual salaries as above. Are results the

same?

Reset

40000 60000 0

import java.util.Scanner;

public class IncomeTax {
 // Method to get a value from one table based on a range in the other table
 public static double getCorrespondingTableValue(int search, int [] baseTable, double
 int baseTableLength = baseTable.length;
 double value = 0.0;
 int i = 0;
 boolean keepLooking = true;

 i = 0;
 while ((i < baseTableLength) && keepLooking) {
 if (search <= baseTable[i]) {
 value = valueTable[i];
 keepLooking = false;
 }
 else {
 ++i;

Run

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 70 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

A solution to the above problem follows. The program was altered slightly to allow a zero annual salary
and to end when a user enters a negative number for an annual salary.

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 71 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

Section 6.14 - Java example: Domain name validation with

Participation
ActivityP 6.13.2: Calculate salary: Using methods (solution).

Reset

50000 40000 1000000
-1

import java.util.Scanner;

public class IncomeTax {
 // Method to prompt for and input an integer
 public static int promptForInteger(Scanner input, String prompt) {
 int inputValue = 0;

 System.out.println(prompt + ": ");
 inputValue = input.nextInt();

 return inputValue;
 }

 // ***

 // Method to get a value from one table based on a range in the other table
 public static double getCorrespondingTableValue(int search, int [] baseTable, double
 int baseTableLength = baseTable.length;

Run

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 72 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

methodsParticipation
ActivityP 6.14.1: Validate domain names with methods.

Methods facilitate breaking down a large problem into a collection of smaller ones.

A top-level domain (TLD) name is the last part of an Internet domain name like .com in
example.com. A core generic top-level domain (core gTLD) is a TLD that is either .com, .net,
.org, or .info. A restricted top-level domain is a TLD that is either .biz, .name, or .pro. A
second-level domain is a single name that precedes a TLD as in apple in apple.com

The following program repeatedly prompts for a domain name and indicates whether that domain
name is valid and has a core gTLD. For this program, a valid domain name has a second-level
domain followed by a TLD, and the second-level domain has these three characteristics:

1. Is 1-63 characters in length.
2. Contains only uppercase and lowercase letters or a dash.
3. Does not begin or end with a dash.

For this program, a valid domain name must contain only one period, such as apple.com, but not
support.apple.com. The program ends when the user presses just the Enter key in response to a
prompt.

1. Run the program. Note that a restricted gTLD is not recognized as such.
2. Change the program by writing an input method and adding the validation for a

restricted gTLD. Run the program again.

Reset

apple.com

import java.util.Scanner;

public class DomainValidation {

 // ***

 /**
 getPeriodPosition - Get the position of a single period in a string.
 @param stringToSearch - The string to search for periods
 @return N >=0, the position of the single period in the string
 N < 0, there were no periods, or two or more periods
 */

 public static int getPeriodPosition(String stringToSearch) {
 int stringLength = stringToSearch.length();
 int periodCounter = 0;
 int periodPosition = -1;
 int i = 0;

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 73 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

apple.com
APPLE.com
apple.comm
apple.biz

Run

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 74 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

Participation
ActivityP 6.14.2: Validate domain names with methods.

A solution to the above problem follows.

Reset

apple.com
APPLE.com
apple.comm
apple.biz

import java.util.Scanner;

public class DomainValidation_Solution {

 // ***

 /**
 getPeriodPosition - Get the position of a single period in a string
 @param stringToSearch - The string to search for periods
 @return N >=0, the position of the single period in the string
 N < 0, there were no periods, or two or more periods
 */

 public static int getPeriodPosition(String stringToSearch) {
 int stringLength = stringToSearch.length();
 int periodCounter = 0;
 int periodPosition = -1;
 int i = 0;

Run

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 75 of 75https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/6/print

