
1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 1 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

Chapter 5 - Arrays

Section 5.1 - Array concept

A typical variable stores one data item, like the number 59 or the character 'a'. Instead, sometimes a
list of data items should be stored. Ex: A program recording points scored in each quarter of a
basketball game needs a list of 4 numbers. Requiring a programmer to define 4 variables is annoying;
200 variables would be ridiculous. An array is a special variable having one name, but storing a list of
data items, with each item directly accessible. Some languages use a construct similar to an array
called a vector. Each item in an array is known as an element.

You might think of a normal variable as a truck, and an array variable as a train. A truck has just one
car for carrying "data", but a train has many cars each of which can carry data.

Note_language_neutral

P Participation
Activity

5.1.1: Sometimes a variable should store a list, or array, of
data items.

numPlayers pointsPerQuarter

0

1

2

3

22

19

12

28

12

How many points in 4th quarter?
pointsPerQuarter[3] is 28

Start

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 2 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

In an array, each element's location number is called the index; myArray[2] has index 2. An array's
key feature is that the index enables direct access to any element, as in myArray[2]; different
languages may use different syntax, like myArray(3) or myVector.at(3). In many languages, indices start
with 0 rather than 1, so an array with 4 elements has indices 0, 1, 2, and 3.

Figure 5.1.1: A normal variable is like a truck, whereas an array variable is like a
train.

(Source for above images: Truck, Train)

http://www.freefoto.com/preview/21-26-37/Truck
http://www.freefoto.com/preview/807-36-1892/Euro-Cargo-Rail-Intermodal-train

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 3 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

Participation
ActivityP 5.1.2: Update the array's data values.

Start

Update myItems with the given code.

myItems
0 12
1 70
2 80
3 94
4 7
5 55
6 90

1 2 3 4 5 6

 Check Next

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 4 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

Participation
ActivityP 5.1.3: Array basics.

Array peoplePerDay has 365 elements, one for each day of the year. Valid accesses are
peoplePerDay[0], [1], ..., [364].

Question Your answer

1

Which assigns element 0 with the value 250? peoplePerDay[250] =
0

peoplePerDay[0] =
250

peoplePerDay = 250

2

Which assigns element 1 with the value 99? peoplePerDay[1] = 99

peoplePerDay[99] = 1

3

Given the following statements:

peoplePerDay[9] = 5;
peoplePerDay[8] = peoplePerDay[9] - 3;

What is the value of peoplePerDay[8]?

8

5

2

4

Assume N is initially 1. Given the following:

peoplePerDay[N] = 15;
N = N + 1;
peoplePerDay[N] = peoplePerDay[N - 1] * 3;

What is the value of peoplePerDay[2]?

15

2

45

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 5 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

(*Note_language_neutral) This section is mostly language neutral

Section 5.2 - Arrays
Previously-introduced variables could each only store a single item. Just as people often maintain lists
of items like a grocery list or a course roster, a programmer commonly needs to maintain a list of
items. A construct known as an array can be used for this purpose. An array is an ordered list of
items of a given data type. Each item in an array is called an element.

Participation
ActivityP 5.1.4: Arrays with element numbering starting with 0.

Array scoresList has 10 elements with indices 0 to 9, accessed as scoresList[0] to scoresList[9].

Question Your answer

1
Assign the first element in scoresList with 77.

2
Assign the second element in scoresList with 77.

3
Assign the last element with 77.

4
If that array instead has 100 elements, what is the
last element's index?

5
If the array's last index was 499, how many
elements does the array have?

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 6 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

The [] symbols, called brackets, indicate that the variable is an array reference. An array reference
variable can refer to an array of various sizes. That array must be explicitly allocated by the program
using the new operator. The new operator is used by the program to allocate an array using the
following form:

This statement creates space in memory to store the array with the specific number of elements, and
assigns the array reference variable to refer to that newly allocated array.

Similar to variable declaration, a good practice is to combine definition with initialization. For example,
to define an array of 5 integers named myArray, a programmer can use the statement
int[] myArray = new int[5];.

Terminology note: [] are brackets, { } are braces.

The following shows how to read and assign values within an array. The program creates a variable
named vals with 3 elements, each of data type int. Those three elements are in fact each a separate
variable that is accessed using the syntax vals[0], vals[1], and vals[2]. Note that the 3 elements are
(some might say unfortunately) numbered 0 1 2 and not 1 2 3. In an array access, the number in
brackets is called the index of the corresponding element.

Construct 5.2.1: Array reference variable declaration.
dataType[] identifier;

Construct 5.2.2: Array allocation.
identifier = new type[numElements];

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 7 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

P Participation
Activity

5.2.1: An array definition creates multiple variables in
memory, each accessible using [].

Participation
ActivityP 5.2.2: Select the index shown.

Start

1 2 3 4 5 6

 Check Next

Start

 97

 98

 99

 96

int[] vals = new int[3];

vals[0] = 122;
vals[1] = 119;
vals[2] = 117;

System.out.print(vals[1]);

122
119
117

119

vals[0]
vals[1]
vals[2]

vals

4.0, 12.0

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 8 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

Participation
ActivityP 5.2.3: Array basics.

Given:

int[] yearsArr = new int[4];

yearsArr[0] = 1999;
yearsArr[1] = 2012;
yearsArr[2] = 2025;

Question Your answer

1

How many elements in memory does the array variable
definition and initialization statement create?

0

1

3

4

2

What value is stored in yearsArr[1]? 1

1999

2012

3

What value does curr = yearsArr[2] assign to curr? 2

2025

Invalid index

4

What value does curr = yearsArr[4] assign to curr? 4

2025

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 9 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

Besides reducing the number of variables a programmer must define, a powerful aspect of arrays is
that the index is an expression. Thus, an access could be written as userNums[i] where i is an int
variable. As such, an array is useful to easily lookup the Nth item in a list. Consider the following
program that allows a user to print the age of the Nth oldest known person to have ever lived.

Invalid index

5

Recall that the array variable definition and initialization
statement was int[] yearsArr = new int[4]. Is
curr = yearsArr[4] a valid assignment?

Yes, it accesses the
fourth element.

No, yearsArr[4] does
not exist.

6

What is the proper way to access the first element in array
yearsArr?

yearsArr[1]

yearsArr[0]

7

What are the contents of the array if the above code is
followed by the statement: yearsArr[0] = yearsArr[2]?

1999, 2012, 1999, ?

2012, 2012, 2025, ?

2025, 2012, 2025, ?

8

What is the index of the last element for the following array:
int[] pricesArr = new int[100];

99

100

101

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 10 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

The program can quickly access the Nth oldest person's age using
oldestPeople[nthPerson - 1]. Note that the index is nthPerson - 1 rather than just
nthPerson because an array's indices start at 0, so the 1st age is at index 0, the 2nd at index 1, etc.

An array's index must be an integer type. The array index cannot be a floating-point type, even if the
value is 0.0, 1.0, etc.

A key advantage of arrays becomes evident when used in conjunction with loops. To illustrate, the
following program allows a user to enter 8 integer values, then prints those 8 values:

Figure 5.2.1: Array's ith element can be directly accessed using [i]: Oldest
people program.

import java.util.Scanner;

public class OldestPeople {
 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 int[] oldestPeople = new int[5]; // Source: Wikipedia.org
 int nthPerson = 0; // User input, Nth oldest person

 oldestPeople[0] = 122; // Died 1997 in France
 oldestPeople[1] = 119; // Died 1999 in U.S.
 oldestPeople[2] = 117; // Died 1993 in U.S.
 oldestPeople[3] = 117; // Died 1998 in Canada
 oldestPeople[4] = 116; // Died 2006 in Ecuador

 System.out.print("Enter N (1-5): ");
 nthPerson = scnr.nextInt();

 if ((nthPerson >= 1) && (nthPerson <= 5)) {
 System.out.print("The " + nthPerson + "th oldest person lived ");
 System.out.println(oldestPeople[nthPerson - 1] + " years.");
 }

 return;
 }
}

Enter N (1-5): 1
The 1th oldest person lived 122 years.

...

Enter N (1-5): 4
The 4th oldest person lived 117 years.

...

Enter N (1-5): 9

...

Enter N (1-5): 0

...

Enter N (1-5): 5
The 5th oldest person lived 116 years.

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 11 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

Consider how the program would have had to be written if using 8 separate variables. That program
would have repeated variable definitions, output statements, and input statements. Now consider that
program for NUM_ELEMENTS equal to 100, 1000, or more. With arrays and loops, the code would
be the same as above. Only the constant literal 8 would be changed.

An array's elements are automatically initialized to default values when using the new operator to
initialize the array reference. The default value for elements of integer and floating-point data types is
zero, and the default value for boolean elements is false. For information on default values of other
data types, see The Java Language Specification.

Initialization of the individual elements may be added to the array variable definition as shown below.

Such initialization of the array elements does not require the use of the new operator, because the
array's size is automatically set to the number of elements within the braces. For example,

Figure 5.2.2: Arrays combined with loops are powerful together: User-entered
numbers.

import java.util.Scanner;

public class ArrayPrinter {
 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 final int NUM_ELEMENTS = 8; // Number of elements in array
 int[] userVals = new int[NUM_ELEMENTS]; // User numbers
 int i = 0; // Loop index

 System.out.println("Enter " + NUM_ELEMENTS + " integer values...");
 for (i = 0; i < NUM_ELEMENTS; ++i) {
 System.out.print("Value: ");
 userVals[i] = scnr.nextInt();
 }

 System.out.print("You entered: ");
 for (i = 0; i < NUM_ELEMENTS; ++i) {
 System.out.print(userVals[i] + " ");
 }
 System.out.println();

 return;
 }
}

Enter 8 integer values...
Value: 5
Value: 99
Value: -1
Value: -44
Value: 8
Value: 555555
Value: 0
Value: 2
You entered: 5 99 -1 -44 8 555555 0 2

Construct 5.2.3: Additional array initialization.
type[] identifier = {val0, val1, ..., valN - 1};

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 12 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

int[] myArray = {1, 1, 1}; creates an array of three integer elements, each element
initialized to 1. For larger arrays, initialization may be done by first defining the array, and then using a
loop to fill the array.

Participation
ActivityP 5.2.4: Array definition and use.

Question Your answer

1
Define and initialize an array named myVals that
stores 10 elements of type int with default values.

2
Assign the value stored at index 8 of array myVals to
a variable x.

3
Assign the value 555 to the element at index 2 of
array myVals.

4
Assign the value 777 to the second element of array
myVals.

5
Define an array of ints named myVals with 4
elements each initialized to 10.

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 13 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

Challenge
ActivityC 5.2.1: Enter the output for the array.

Start

Enter the output of the following program.

public class arrayOutput {
 public static void main (String [] args) {
 final int NUM_ELEMENTS = 3;
 int [] userVals = new int[NUM_ELEMENTS];
 int i = 0;

 userVals[0] = 3;
 userVals[1] = 4;
 userVals[2] = 8;

 for (i = 0; i < NUM_ELEMENTS; ++i) {
 System.out.println(userVals[i]);
 }

 return;
 }
}

3
4
8

1 2 3 4 5

 Check Next

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 14 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

Challenge
ActivityC 5.2.2: Printing array elements.

Write three statements to print the first three elements of array runTimes. Follow each statement with a newline. Ex: If runTime = {800,
775, 790, 805, 808}, print:

800
775
790

Note: These activities may test code with different test values. This activity will perform two tests, the first with a 5-element array (int
runTimes[5]), the second with a 4-element array (int runTimes[4]). See How to Use zyBooks.

Also note: If the submitted code tries to access an invalid array element, such as runTime[9] for a 5-element array, the test may generate
strange results. Or the test may crash and report "Program end never reached", in which case the system doesn't print the test case that
caused the reported message.

Run

import java.util.Scanner;

public class PrintRunTimes {
 public static void main (String [] args) {
 int[] runTimes = new int[5];

 // Populate array
 runTimes[0] = 800;
 runTimes[1] = 775;
 runTimes[2] = 790;
 runTimes[3] = 805;
 runTimes[4] = 808;

 /* Your solution goes here */

 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

https://zybooks.zyante.com/#/zybook/HowToUseZyBooks/chapter/1/section/2

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 15 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

Challenge
ActivityC 5.2.3: Printing array elements with a for loop.

Write a for loop to print all elements in courseGrades, following each element with a space (including the last). Print forwards, then
backwards. End each loop with a newline. Ex: If courseGrades = {7, 9, 11, 10}, print:

7 9 11 10
10 11 9 7

Hint: Use two for loops. Second loop starts with i = NUM_VALS - 1.

Note: These activities may test code with different test values. This activity will perform two tests, the first with a 4-element array (int
courseGrades[4]), the second with a 2-element array (int courseGrades[2]). See How to Use zyBooks

Also note: If the submitted code tries to access an invalid array element, such as courseGrades[9] for a 4-element array, the test may
generate strange results. Or the test may crash and report "Program end never reached", in which case the system doesn't print the test
case that caused the reported message.

Run

import java.util.Scanner;

public class CourseGradePrinter {
 public static void main (String [] args) {
 final int NUM_VALS = 4;
 int[] courseGrades = new int[NUM_VALS];
 int i = 0;

 courseGrades[0] = 7;
 courseGrades[1] = 9;
 courseGrades[2] = 11;
 courseGrades[3] = 10;

 /* Your solution goes here */

 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

https://zybooks.zyante.com/#/zybook/HowToUseZyBooks/chapter/1/section/2

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 16 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

Section 5.3 - Array iteration drill
The following activities can help one become comfortable with iterating through arrays or vectors,
before learning to code such iteration.

P Participation
Activity

5.3.1: Find the maximum value in the
array.

Click "Store value" if a new maximum value is seen.

Start

X X X X X X X
Stored value

-1

Time - Best time -

Next value Store value

Clear best

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 17 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

P Participation
Activity

5.3.2: Negative value counting in
array.

Click "Increment" if a negative value is seen.

Start

X X X X X X X
Counter

0

Time - Best time -

Next value Increment

Clear best

Participation
ActivityP 5.3.3: Array sorting largest value.

Move the largest value to the right-most position. Click "Swap values" if the larger of the two
current values is on the left.

Start

X X X X X X X

Time - Best time -

Next value Swap values

Clear best

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 18 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

Section 5.4 - Iterating through arrays
Iterating through arrays using loops is commonplace and is an important programming skill to master.

Because array indices are numbered 0 to N - 1 rather than 1 to N, programmers commonly use this
for loop structure:

Note that index variable i is initialized to 0, and the loop expression is i < N rather than i <= N. If N
were 5, the loop's iterations would set i to 0, 1, 2, 3, and 4, for a total of 5 iterations. The benefit of the
loop structure is that each array element is accessed as myArray[i] rather than the more complex
myArray[i - 1].

Programs commonly iterate through arrays to determine some quantity about the array's items. For
example, the following program determines the maximum value in a user-entered list.

Figure 5.4.1: Common for loop structure for iterating through an array.
// Iterating through myArray
for (i = 0; i < numElements; ++i) {
 // Loop body accessing myArray[i]
}

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 19 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

If the user enters numbers 7, -9, 55, 44, 20, -400, 0, 2, then the program will output "max: 55". The
bottom part of the code iterates through the array to determine the maximum value. The main idea of
that code is to use a variable maxVal to store the largest value seen "so far" as the program iterates
through the array. During each iteration, if the array's current element value is larger than the max seen
so far, the program writes that value to maxVal (akin to being able to carry only one item as you walk
through a store, replacing the current item by a better item whenever you see one). Before entering
the loop, maxVal must be initialized to some value because max will be compared with each array
element's value. A logical error would be to initialize maxVal to 0, because 0 is not in fact the largest
value seen so far, and would result in incorrect output (of 0) if the user entered all negative numbers.
Instead, the program peeks at an array element (using the first element, though any element could
have been used) and initializes maxVal to that element's value.

Figure 5.4.2: Iterating through an array example: Program that finds the max
item.

import java.util.Scanner;

public class ArrayMax {

 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 final int NUM_ELEMENTS = 8; // Number of elements
 int[] userVals = new int[NUM_ELEMENTS]; // Array of user numbers
 int i = 0; // Loop index
 int maxVal = 0; // Computed max

 // Prompt user to populate array
 System.out.println("Enter " + NUM_ELEMENTS + " integer values...");

 for (i = 0; i < NUM_ELEMENTS; ++i) {
 System.out.print("Value: ");
 userVals[i] = scnr.nextInt();
 }

 // Determine largest (max) number
 maxVal = userVals[0]; // Largest so far

 for (i = 0; i < NUM_ELEMENTS; ++i) {
 if (userVals[i] > maxVal) {
 maxVal = userVals[i];
 }
 }
 System.out.println("Max: " + maxVal);

 return;
 }
}

Enter 8 integer values...
Value: 3
Value: 5
Value: 23
Value: -1
Value: 456
Value: 1
Value: 6
Value: 83
Max: 456

...

Enter 8 integer values...
Value: -5
Value: -10
Value: -44
Value: -2
Value: -27
Value: -9
Value: -27
Value: -9
Max: -2

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 20 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

A common error is to try to access an array with an index that is out of the array's index range, e.g., to
try to access v[8] when v's valid indices are 0-7. Care should be taken whenever a user enters a
number that is then used as an array index, and when using a loop index as an array index also, to
ensure the index is within the array's valid index range. Checking whether an array index is in range is
very important. Trying to access an array with an out-of-range index results in a runtime error that
causes the program to terminate.

Participation
ActivityP 5.4.1: Array iteration.

Given an integer array myVals of size N_SIZE (i.e. int[] myVals = new int[N_SIZE]), complete the
code to achieve the stated goal.

Question Your answer

1

Determine the
minimum number in
the array, using the
same initialization
as the maximum
number example
above.

minVal = ;
for (i = 0; i < N_SIZE; ++i) {
 if (myVals[i] < minVal) {
 minVal = myVals[i];
 }
}

2

Count how many
negative numbers
exist in the array.

cntNeg = 0;
for (i = 0; i < N_SIZE; ++i) {
 if () {
 ++cntNeg;
 }
}

3

Count how many
odd numbers exist
in the array.

cntOdd = 0;
for (i = 0; i < N_SIZE; ++i) {
 if ((myVals[i] % 2) == 1) { ;
 }
}

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 21 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

Iterating through an array for various purposes is an important programming skill to master. Here is
another example, computing the sum of an array of int variables:

Participation
ActivityP 5.4.2: Writing to an out-of-range index using an array.

int[] weights = new int[3];

weights[0] = 122;
weights[1] = 119;
weights[2] = 117;
weights[3] = 199; // (Problematic)

96

97

98

99

100

weights[2]
weights[1]
weights[0]

weights
122
119
117

Exception in thread "main"
java.lang.ArrayIndexOutOfBoundsException: 3.

Start

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 22 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

Note that the code is somewhat different than the code computing the max. For computing the sum,
the program initializes a variable sum to 0, then simply adds the current iteration's array element value
to that sum.

Figure 5.4.3: Iterating through an array example: Program that finds the sum of
an array's elements.

import java.util.Scanner;

public class ArraySum {
 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 final int NUM_ELEMENTS = 8; // Number of elements
 int[] userVals = new int[NUM_ELEMENTS]; // User numbers
 int i = 0; // Loop index
 int sumVal = 0; // For computing sum

 // Prompt user to populate array
 System.out.println("Enter " + NUM_ELEMENTS + " integer values...");

 for (i = 0; i < NUM_ELEMENTS; ++i) {
 System.out.print("Value: ");
 userVals[i] = scnr.nextInt();
 }

 // Determine sum
 sumVal = 0;

 for (i = 0; i < NUM_ELEMENTS; ++i) {
 sumVal = sumVal + userVals[i];
 }
 System.out.println("Sum: " + sumVal);

 return;
 }
}

Enter 8 integer values...
Value: 3
Value: 5
Value: 234
Value: 346
Value: 234
Value: 73
Value: 26
Value: -1
Sum: 920

...

Enter 8 integer values...
Value: 3
Value: 5
Value: 234
Value: 346
Value: 234
Value: 73
Value: 26
Value: 1
Sum: 922

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 23 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

Participation
ActivityP 5.4.3: Print the sum and average of an array's elements.

Modify the program to print the average as well as the sum. Hint: You don't actually have to
change the loop, but rather change what you print.

 3 5 234 346 234 73 26 -1
import java.util.Scanner;

public class ArraySum {
 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 final int NUM_ELEMENTS = 8; // Number of elements
 int[] userVals = new int[NUM_ELEMENTS]; // User numbers
 int i = 0; // Loop index
 int sumVal = 0; // For computing sum

 // Prompt user to populate array
 System.out.println("Enter " + NUM_ELEMENTS + " integer values..."

 for (i = 0; i < NUM_ELEMENTS; ++i) {
 System.out.println("Value: ");
 userVals[i] = scnr.nextInt();
 }

Run

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 24 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

Participation
ActivityP 5.4.4: Print selected elements of an array.

Modify the program to instead just print each number that is greater than 21.

 3 5 234 346 234 73 26 -1
import java.util.Scanner;

public class ArraySum {
 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 final int NUM_ELEMENTS = 8; // Number of elements
 int[] userVals = new int[NUM_ELEMENTS]; // User numbers
 int i = 0; // Loop index
 int sumVal = 0; // For computing sum

 // Prompt user to populate array
 System.out.println("Enter " + NUM_ELEMENTS + " integer values..."

 for (i = 0; i < NUM_ELEMENTS; ++i) {
 System.out.println("Value: ");
 userVals[i] = scnr.nextInt();
 }

Run

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 25 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

Challenge
ActivityC 5.4.1: Enter the output for the array.

Start

Enter the output of the following program.

public class arrayOutput {
 public static void main (String [] args) {
 final int NUM_ELEMENTS = 3;
 int [] userVals = new int[NUM_ELEMENTS];
 int i = 0;

 userVals[0] = 3;
 userVals[1] = 5;
 userVals[2] = 9;

 for (i = 0; i < NUM_ELEMENTS; ++i) {
 System.out.println(userVals[i]);
 }

 return;
 }
}

3
5
9

1 2 3 4 5 6

 Check Next

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 26 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

Challenge
ActivityC 5.4.2: Finding values in an array.

Set numMatches to the number of elements in userValues (having NUM_VALS elements) that equal matchValue. Ex: If matchValue = 2 and
userVals = {2, 2, 1, 2}, then numMatches = 3.

Run

 int[] userValues = new int[NUM_VALS];
 int i = 0;
 int matchValue = 0;
 int numMatches = -99; // Assign numMatches with 0 before your for loop

 userValues[0] = 2;
 userValues[1] = 2;
 userValues[2] = 1;
 userValues[3] = 2;

 matchValue = 2;

 /* Your solution goes here */

 System.out.println("matchValue: " + matchValue + ", numMatches: " + numMatches

 return;
 }
}

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 27 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

Challenge
ActivityC 5.4.3: Populating an array with a for loop.

Write a for loop to populate array userGuesses with NUM_GUESSES integers. Read integers using Scanner. Ex: If NUM_GUESSES is 3
and user enters 9 5 2, then userGuesses is {9, 5, 2}.

Run

import java.util.Scanner;

public class StoreGuesses {
 public static void main (String [] args) {
 Scanner scnr = new Scanner(System.in);
 final int NUM_GUESSES = 3;
 int[] userGuesses = new int[NUM_GUESSES];
 int i = 0;

 /* Your solution goes here */

 for (i = 0; i < NUM_GUESSES; ++i){
 System.out.print(userGuesses[i] + " ");
 }

 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 28 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

Challenge
ActivityC 5.4.4: Array iteration: Sum of excess.

Array testGrades contains NUM_VALS test scores. Write a for loop that sets sumExtra to the total extra credit received.
so anything over 100 is extra credit. Ex: If testGrades = {101, 83, 107, 90}, then sumExtra = 8, because 1 + 0 + 7 + 0 is 8.

Run

public class SumOfExcess {
 public static void main (String [] args) {
 final int NUM_VALS = 4;
 int[] testGrades = new int[NUM_VALS];
 int i = 0;
 int sumExtra = -9999; // Assign sumExtra with 0 before your for loop

 testGrades[0] = 101;
 testGrades[1] = 83;
 testGrades[2] = 107;
 testGrades[3] = 90;

 /* Your solution goes here */

 System.out.println("sumExtra: " + sumExtra);

 return;
 }
}

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 29 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

Section 5.5 - Multiple arrays
Programmers commonly use multiple same-sized arrays to store related lists. For example, the
following program maintains a list of letter weights in ounces, and another list indicating the
corresponding postage cost for first class mail (usps.com).

Challenge
ActivityC 5.4.5: Printing array elements separated by commas.

Write a for loop to print all NUM_VALS elements of array hourlyTemp. Separate elements with a comma and space. Ex: If hourlyTemp =
{90, 92, 94, 95}, print:

90, 92, 94, 95

Note that the last element is not followed by a comma, space, or newline.

Run

Figure 5.5.1: Multiple array example: Letter postage cost program.

public class PrintWithComma {
 public static void main (String [] args) {
 final int NUM_VALS = 4;
 int[] hourlyTemp = new int[NUM_VALS];
 int i = 0;

 hourlyTemp[0] = 90;
 hourlyTemp[1] = 92;
 hourlyTemp[2] = 94;
 hourlyTemp[3] = 95;

 /* Your solution goes here */

 System.out.println("");

 return;
 }
}

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 30 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

import java.util.Scanner;

public class PostageCalc {
 public static void main (String [] args) {
 Scanner scnr = new Scanner(System.in);
 final int NUM_ELEMENTS = 14; // Number of elements
 double[] letterWeights = new double[NUM_ELEMENTS]; // Weights in ounces
 int[] postageCosts = new int[NUM_ELEMENTS]; // Costs in cents (usps.com 2013)
 double userLetterWeight = 0.0; // Letter weight
 boolean foundWeight = false; // Found weight specified by user
 int i = 0; // Loop index

 // Populate letter weight/postage cost arrays
 letterWeights[i] = 1; postageCosts[i] = 46; ++i;
 letterWeights[i] = 2; postageCosts[i] = 66; ++i;
 letterWeights[i] = 3; postageCosts[i] = 86; ++i;
 letterWeights[i] = 3.5; postageCosts[i] = 106; ++i;
 letterWeights[i] = 4; postageCosts[i] = 152; ++i;
 letterWeights[i] = 5; postageCosts[i] = 172; ++i;
 letterWeights[i] = 6; postageCosts[i] = 192; ++i;
 letterWeights[i] = 7; postageCosts[i] = 212; ++i;
 letterWeights[i] = 8; postageCosts[i] = 232; ++i;
 letterWeights[i] = 9; postageCosts[i] = 252; ++i;
 letterWeights[i] = 10; postageCosts[i] = 272; ++i;
 letterWeights[i] = 11; postageCosts[i] = 292; ++i;
 letterWeights[i] = 12; postageCosts[i] = 312; ++i;
 letterWeights[i] = 13; postageCosts[i] = 332; ++i;

 // Prompt user to enter letter weight
 System.out.print("Enter letter weight (in ounces): ");
 userLetterWeight = scnr.nextDouble();

 // Postage costs is based on smallest letter weight greater than
 // or equal to mailing letter weight
 foundWeight = false;

 for (i = 0; (i < NUM_ELEMENTS) && (!foundWeight); ++i) {
 if(userLetterWeight <= letterWeights[i]) {
 foundWeight = true;
 System.out.print("Postage for USPS first class mail is ");
 System.out.print(postageCosts[i]);
 System.out.println(" cents");
 }
 }

 if(!foundWeight) {
 System.out.println("Letter is too heavy for USPS " +
 "first class mail.");
 }

 return;
 }
}

Enter letter weight (in ounces): 3
Postage for USPS first class mail is 86 cents

...

Enter letter weight (in ounces): 9.5
Postage for USPS first class mail is 272 cents

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 31 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

Notice how the if (userLetterWeight <= letterWeights[i]) statement compares the
user-entered letter weight with the current element in the letterWeights array. If the entered weight is
less than or equal to the current element in the letterWeights array, the program prints the element in
postageCosts having that same index.

The loop's expression (i < NUM_ELEMENTS) && (!foundWeight) depends on the value of the
variable foundWeight. This expression prevents the loop from iterating through the entire array once
the correct letter weight has been found. Omitting the check for found from the loop expression would
result in an incorrect output; the program would incorrectly print the postage cost for all letter weights
greater than the user's letter weight.

Note that the array initialization uses [i] rather than [0], [1], etc. Such a technique is less prone to
errors, and enables easy reordering or inserting of new letter weights and postage costs.

...

Enter letter weight (in ounces): 15
Letter is too heavy for USPS first class mail.

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 32 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

Participation
ActivityP 5.5.1: Multiple arrays in the above postage cost program.

Question Your answer

1

letterWeights[0] is 1, meaning element 0 of letterWeights and
postageCosts correspond to a weight of 1 ounce.

True

False

2

postageCosts[2] represents the cost for a weight of 2
ounces.

True

False

3

The program fails to provide a cost for a weight of 7.5. True

False

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 33 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

Participation
ActivityP 5.5.2: Postage calculation with negative weight error message.

Improve the program by also outputting "The next higher weight is ___ with a cost of ___ cents".

 3

Participation
ActivityP 5.5.3: Multiple arrays.

Question Your answer

1

Using two separate statements, define two related
integer arrays named seatPosition and testScore (in
that order) each with 130 elements.

2

How many total elements are stored within array
familyAges with 50 elements, and array
familyHeights with 50 elements?

import java.util.Scanner;

public class PostageCalc {
 public static void main (String [] args) {
 Scanner scnr = new Scanner(System.in);
 final int NUM_ELEMENTS = 14;
 double[] letterWeights = new double[NUM_ELEMENTS];
 int[] postageCosts = new int[NUM_ELEMENTS];
 double userLetterWeight = 0.0;
 boolean foundWeight = false;
 int i = 0;

 // Populate letter weight/postage cost arrays
 letterWeights[i] = 1; postageCosts[i] = 46; ++
 letterWeights[i] = 2; postageCosts[i] = 66; ++
 letterWeights[i] = 3; postageCosts[i] = 86; ++
 letterWeights[i] = 3.5; postageCosts[i] = 106; ++
 letterWeights[i] = 4; postageCosts[i] = 152; ++

Run

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 34 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

Challenge
ActivityC 5.5.1: Printing the sum of two array elements.

Add each element in origList with the corresponding value in offsetAmount. Print each sum followed by a space. Use two print statements.
Ex: If origList = {40, 50, 60, 70} and offsetAmount = {5, 7, 3, 0}, print:

45 57 63 70

Run

 int i = 0;

 origList[0] = 40;
 origList[1] = 50;
 origList[2] = 60;
 origList[3] = 70;

 offsetAmount[0] = 5;
 offsetAmount[1] = 7;
 offsetAmount[2] = 3;
 offsetAmount[3] = 0;

 /* Your solution goes here */

 System.out.println("");

 return;
 }
}

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 35 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

Section 5.6 - Swapping two variables

Sometimes a program must swap values among two variables. Swapping two variables x and y
means to assign y's value to x, and x's value to y. If x is 33 and y is 55, then after swapping x is 55
and y is 33.

Swapping requires a temporary third variable. To understand the intuition of such temporary storage,
consider a person holding a book in one hand and a phone in the other, wishing to swap the items.

Challenge
ActivityC 5.5.2: Multiple arrays: Key and value.

For any element in keysList with a value greater than 100, print the corresponding value in itemsList, followed by a space. Ex: If keysList =
{42, 105, 101, 100} and itemsList = {10, 20, 30, 40}, print:

20 30

Since keysList[1] and keysList[2] have values greater than 100, the value of itemsList[1] and itemsList[2] are printed.

Run

Note_language_neutral2

 int i = 0;

 keysList[0] = 42;
 keysList[1] = 105;
 keysList[2] = 101;
 keysList[3] = 100;

 itemsList[0] = 10;
 itemsList[1] = 20;
 itemsList[2] = 30;
 itemsList[3] = 40;

 /* Your solution goes here */

 System.out.println("");

 return;
 }
}

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 36 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

The person can temporarily place the phone on a table, move the book to the other hand, then pick
up the phone.

Similarly, swapping two variables uses a third variable to temporarily hold one value while the other
value is copied over.

Participation
ActivityP 5.6.1: Swap idea: Use a temporary location.

Left hand Right hand
1. Put phone on table

2. Move book

3. Pick up phone

Table

(temporary place)

Book Phone

Start

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 37 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

P Participation
Activity

5.6.2: Swapping two variables requires a third temporary
variable.

X: 55, Y: 33

Store X in tempVal first,
swap succeeds

Start

tempVal = X;

int X = 33;
int Y = 55;
int tempVal = 0;

X = Y;
Y = tempVal;

// Print X and Y

97

98

99

96

X
Y
tempVal

55
33

0 33

55
33

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 38 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

If you have studied arrays or vectors (or other kinds of lists), know that most swaps are actually
performed between two list elements. For example, reversing a list with N elements can be achieved
by swapping element 1 and N, element 2 and N-1, element 3 and N-2, etc. (stopping at the middle of
the list).

Participation
ActivityP 5.6.3: Swap.

Given x = 22 and y = 99. What are x and y after the given code?

Question Your answer

1

x = y;
y = x;

x is 99 and y is 22.

x is 22 and y is 99.

x is 99 and y is 99.

2

x = y;
y = x;
x = y;

x is 99 and y is 22.

x is 99 and y is 99.

x is 22 and y is 22.

3

tempVal = x;
x = y;
y = x;

x is 99 and y is 22.

x is 99 and y is 99.

4

tempVal = x;
x = y;
y = tempVal;

x is 99 and y is 22.

x is 99 and y is 99.

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 39 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

(*Note_language_neutral2) This section is mostly language neutral

Section 5.7 - Loop-modifying or copying/comparing arrays
Sometimes a program changes some elements' values or moves elements while iterating through a
array. The following uses a loop to convert any negative array element values to 0.

Participation
ActivityP 5.6.4: Reversing a list using swaps.

Participation
ActivityP 5.6.5: Reversing a list using swaps.

Question Your answer

1

Using the above approach, how many swaps are
needed to reverse this list:
999 888 777 666 555 444 333 222

3355227711

Start

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 40 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

Figure 5.7.1: Modifying an array during iteration example: Converting negatives
to 0 program.

import java.util.Scanner;

public class NegativeToZero {
 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 final int NUM_ELEMENTS = 8; // Number of elements
 int[] userVals = new int[NUM_ELEMENTS]; // User numbers
 int i = 0; // Loop index

 // Prompt user to input values
 System.out.println("Enter " + NUM_ELEMENTS + " integer values...");
 for (i = 0; i < NUM_ELEMENTS; ++i) {
 System.out.print("Value: ");
 userVals[i] = scnr.nextInt();
 }

 // Convert negatives to 0
 for (i = 0; i < NUM_ELEMENTS; ++i) {
 if (userVals[i] < 0) {
 userVals[i] = 0;
 }
 }

 // Print numbers
 System.out.print("New numbers: ");
 for (i = 0; i < NUM_ELEMENTS; ++i) {
 System.out.print(userVals[i] + " ");
 }

 return;
 }
}

Enter 8 integer values...
Value: 5
Value: 67
Value: -5
Value: -4
Value: 5
Value: 6
Value: 6
Value: 4
New numbers: 5 67 0 0 5 6 6 4

Participation
ActivityP 5.7.1: Modifying an array in a loop.

What is the resulting array contents, assuming each question starts with an array of size 4 having
contents -55, -1, 0, 9?

Question Your answer

1

for (i = 0; i < 4; ++i) {
 itemsList[i] = i;
}

-54, 0, 1, 10

0, 1, 2, 3

1, 2, 3, 4

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 41 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

1, 2, 3, 4

2

for (i = 0; i < 4; ++i) {
 if (itemsList[i] < 0) {
 itemsList[i] = itemsList[i] * -1;
 }
}

-55, -1, 0, -9

55, 1, 0, -9

55, 1, 0, 9

3

for (i = 0; i < 4; ++i) {
 itemsList[i] = itemsList[i+1];
}

-1, 0, 9, 0

0, -55, -1, 0

Error

4

for (i = 0; i < 3 ; ++i) {
 itemsList[i] = itemsList[i+1];
}

-1, 0, 9, 9

Error

-1, 0, 9, 0

5

for (i = 0; i < 3 ; ++i) {
 itemsList[i+1] = itemsList[i];
}

-55, -55, -55, -55

0, -55, -1, 0

Error

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 42 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

Copying an array is a common task. Given a second array of the same size, a loop can copy each
element one-by-one. Modifications to either array do not affect the other.

P Participation
Activity

5.7.2: Modifying an array during iteration example: Doubling
element values.

Complete the following program to double each number in the array.

 5 67 -5 -4 5 6 6 4
import java.util.Scanner;

public class NegativeToZero {
 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 final int NUM_ELEMENTS = 8; // Number of elements
 int[] userVals = new int[NUM_ELEMENTS]; // User numbers
 int i = 0; // Loop index

 // Prompt user to input values
 System.out.println("Enter " + NUM_ELEMENTS + " integer values..."
 for (i = 0; i < NUM_ELEMENTS; ++i) {
 System.out.println("Value: ");
 userVals[i] = scnr.nextInt();
 }

 // Double each element. FIXME write this loop

Run

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 43 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

Figure 5.7.2: Array copying: Converting negatives to 0 program.

import java.util.Scanner;

public class NegativeToZeroCopy {
 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 final int NUM_ELEMENTS = 8; // Number of elements
 int[] userVals = new int[NUM_ELEMENTS]; // User numbers
 int[] copiedVals = new int[NUM_ELEMENTS]; // New numbers
 int i = 0; // Loop index

 // Prompt user for input values
 System.out.println("Enter " + NUM_ELEMENTS + " integer values...");
 for (i = 0; i < NUM_ELEMENTS; ++i) {
 System.out.print("Value: ");
 userVals[i] = scnr.nextInt();
 }

 // Convert nums to newNums
 for (i = 0; i < NUM_ELEMENTS; ++i) {
 copiedVals[i] = userVals[i];
 }

 // Convert negatives to 0
 for (i = 0; i < NUM_ELEMENTS; ++i) {
 if (copiedVals[i] < 0) {
 copiedVals[i] = 0;
 }
 }

 // Print numbers
 System.out.println("\nOriginal and new values: ");
 for (i = 0; i < NUM_ELEMENTS; ++i) {
 System.out.println(userVals[i] + " became " + copiedVals[i]);
 }
 System.out.println();

 return;
 }
}

Enter 8 integer values...
Value: 12
Value: -5
Value: 34
Value: 75
Value: -14
Value: 33
Value: 12
Value: -104

Original and new values:
12 became 12
-5 became 0
34 became 34
75 became 75
-14 became 0
33 became 33
12 became 12
-104 became 0

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 44 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

Participation
ActivityP 5.7.3: Array copying.

Given array firstList with size 4 and element values, 33, 44, 55, 66, and array secondList with size
4 and elements values 0, 0, 0, 0.

Question Your answer

1

firstList = secondList copies 0s into each firstList element. True

False

2

This loop copies firstList to secondList, so that secondList
becomes 33, 44, 55, 66:
for (i = 0; i < 4; ++i) {
 secondList[i] = firstList[i];
}

True

False

3

After a for loop copies firstList to secondList, the assignment
secondList[0] = 99 will modify both arrays.

True

False

4

Given thirdList with size 5 and elements 22, 21, 20, 19, 18,
the following causes firstList's values to be 22, 21, 20, 19,
18:
for (i = 0; i < 5; ++i) {
 firstList[i] = thirdList[i];
}

True

False

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 45 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

Challenge
ActivityC 5.7.1: Decrement array elements.

Write a loop that subtracts 1 from each element in lowerScores. If the element was already 0 or negative, assign 0 to the element. Ex:
lowerScores = {5, 0, 2, -3} becomes {4, 0, 1, 0}.

Run

 final int SCORES_SIZE = 4;
 int[] lowerScores = new int[SCORES_SIZE];
 int i = 0;

 lowerScores[0] = 5;
 lowerScores[1] = 0;
 lowerScores[2] = 2;
 lowerScores[3] = -3;

 /* Your solution goes here */

 for (i = 0; i < SCORES_SIZE; ++i) {
 System.out.print(lowerScores[i] + " ");
 }
 System.out.println();

 return;
 }
}

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 46 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

Challenge
ActivityC 5.7.2: Copy and modify array elements.

Write a loop that sets newScores to oldScores shifted once left, with element 0 copied to the end. Ex: If oldScores = {10, 20, 30, 40}, then
newScores = {20, 30, 40, 10}.

Note: These activities may test code with different test values. This activity will perform two tests, the first with a 4-element array
(newScores = {10, 20, 30, 40}), the second with a 1-element array (newScores = {199}). See How to Use zyBooks

Also note: If the submitted code tries to access an invalid array element, such as newScores[9] for a 4-element array, the test may
generate strange results. Or the test may crash and report "Program end never reached", in which case the system doesn't print the test
case that caused the reported message.

Run

 int[] oldScores = new int[SCORES_SIZE];
 int[] newScores = new int[SCORES_SIZE];
 int i = 0;

 oldScores[0] = 10;
 oldScores[1] = 20;
 oldScores[2] = 30;
 oldScores[3] = 40;

 /* Your solution goes here */

 for (i = 0; i < SCORES_SIZE; ++i) {
 System.out.print(newScores[i] + " ");
 }
 System.out.println();

 return;
 }
}

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

https://zybooks.zyante.com/#/zybook/HowToUseZyBooks/chapter/1/section/2

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 47 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

Challenge
ActivityC 5.7.3: Modify array elements using other elements.

Write a loop that sets each array element to the sum of itself and the next element, except for the last element which stays the same. Be
careful not to index beyond the last element. Ex:

Initial scores: 10, 20, 30, 40
Scores after the loop: 30, 50, 70, 40

The first element is 30 or 10 + 20, the second element is 50 or 20 + 30, and the third element is 70 or 30 + 40. The last element remains
the same.

Run

 final int SCORES_SIZE = 4;
 int[] bonusScores = new int[SCORES_SIZE];
 int i = 0;

 bonusScores[0] = 10;
 bonusScores[1] = 20;
 bonusScores[2] = 30;
 bonusScores[3] = 40;

 /* Your solution goes here */

 for (i = 0; i < SCORES_SIZE; ++i) {
 System.out.print(bonusScores[i] + " ");
 }
 System.out.println();

 return;
 }
}

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 48 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

Section 5.8 - Debugging example: Reversing an array
A common array modification is to reverse an array's elements. One way to accomplish this goal is to
perform a series of swaps. For example, starting with an array of numbers 10 20 30 40 50 60 70 80,
we could first swap the first item with the last item, yielding 80 20 30 40 50 60 70 10. We could next
swap the second item with the second-to-last item, yielding 80 70 30 40 50 60 20 10. The next swap
would yield 80 70 60 40 50 30 20 10, and the last would yield 80 70 60 50 40 30 20 10.

With this basic idea of how to reverse an array, we can attempt to write a program to carry out such
reversal. Below we develop such a program but we make common mistakes along the way, to aid
learning from examples of what not to do.

A first attempt to write a program that reverses an array appears below:

Challenge
ActivityC 5.7.4: Modify a array's elements.

Double any element's value that is less than minVal. Ex: If minVal = 10, then dataPoints = {2, 12, 9, 20} becomes {4, 12, 18, 20}.

Run

 int i = 0;

 dataPoints[0] = 2;
 dataPoints[1] = 12;
 dataPoints[2] = 9;
 dataPoints[3] = 20;

 minVal = 10;

 /* Your solution goes here */

 for (i = 0; i < NUM_POINTS; ++i) {
 System.out.print(dataPoints[i] + " ");
 }
 System.out.println();

 return;
 }
}

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 49 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

Something went wrong: The program did not reverse the array, and an array-index-out-of-bounds
exception occurred. Let's try to find the code that caused the problem.

The first and third for loops are fairly standard, so let's initially focus attention on the middle for loop
that does the reversing. The swap statement inside that loop is
userNums[i] = userNums[NUM_ELEMENTS - i]. When i is 0, the statement will execute
userNums[0] = userNums[8];. However, userNums has size 8 and thus valid indices are 0..7.
userNums[8] does not exist. The program should actually swap elements 0 and 7, then 1 and 6, etc.
Thus, let's change the right-side index to NUM_VALUES - 1 - i. The revised program is shown
below.

Figure 5.8.1: First program attempt to reverse array: Invalid access out of array
bounds.

import java.util.Scanner;

public class ArrayReverseElem {
 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 final int NUM_ELEMENTS = 8; // Number of elements
 int[] userVals = new int[NUM_ELEMENTS]; // User numbers
 int i = 0; // Loop index

 // Prompt user to input values
 System.out.println("Enter " + NUM_ELEMENTS
 + " integer values...");
 for (i = 0; i < NUM_ELEMENTS; ++i) {
 System.out.print("Value: ");
 userVals[i] = scnr.nextInt();
 }

 // Reverse array's elements
 for (i = 0; i < NUM_ELEMENTS; ++i) {
 userVals[i] = userVals[NUM_ELEMENTS - i]; // Swap
 }

 // Print numbers
 System.out.print("\nNew values: ");
 for (i = 0; i < NUM_ELEMENTS; ++i) {
 System.out.print(userVals[i] + " ");
 }

 return;
 }
}

Enter 8 integer values...
Value: 10
Value: 20
Value: 30
Value: 40
Value: 50
Value: 60
Value: 70
Value: 80
Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 8
 at javaapplication1.ArrayReverseElem.main(ArrayReverseElem.java:22)

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 50 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

The last four elements are still wrong. To determine what went wrong, we can manually (i.e., on paper)
trace the loop's execution.

i is 0: userNums[0] = userNums[7]. Array now: 80 20 30 40 50 60 70 80.

i is 1: userNums[1] = userNums[6]. Array now: 80 70 30 40 50 60 70 80.

i is 2: userNums[2] = userNums[5]. Array now: 80 70 60 40 50 60 70 80.

i is 3: userNums[3] = userNums[4]. Array now: 80 70 60 50 50 60 70 80.

i is 4: userNums[4] = userNums[3]. Array now: 80 70 60 50 50 60 70 80. Uh-oh,

where did 40 go?

We failed to actually swap the array elements, instead the code just copies values in one direction. We
need to add code to properly swap. We add a variable tempVal to temporarily hold

Figure 5.8.2: Next program attempt to reverse an array: Doesn't reverse
properly; we forgot to swap.

import java.util.Scanner;

public class ArrayReverseElem {

 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 final int NUM_ELEMENTS = 8; // Number of elements
 int[] userVals = new int[NUM_ELEMENTS]; // User numbers
 int i = 0; // Loop index

 // Prompt user to input values
 System.out.println("Enter " + NUM_ELEMENTS
 + " integer values...");
 for (i = 0; i < NUM_ELEMENTS; ++i) {
 System.out.print("Value: ");
 userVals[i] = scnr.nextInt();
 }

 // Reverse array's elements
 for (i = 0; i < NUM_ELEMENTS; ++i) {
 userVals[i] = userVals[NUM_ELEMENTS - 1 - i]; // Swap
 }

 // Print numbers
 System.out.print("\nNew values: ");
 for (i = 0; i < NUM_ELEMENTS; ++i) {
 System.out.print(userVals[i] + " ");
 }

 return;
 }
}

Enter 8 integer values...
Value: 10
Value: 20
Value: 30
Value: 40
Value: 50
Value: 60
Value: 70
Value: 80

New values: 80 70 60 50 50 60 70 80

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 51 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

userNums[NUM_VALUES - 1 - i] so we don't lose that element's value.

The new values are not reversed. Again, let's manually trace the loop iterations.

i is 0: userNums[0] = userNums[7]. Array now: 80 20 30 40 50 60 70 10.

i is 1: userNums[1] = userNums[6]. Array now: 80 70 30 40 50 60 20 10.

i is 2: userNums[2] = userNums[5]. Array now: 80 70 60 40 50 30 20 10.

i is 3: userNums[3] = userNums[4]. Array now: 80 70 60 50 40 30 20 10. Looks

reversed.

i is 4: userNums[4] = userNums[3]. Array now: 80 70 60 40 50 30 20 10. Why are we

Figure 5.8.3: Program with proper swap: However, the program's output shows
the array doesn't change.

import java.util.Scanner;

public class ArrayReverseElem {

 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 final int NUM_ELEMENTS = 8; // Number of elements
 int[] userVals = new int[NUM_ELEMENTS]; // User numbers
 int i = 0; // Loop index
 int tempVal = 0; // Temp variable for swapping

 // Prompt user to input values
 System.out.println("Enter " + NUM_ELEMENTS
 + " integer values...");
 for (i = 0; i < NUM_ELEMENTS; ++i) {
 System.out.print("Value: ");
 userVals[i] = scnr.nextInt();
 }

 // Reverse array's elements
 for (i = 0; i < NUM_ELEMENTS; ++i) {
 tempVal = userVals[i]; // Temp for swap
 userVals[i] = userVals[NUM_ELEMENTS - 1 - i]; // First part of swap
 userVals[NUM_ELEMENTS - 1 - i] = tempVal; // Swap complete
 }

 // Print numbers
 System.out.print("\nNew values: ");
 for (i = 0; i < NUM_ELEMENTS; ++i) {
 System.out.print(userVals[i] + " ");
 }

 return;
 }
}

Enter 8 integer values...
Value: 10
Value: 20
Value: 30
Value: 40
Value: 50
Value: 60
Value: 70
Value: 80

New values: 10 20 30 40 50 60 70 80

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 52 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

still swapping?

Tracing makes clear that the for loop should not iterate over the entire array. The reversal is completed
halfway through the iterations. The solution is to set the loop expression to
i < (NUM_VALUES / 2).

We should ensure the program works if the number of elements is odd rather than even. Suppose the
array has 5 elements (0-4) with values 10 20 30 40 50. NUM_VALUES / 2 would be 5 / 2 = 2,
meaning the loop expression would be i < 2. The iteration when i is 0 would swap elements 0 and 4
(5-1-0), yielding 50 20 30 40 10. The iteration for i=1 would swap elements 1 and 3, yielding 50 40 30
20 10. The loop would then not execute again because i is 2. So the results are correct for an odd

Figure 5.8.4: Program with correct loop bound: Running the program yields the
correct output.

import java.util.Scanner;

public class ArrayReverseElem {

 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 final int NUM_ELEMENTS = 8; // Number of elements
 int[] userVals = new int[NUM_ELEMENTS]; // User numbers
 int i = 0; // Loop index
 int tempVal = 0; // Temp variable for swapping

 // Prompt user to input values
 System.out.println("Enter " + NUM_ELEMENTS
 + " integer values...");
 for (i = 0; i < NUM_ELEMENTS; ++i) {
 System.out.print("Value: ");
 userVals[i] = scnr.nextInt();
 }

 // Reverse array's elements
 for (i = 0; i < (NUM_ELEMENTS / 2); ++i) {
 tempVal = userVals[i]; // Temp for swap
 userVals[i] = userVals[NUM_ELEMENTS - 1 - i]; // First part of swap
 userVals[NUM_ELEMENTS - 1 - i] = tempVal; // Swap complete
 }

 // Print numbers
 System.out.print("\nNew values: ");
 for (i = 0; i < NUM_ELEMENTS; ++i) {
 System.out.print(userVals[i] + " ");
 }

 return;
 }
}

Enter 8 integer values...
Value: 10
Value: 20
Value: 30
Value: 40
Value: 50
Value: 60
Value: 70
Value: 80

New values: 80 70 60 50 40 30 20 10

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 53 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

number of elements, because the middle element will just not move.

The mistakes made above are each very common when dealing with loops and arrays, especially for
beginning programmers. An incorrect (in this case out-of-range) index, an incorrect swap, and an
incorrect loop expression. The lesson is that loops and arrays require attention to detail, greatly aided
by manually executing the loop to determine what is happening on each iteration. Ideally, a
programmer will take more care when writing the original program, but the above mistakes are quite
common.

Section 5.9 - Two-dimensional arrays

Participation
ActivityP 5.8.1: Array reversal example.

Questions refer to the problematic example in this section.

Question Your answer

1

The first problem was trying to access a non-existent
element.

True

False

2

The second problem was failing to properly swap, using just
this statement:
userNums[i] = userNums[NUM_ELEMENTS - 1 - i]; // Swap

True

False

3

The third problem was that the loop did not iterate over all the
elements, but rather stopped one short.

True

False

4

The programmer probably should have been more careful in
creating the first version of the program.

True

False

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 54 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

An array can be defined with two dimensions. int[][] myArray = new int[R][C] represents
a table of int variables with R rows and C columns, so R*C elements total. For example,
int[][] myArray = new int[2][3] creates a table with 2 rows and 3 columns, for 6 int
variables total. Example accesses are myArray[0][0] = 33; or num = myArray[1][2].

Conceptually, a two-dimensional array is a table with rows and columns. The compiler maps two-
dimensional array elements to one-dimensional memory, each row following the previous row, known
as row-major order.

Participation
ActivityP 5.9.1: Two-dimensional array.

Start

 91

 92

 93

 90

 94

 95

Implementation in memory

0
1

0 1 2

Rows [2]

Columns [3]

[0][0] [0][1] [0][2]

[1][0] [1][1] [1][2]

Conceptually a table

// Define array with size [2][3]

// Write to some elements
myArray[0][0] = 55;
myArray[1][1] = 77;
myArray[1][2] = 99;

myArray[0][0]

myArray[0][1]
myArray[0][2]
myArray[1][0]

myArray[1][1]
myArray[1][2]

- - - - - - - - - -

R
ow

 0
R

ow
 1

55

77
99

9977
55

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 55 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

A programmer can initialize a two-dimensional array's elements during definition using nested braces,
as below. Multiple lines make the rows and columns more visible.

Figure 5.9.1: Using a two-dimensional array: A driving distance between cities
example.

import java.util.Scanner;

/* Direct driving distances between cities, in miles */
/* 0: Boston 1: Chicago 2: Los Angeles */
public class CityDist {
 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 int cityA = 0; // Starting city
 int cityB = 0; // Destination city
 int [][] DrivingDistances = new int[3][3]; // Driving distances

 // Initialize distances array
 DrivingDistances[0][0] = 0;
 DrivingDistances[0][1] = 960; // Boston-Chicago
 DrivingDistances[0][2] = 2960; // Boston-Los Angeles
 DrivingDistances[1][0] = 960; // Chicago-Boston
 DrivingDistances[1][1] = 0;
 DrivingDistances[1][2] = 2011; // Chicago-Los Angeles
 DrivingDistances[2][0] = 2960; // Los Angeles-Boston
 DrivingDistances[2][1] = 2011; // Los Angeles-Chicago
 DrivingDistances[2][2] = 0;

 System.out.println("0: Boston 1: Chicago 2: Los Angeles");

 System.out.print("Enter city pair (Ex: 1 2) -- ");
 cityA = scnr.nextInt();
 cityB = scnr.nextInt();

 System.out.print("Distance: " + DrivingDistances[cityA][cityB]);
 System.out.println(" miles.");

 return;
 }
}

0: Boston 1: Chicago 2: Los Angeles
Enter city pair (Ex: 1 2) -- 1 2
Distance: 2011 miles.

...

0: Boston 1: Chicago 2: Los Angeles
Enter city pair (Ex: 1 2) -- 2 0
Distance: 2960 miles.

...

0: Boston 1: Chicago 2: Los Angeles
Enter city pair (Ex: 1 2) -- 1 1
Distance: 0 miles.

Construct 5.9.1: Initializing a two-dimensional array during definition.
// Initializing a 2D array
int[][] numVals = { {22, 44, 66}, {97, 98, 99} };

// Use multiple lines to make rows more visible
int[][] numVals = {
 {22, 44, 66}, // Row 0
 {97, 98, 99} // Row 1
};

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 56 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

Arrays of three or more dimensions can also be defined, as in:
int[][][] myArray = new int[2][3][5], which defines a total of 2*3*5 or 30 elements.
Note the rapid growth in size -- an array defined as
int[][][] myArray = new int[100][100][5][3] would have 100*100*5*3 or 150,000
elements. A programmer should make sure not to unnecessarily occupy available memory with a large
array.

Participation
ActivityP 5.9.2: Two-dimensional arrays.

Question Your answer

1

Define and initialize a two dimensional array of
integers named dataVals with 4 rows and 7 columns
using default element values.

2
How many total integers elements are in an array
with 4 rows and 7 columns?

3
How many elements are in the array defined as:
char[][] streetName = new char[20][50];

4

Write a statement that assigns 99 into the fifth row,
third column of array dataVals. Note: the first
row/column is at index 0, not 1.

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 57 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

Section 5.10 - Java example: Salary calculation with arrays

Challenge
ActivityC 5.9.1: Find 2D array max and min.

Find the maximum value and minimum value in milesTracker. Assign the maximum value to maxMiles, and the minimum value to minMiles.
Sample output for the given program:

Min miles: -10
Max miles: 40

Run

Participation
ActivityP 5.10.1: Various tax rates.

Arrays are useful to process tabular information. Income taxes are based on annual salary, usually
with a tiered approach. Below is an example of a simple tax table:

Annual Salary Tax Rate

 final int NUM_ROWS = 2;
 final int NUM_COLS = 2;
 int [][] milesTracker = new int[NUM_ROWS][NUM_COLS];
 int i = 0;
 int j = 0;
 int maxMiles = 0; // Assign with first element in milesTracker before loop
 int minMiles = 0; // Assign with first element in milesTracker before loop

 milesTracker[0][0] = -10;
 milesTracker[0][1] = 20;
 milesTracker[1][0] = 30;
 milesTracker[1][1] = 40;

 /* Your solution goes here */

 System.out.println("Min miles: " + minMiles);
 System.out.println("Max miles: " + maxMiles);
 }
}

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 58 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

Annual Salary Tax Rate

0 to 20000 10%

Above 20000 to 50000 20%

Above 50000 to 100000 30%

Above 100000 40%

The below program uses an array salaryBase to hold the cutoffs for each salary level and a parallel
array taxBase that has the corresponding tax rate.

1. Run the program and enter annual salaries of 40000 and 50000, then enter 0.
2. Modify the program to use two parallel arrays named annualSalaries and

taxesToPay, each with 10 elements. Array annualSalaries holds up to 10 annual
salaries entered; array taxesToPay holds up to 10 corresponding amounts of taxes
to pay for those annual salaries. Print the total annual salaries and taxes to pay
after all input has been processed.

3. Run the program again with the same annual salary numbers as above.
4. Challenge: Modify the program from the previous step to use a 2-dimensional

array of 10 elements named salariesAndTaxes instead of two one-dimensional
parallel arrays. The 2D array's first column will hold the salaries, the second the
taxes to pay for each salary.

The following program calculates the tax rate and tax to pay based on annual income.

Reset

40000 50000 0

import java.util.Scanner;

public class IncomeTax {
 public static void main (String [] args) {

 final int MAX_ELEMENTS = 10;
 Scanner scnr = new Scanner(System.in);
 int annualSalary = 0;
 double taxRate = 0.0;
 int taxToPay = 0;
 int numSalaries = 0;
 boolean keepLooking = true;
 int i = 0;

 int [] salaryBase = { 20000, 50000, 100000, 999999999 };
 double [] taxBase = { .10, .20, .30, .40 };
 // FIXME: Define annualSalaries and taxesToPay arrays to hold 10 elements each.
 // FIXME: Use the final constant MAX_ELEMENTS to declare the arrays

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 59 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

A solution to above problem follows.

Run

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 60 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

Section 5.11 - Java example: Domain name validation with

Participation
ActivityP 5.10.2: Solution to salaries array.

Reset

40000 50000 0

import java.util.Scanner;

public class IncomeTax {
 public static void main (String [] args) {

 final int MAX_ELEMENTS = 10;
 Scanner scnr = new Scanner(System.in);
 int annualSalary = 0;
 double taxRate = 0.0;
 int taxToPay = 0;
 int totalSalaries = 0;
 int totalTaxes = 0;
 int numSalaries = 0;
 boolean keepLooking = true;
 int i = 0;

 int [] salaryBase = { 20000, 50000, 100000, 999999999 };
 double [] taxBase = { .10, .20, .30, .40 };

Run

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 61 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

arraysParticipation
ActivityP 5.11.1: Validate domain names with arrays.

Arrays are useful to process lists.

A top-level domain (TLD) name is the last part of an Internet domain name like .com in
example.com. A core generic top-level domain (core gTLD) is a TLD that is either .com, .net,
.org, or .info. A restricted top-level domain is a TLD that is either .biz, .name, or .pro. A
second-level domain is a single name that precedes a TLD as in apple in apple.com.

The following program repeatedly prompts for a domain name, and indicates whether that domain
name consists of a second-level domain followed by a core gTLD. Valid core gTLD's are stored in
an array. For this program, a valid domain name must contain only one period, such as apple.com,
but not support.apple.com. The program ends when the user presses just the Enter key in
response to a prompt.

1. Run the program and enter domain names to validate.
2. Extend the program to also recognize restricted TLDs using an array, and

statements to validate against that array. The program should also report whether
the TLD is a core gTLD or a restricted gTLD. Run the program again.

Reset

apple.com
APPLE.com
apple.comm
apple.biz

import java.util.Scanner;

public class GtldValidation {

 public static void main (String [] args) {
 Scanner scnr = new Scanner(System.in);

 // Define the list of valid core gTLDs
 String [] validCoreGtld = { ".com", ".net", ".org", ".info" };
 // FIXME: Define an array named validRestrictedGtld that has the names
 // of the restricted domains, .biz, .name, and .pro
 String inputName = "";
 String searchName = "";
 String theGtld = "";
 boolean isValidDomainName = false;
 boolean isCoreGtld = false;
 boolean isRestrictedGtld = false;
 int periodCounter = 0;
 int periodPosition = 0;

Run

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 62 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 63 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

Participation
ActivityP 5.11.2: Validate domain names with arrays (solution).

A solution to the problem posed above follows.

Reset

apple.com
APPLE.com
apple.comm
apple.biz

import java.util.Scanner;

public class GtldValidation_Solution {

 public static void main (String [] args) {
 Scanner scnr = new Scanner(System.in);

 // Define the list of valid core gTLDs
 String [] validCoreGtld = { ".com", ".net", ".org", ".info" };
 String [] validRestrictedGtld = { ".biz", ".name", ".pro" };
 String inputName = "";
 String searchName = "";
 String theGtld = "";
 boolean isValidDomainName = false;
 boolean isCoreGtld = false;
 boolean isRestrictedGtld = false;
 int periodCounter = 0;
 int periodPosition = 0;
 int i = 0;

Run

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 11:00 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 64 of 64https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/5/print

