
1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 1 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

Chapter 4 - Loops

Section 4.1 - Loops

Some behaviors should be repeated over and over, like a racecar driving around a track. A loop is a
construct that repeatedly executes specific code as long as some condition is true.

Participation
ActivityP 4.1.1: Looping while the condition is true.

condition?

Start

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 2 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

The above describes a common kind of loop known as a while loop.

Below is a loop (in no particular language) that prints a value a specified number of times.

Participation
ActivityP 4.1.2: Loop basics.

Which loop condition achieves the given racetrack driving goal?

Question Your answer

1

Loop as long as it is sunny. It is sunny.

It is not sunny.

2

Loop as long as it is not raining. It is raining.

It is not raining.

3

Loop 3 times. Number of completed
laps is 0 or greater.

Number of completed
laps is less than 3.

Number of completed
laps equals 3.

4

Loop while the car's fuel tank is at least 20% full. Fuel tank is at 20%.

Fuel tank is 20% or
more.

Fuel tank is less than
20%.

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 3 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

Section 4.2 - While loops
A while loop is a program construct that executes a list of sub-statements repeatedly as long as the
loop's expression evaluates to true.

When execution reaches the while loop statement, the expression is evaluated. If true, execution
proceeds into the sub-statements inside the braces, known as the loop body. At the loop body's

Participation
ActivityP 4.1.3: Loop a given number of times.

Construct 4.2.1: While loop statement general form.
while (expression) { // Loop expression
 // Loop body: Sub-statements that execute if the
 // expression evaluated to true
}
// Statements that execute after the expression evaluates to false

96 x7

1
2
3
4
5
6
7

Start

read x

loop i in x:
 print i

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 4 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

end, execution goes back to the while loop statement start. The expression is again evaluated, and if
true, execution again proceeds into the loop body. But if false, execution instead proceeds past the
closing brace. Each execution of the loop body is called an iteration, and looping is also called
iterating.

Participation
ActivityP 4.2.1: While loop.

Start

while (usr != 'q') {
usr: q

 Bye
usr = '-';
while (usr != 'q') {
 // Print face ...
 // Get new char ...
}
// Print "Bye"

usr = '-';

 // Print face ...
 // Get new char ...

// Print "Bye"

}

12.18, 22.26,

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 5 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

The following example uses the statement while (userChar != 'q') { } to allow a user to
end a face-drawing program by entering the character q:

Participation
ActivityP 4.2.2: Basic while loops.

How many times will the loop body execute?

Question Your answer

1

x = 3;
while (x >= 1) {
 // Do something
 x = x - 1;
}

2

Assume user would enter 'n', then 'n', then 'y'.
// Get userChar from user here
while (userChar != 'n') {
 // Do something
 // Get userChar from user here
}

3

Assume user would enter 'a', then 'b', then 'n'.
// Get userChar from user here
while (userChar != 'n') {
 // Do something
 //Get userChar from user here
}

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 6 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

The Scanner does not directly support reading a single character. The above program first reads a
string from the user input using usrInput = scnr.next();. The first character within that string
is then stored into userChar using userChar = usrInput.charAt(0);.

Once execution enters the loop body, execution continues to the body's end even if the expression
becomes false midway through.

Figure 4.2.1: While loop example: Face-printing program that ends when user
enters 'q'.

import java.util.Scanner;

public class FacePrint {
 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 char userChar = '-'; // User-entered character
 String usrInput = "";

 while (userChar != 'q') {
 // Print face
 System.out.println("" + userChar + " " + userChar);
 System.out.println(" " + userChar);
 System.out.println("" + userChar + "" + userChar + "" + userChar);

 // Get user character
 System.out.print("\nEnter a character ('q' to quit): ");
 usrInput = scnr.next();
 userChar = usrInput.charAt(0); // Get the first char in the String
 System.out.println("");
 }

 System.out.println("Goodbye.");

 return;
 }
}

- -
 -

Enter a character ('q' to quit): a

a a
 a
aaa

Enter a character ('q' to quit): x

x x
 x
xxx

Enter a character ('q' to quit): q

Goodbye.

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 7 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

Below is a simple loop example, which separately prints each digit of an integer, showing each
iteration.

Participation
ActivityP 4.2.3: Loop expressions.

Use a single operator in each expression, and the most straightforward translation of the stated
goal into an expression.

Question Your answer

1

Iterate while x is less-than 100. while () {

 /* Loop body statements go here */
}

2

Iterate while x is greater than or equal to 0. while () {

 // Loop body
}

3

Iterate while c equals 'g'. while () {

 // Loop body
}

4

Iterate while c is not equal to 'x'. while () {

 // Loop body
}

5

Iterate until c equals 'z' (tricky; think
carefully).

while () {

 // Loop body
}

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 8 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

Below is another loop example. The program asks the user to enter a year, and then prints the
approximate number of a person's ancestors who were alive for each generation leading back to that
year, with the loop computing powers of 2 along the way.

Participation
ActivityP 4.2.4: While loop step-by-step

Printing out every digit of a user-entered number using the % and // operators.

... Iteration num Output

1 2

902

2 0

90

3 9

0

9

// Read num from user ...

 // Print each digit
 while (num > 0) {
 // Print num % 10 ...
 num = num / 10;
 }

Start

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 9 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

Each iteration prints a line with the year and the ancestors in that year. (Note: the numbers are large
due to not considering breeding among distant relatives, but nevertheless a person has many
ancestors).

The program checks for consYear >= userYear rather than for consYear != userYear,
because consYear might be decreased past userYear without equaling it, causing an infinite loop,
printing years well past 1950. An infinite loop is a loop that will always execute (i.e., execute infinitely)
because the loop's expression always evaluates to true. A common error is to accidentally create an
infinite loop due to assuming equality will be reached. Good practice is to include greater-than or less-
than along with equality in a loop expression.

Another common error is to use the assignment operator = rather than the equality operator == in a
loop expression, resulting in a compilation error.

Figure 4.2.2: While loop example: Ancestors printing program..

import java.util.Scanner;

public class AncestorsPrinter {
 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 final int YEARS_PER_GEN = 20; // Approx. years per generation
 int userYear = 0; // User input
 int consYear = 0; // Year being considered
 int numAnc = 0; // Approx. ancestors in considered year

 System.out.print("Enter a past year (neg. for B.C.): ");
 userYear = scnr.nextInt();

 consYear = 2020;
 numAnc = 2;

 while (consYear >= userYear) {
 System.out.println("Ancestors in " + consYear + ": " + numAnc);

 numAnc = 2 * numAnc; // Each ancestor had two parents
 consYear = consYear - YEARS_PER_GEN; // Go back 1 generation
 }

 return;
 }
}

Enter a past year (neg. for B.C.): 1900
Ancestors in 2020: 2
Ancestors in 2000: 4
Ancestors in 1980: 8
Ancestors in 1960: 16
Ancestors in 1940: 32
Ancestors in 1920: 64
Ancestors in 1900: 128

...

Enter a past year (neg. for B.C.): 1600
Ancestors in 2020: 2
Ancestors in 2000: 4
Ancestors in 1980: 8
Ancestors in 1960: 16
Ancestors in 1940: 32
Ancestors in 1920: 64
Ancestors in 1900: 128
Ancestors in 1880: 256
Ancestors in 1860: 512
Ancestors in 1840: 1024
Ancestors in 1820: 2048
Ancestors in 1800: 4096
Ancestors in 1780: 8192
Ancestors in 1760: 16384
Ancestors in 1740: 32768
Ancestors in 1720: 65536
Ancestors in 1700: 131072
Ancestors in 1680: 262144
Ancestors in 1660: 524288
Ancestors in 1640: 1048576
Ancestors in 1620: 2097152
Ancestors in 1600: 4194304

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 10 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

A program with an infinite loop may print excessively, or just seem to stall. On some systems, the user
can halt execution by pressing Control-C on the command prompt, or by selecting Stop (or Pause)
from within an IDE.

Participation
ActivityP 4.2.5: While loop iterations.

What will the following code output? (For an infinite loop, type "IL")

Question Your answer

1

int x = 0;
while (x > 0) {
 System.out.print(x + " ");
 x = x - 1;
}
System.out.print("Bye");

2

int x = 5;
int y = 18;
while (y >= x) {
 System.out.print(y + " ");
 y = y - x;
}

3

int x = 10;
while (x != 3) {
 System.out.print(x + " ");
 x = x / 2;
}

4

int x = 0;
while (x <= 5) {
 System.out.print(x + " ");
}

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 11 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

Participation
ActivityP 4.2.6: Range of data types.

Computing in loops can easily exceed a variable's range. Execute the ancestors program below
with the given input of 1300. What do you observe around year 1400? Recall that an int variable
can usually only represent up to about 2 billion. Try changing the definition of numAnc from type int
to long, and then see how distant of a year you can enter before observing incorrect output.

1300
import java.util.Scanner;

public class AncestorsPrinter {
 public static void main (String [] args) {
 Scanner scnr = new Scanner(System.in);
 final int YEARS_PER_GEN = 20; // Approx. years per generation
 int userYear = 0; // User input
 int consYear = 0; // Year being considered
 int numAnc = 0; // Approx. ancestors in considered year

 System.out.print("Enter a past year (neg. for B.C.): "
 userYear = scnr.nextInt();

 consYear = 2020;
 numAnc = 2;
 while (consYear >= userYear) {
 System.out.println("Ancestors in " + consYear +

Run

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 12 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

Challenge
ActivityC 4.2.1: Enter the output for the while loop.

Start

Enter the output of the following program.

public class whileLoopOutput {
 public static void main (String [] args) {
 int g = 0;

 while (g <= 3) {
 System.out.print(g);
 g = g + 1;
 }

 return;
 }
}

0123

1 2 3 4 5

 Check Next

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 13 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

Challenge
ActivityC 4.2.2: Basic while loop with user input.

Write an expression that executes the loop body as long as the user enters a non-negative number.

Note: These activities may test code with different test values. This activity will perform three tests, with userNum initially 9 and user input
of 5, 2, -1, then with userNum initially 0 and user input of -17, then with userNum initially -1. See How to Use zyBooks

Also note: If the submitted code has an infinite loop, the system will stop running the code after a few seconds, and report "Program end
never reached." The system doesn't print the test case that caused the reported message.

Run

import java.util.Scanner;

public class NonNegativeLooper {
 public static void main (String [] args) {
 Scanner scnr = new Scanner(System.in);
 int userNum = 0;

 userNum = 9;
 while (/* Your solution goes here */) {
 System.out.println("Body");
 userNum = scnr.nextInt();
 }
 System.out.println("Done.");

 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

https://zybooks.zyante.com/#/zybook/HowToUseZyBooks/chapter/1/section/2

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 14 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

Section 4.3 - More while examples
The following is an example of using a loop to compute a mathematical quantity. The program
computes the greatest common divisor (GCD) among two user-entered integers numA and numB,

Challenge
ActivityC 4.2.3: Basic while loop expression.

Write a while loop that prints userNum divided by 2 (integer division) until reaching 1. Follow each number by a space.
userNum = 20:

20 10 5 2 1

Note: These activities may test code with different test values. This activity will perform four tests, with userNum = 20, then with userNum
= 1, then with userNum = 0, then with userNum = -1. See How to Use zyBooks.

Also note: If the submitted code has an infinite loop, the system will stop running the code after a few seconds, and report "Program end
never reached." The system doesn't print the test case that caused the reported message.

Run

import java.util.Scanner;

public class DivideByTwoLoop {
 public static void main (String [] args) {
 int userNum = 0;

 userNum = 20;

 /* Your solution goes here */

 System.out.println("");

 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

https://zybooks.zyante.com/#/zybook/HowToUseZyBooks/chapter/1/section/2

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 15 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

using Euclid's algorithm: If numA > numB, set numA to numA - numB, else set numB to numB -
numA. These steps are repeated until numA equals numB, at which point numA and numB each
equal the GCD.

Figure 4.3.1: While loop example: GCD program.

import java.util.Scanner;

// Output GCD of user-input numA and numB

public class GCDCalc {
 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 int numA = 0; // User input
 int numB = 0; // User input

 System.out.print("Enter first positive integer: ");
 numA = scnr.nextInt();

 System.out.print("Enter second positive integer: ");
 numB = scnr.nextInt();

 while (numA != numB) { // Euclid's algorithm
 if (numB > numA) {
 numB = numB - numA;
 }
 else {
 numA = numA - numB;
 }
 }

 System.out.println("GCD is: " + numA);

 return;
 }
}

Enter first positive integer: 9
Enter second positive integer: 7
GCD is: 1

...

Enter first positive integer: 15
Enter second positive integer: 10
GCD is: 5

...

Enter first positive integer: 99
Enter second positive integer: 33
GCD is: 33

...

Enter first positive integer: 500
Enter second positive integer: 500
GCD is: 500

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 16 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

Below is a program that has a "conversation" with the user, asking the user to type something and
then (randomly) printing one of four possible responses until the user enters "Goodbye":

Participation
ActivityP 4.3.1: GCD program.

Refer to the GCD code provided in the previous figure. Assume user input of numA = 15 and
numB = 10.

Question Your answer

1
For the GCD program, what is the value of numA
before the first loop iteration?

2
What is the value of numB after the first iteration of
the while loop?

3
What is numB after the second iteration of the while
loop?

4
How many loop iterations will the algorithm
execute?

Figure 4.3.2: While loop example: Conversation program.
import java.util.Scanner;

/* Program that has a conversation with the user. Uses a switch statement
 and a random number (sort of) to mix up the program's responses. */

public class Conversation {

 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 int randNum0_3 = 0; // Random number 0 to 3
 String userText = ""; // User input

 System.out.print("Tell me something about yourself. ");
 System.out.println("You can type \"Goodbye\" at anytime to quit.\n");

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 17 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

 System.out.println("You can type \"Goodbye\" at anytime to quit.\n");
 System.out.print("> ");

 userText = scnr.nextLine();

 while (!userText.equals("Goodbye")) {
 randNum0_3 = userText.length() % 4; // "Random" num. %4 ensures 0-3
 switch (randNum0_3) {
 case 0:
 System.out.println("\nPlease explain further.\n");
 System.out.print("> ");
 break;

 case 1:
 System.out.println("\nWhy do you say: \"" + userText + "\"?\n");
 System.out.print("> ");
 break;

 case 2:
 System.out.println("\nI don't think that's right.\n");
 System.out.print("> ");
 break;

 case 3:
 System.out.println("\nWhat else can you share?\n");
 System.out.print("> ");
 break;

 default:
 System.out.println("\nUh-oh, something went wrong. Try again.\n");
 }

 userText = scnr.nextLine();
 }

 System.out.println("\nIt was nice talking with you. Goodbye.\n");

 return;
 }
}

Tell me something about yourself. You can type "Goodbye" at anytime to quit.

> I'm 26 years old.

Why do you say: "I'm 26 years old."?

> Well, I was born 26 years ago.

I don't think that's right.

> I am sure it is correct.

Please explain further.

> Goodbye

It was nice talking with you. Goodbye.

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 18 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

The loop checks whether userText is "Goodbye"; if not, the loop body executes. The loop body
generates a "random" number between 0 and 3, by getting the length of the user's text (which is sort
of random) and mod'ing by 4. The loop body then prints one of four messages, using a switch
statement (if you haven't studied switch, think of switch like an if-else statement).

Participation
ActivityP 4.3.2: Conversation program.

Question Your answer

1
What will be printed if the user types "Ouch"?

2
What will be printed if the user types "Bye"?

3

Which switch branch will execute if the user types
"Goodbye"? Valid answers are branch 0, 1, 2, 3, or
none.

4

How many loop iterations will execute if the user
plans to type "I'm hungry", "You are weird",
"Goodbye", and "I like you".

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 19 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

Challenge
ActivityC 4.3.1: Bidding example.

Write an expression that continues to bid until the user enters 'n'.

Run

public class AutoBidder {
 public static void main (String [] args) {
 Scanner scnr = new Scanner(System.in);
 Random randGen = new Random();
 char keepGoing = '-';
 int nextBid = 0;

 randGen.setSeed(5);
 while (/* Your solution goes here */) {
 nextBid = nextBid + (randGen.nextInt(10) + 1);
 System.out.println("I'll bid $" + nextBid + "!");
 System.out.print("Continue bidding? ");
 keepGoing = scnr.next().charAt(0);
 }
 System.out.println("");

 return;
 }
}

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 20 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

Section 4.4 - Counting
Commonly, a loop should iterate a specific number of times, such as 10 times. A loop variable

counts the number of iterations of a loop. To iterate N times using an integer loop variable i, a while
loop with the following form is used:

Challenge
ActivityC 4.3.2: While loop: Insect growth.

Given positive integer numInsects, write a while loop that prints that number doubled without reaching 100. Follow each number with a
space. After the loop, print a newline. Ex: If numInsects = 8, print:

8 16 32 64

Run

Note_whileloops

import java.util.Scanner;

public class InsectGrowth {
 public static void main (String [] args) {
 int numInsects = 0;

 numInsects = 8; // Must be >= 1

 /* Your solution goes here */

 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 21 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

For example, the following program outputs the amount of money in a savings account each year for
the user-entered number of years, with $10,000 initial savings and 5% yearly interest:

The statements that cause iteration to occur userYears times are highlighted.

A common error is to forget to include the loop variable update (i = i + 1) at the end of the loop,

Construct 4.4.1: Loop variable to iterate N times.
// Iterating N times using loop variable i
i = 1;
while (i <= N) {
 // Loop body
 i = i + 1;
}

Figure 4.4.1: While loop that counts iterations: Savings interest program.

import java.util.Scanner;

public class SavingsInterestCalc {
 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 final int INIT_SAVINGS = 10000; // Initial savings
 final double INTEREST_RATE = 0.05; // Interest rate
 int userYears = 0; // User input of number of years
 int i = 0; // Loop variable
 double currSavings = 0.0; // Savings with interest

 System.out.println("Initial savings of $" + INIT_SAVINGS);
 System.out.println("at " + INTEREST_RATE + " yearly interest.\n");

 System.out.print("Enter years: ");
 userYears = scnr.nextInt();

 currSavings = INIT_SAVINGS;
 i = 1;
 while (i <= userYears) {
 System.out.println(" Savings in year " + i
 + ": $" + currSavings);
 currSavings = currSavings + (currSavings * INTEREST_RATE);

 i = i + 1;
 }

 System.out.println();

 return;
 }
}

Initial savings of $10000
at 0.05 yearly interest.

Enter years: 5
 Savings in year 1: $10000.0
 Savings in year 2: $10500.0
 Savings in year 3: $11025.0
 Savings in year 4: $11576.25
 Savings in year 5: $12155.0625

...

Initial savings of $10000
at 0.05 yearly interest.

Enter years: 15
 Savings in year 1: $10000.0
 Savings in year 2: $10500.0
 Savings in year 3: $11025.0
 Savings in year 4: $11576.25
 Savings in year 5: $12155.0625
 Savings in year 6: $12762.815625
 Savings in year 7: $13400.95640625
 Savings in year 8: $14071.0042265625
 Savings in year 9: $14774.554437890625
 Savings in year 10: $15513.282159785156
 Savings in year 11: $16288.946267774414
 Savings in year 12: $17103.393581163135
 Savings in year 13: $17958.56326022129
 Savings in year 14: $18856.491423232354
 Savings in year 15: $19799.31599439397

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 22 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

causing an unintended infinite loop.

Counting down is also common, such as counting from 5 to 1, as below.

Participation
ActivityP 4.4.1: Basic while loop parts.

Use <= in each loop expression.

Question Your answer

1

Loop iterates 10 times. i = 1;
while () {

 // Loop body
 i = i + 1;
}

2

Loop iterates 2 times. i = 1;
while () {

 // Loop body
 i = i + 1;
}

3

Loop iterates 8 times. NOTE the initial value
of i.

i = 0;
while () {

 // Loop body
 i = i + 1;
}

Figure 4.4.2: While loop with variable that counts down.
i = 5;
while (i >= 1) {
 // Loop body
 i = i - 1;
}

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 23 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

The loop body executes when i is 5, 4, 3, 2, and 1, but does not execute when i reaches 0.

Counting is sometimes done by steps greater than 1, such as a loop that prints even values from 0 to
100 (0, 2, 4, 6, ..., 98, 100), as below.

Note that the loop variable update is i = i + 2; rather than i = i + 1;

Creating the loop variable initialization, expression, and loop variable update to achieve specific goals
is an important skill.

Figure 4.4.3: Loop variable increased by 2.
i = 0;
while (i <= 100) {
 // Loop body
 i = i + 2;
}

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 24 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

Participation
ActivityP 4.4.2: Loop to print presidential election years.

Modify the program to print the U.S. presidential election years since 1792 to present day, knowing
such elections occur every 4 years. Don't forget to use <= rather than == to help avoid an infinite
loop.

public class ElectionYears {
 public static void main(String[] args) {
 int electYear = 0;

 electYear = 1792;

 // FIXME: Put the following in a while loop
 System.out.println(electYear);

 }
}

Run

1
2
3
4
5
6
7
8
9

10
11
12
13

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 25 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

Participation
ActivityP 4.4.3: More counting with while loops.

Complete the following.

Question Your answer

1

Loop iterates with i being the odd
integers from 0 to 9.

i = 1;
while (i <= 9) {
 // Loop body
 i = ;

}

2

Loop iterates with i being multiples of 5
from 0 to 1000 (inclusive).

i = 0;
while (i <= 1000) {
 // Loop body
 i = ;

}

3

Loop iterates from 212 to 32 (inclusive). i = 212;
while (i >= 32) {
 // Loop body
 i = ;

}

4

Loop iterates from -100 to 31 (inclusive). i = -100;
while (i 32) {

 /* Loop body statements go here */
 i = i + 1;
}

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 26 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

Participation
ActivityP 4.4.4: Loop simulator.

The following tool allows you to enter values for a loop's parts, and then executes the loop. Using
the tool, try to solve each listed problem individually.

1. 0 to 100,000 by 5000s (so 0, 5000, 10000, ...).
2. -19 to 19 by 1s.
3. 10 to -10 by 1s.
4. Multiples of 3 between 0 and 100
5. Powers of 2 from 1 to 256 (so 1, 2, 4, 8, ...).
6. Come up with your own challenges.

int i = ;

while (i) {
 System.out.print(i + " ");
 i = i ;
}

 Run code

Output is: Awaiting your input...

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 27 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

Because i = i + 1 is so common in programs, the programming language provides a shorthand version
++i. The ++ is known as the increment operator. A loop can thus be written as follows.

No space is necessary between the ++ and the i. A common error by new programmers is to use i =
++i instead of just ++i. The former works but is strange and unnecessary.

Likewise, the decrement operator, as in --i, is equivalent to i = i - 1.

Sidenote: C++'s name stems from the ++ operator, suggesting C++ is an increment or improvement

Participation
ActivityP 4.4.5: Calculate a factorial.

Write a program that lets a user enter N and that outputs N! (meaning N*(N-1)*(N-2)*...*2*1). Hint:
Initialize a variable totalValue to N, and use a loop variable i that counts from N-1 down to 1.

 5

Construct 4.4.2: Loop with increment operator.
i = 1;
while (i <= N) {
 // Loop body
 ++i;
}

import java.util.Scanner;

public class ElectionYears {
 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 int totalVal = 0;
 int userInt = 0;

 // FIXME: Ask user to input an integer, store in userInt

 totalVal = userInt;
 // FIXME: Add while loop that counts down to 1, updating totalVal

 System.out.println(userInt + "! is " + totalVal);
 }
}

Run

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 28 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

over its C language predecessor.

The increment/decrement operators can appear in prefix form (++i or--i) or postfix form (i++ or i--). The
distinction is relevant when used in a larger expression, as in x < i++. The prefix form first increments
the variable, then uses the incremented value in the expression. The postfix form first uses the current
variable value in the expression, and then increments the variable. We do not recommend use of the
increment/decrement operators in larger expressions, and thus only use the prefix form, which some
say is safer for beginner programmers in case they accidentally type i = ++i, which works as expected,
whereas i = i++ does not.

Participation
ActivityP 4.4.6: Increment/decrement operators.

Question Your answer

1

What is the final value of i?
i = 0;
++i;
++i;

2

Replace the loop variable update statement by using
the decrement operator.
i = 9;
while (i > 0) {
 // Loop body
 i = i - 1;
}

i = 9;
while (i > 0) {
 // Loop body
 ;
}

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 29 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

Challenge
ActivityC 4.4.1: While loop: Print 1 to N.

Write a while loop that prints 1 to userNum, using the variable i. Follow each number (even the last one) by a space. Assume userNum is
positive. Ex: userNum = 4 prints:

1 2 3 4

Run

import java.util.Scanner;

public class CountDown {
 public static void main (String [] args) {
 int userNum = 0;
 int i = 0;

 userNum = 4; // Assume positive

 /* Your solution goes here */

 System.out.println("");

 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 30 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

(*Note_whileloops) (To instructors): Focus is placed on mastering basic looping using while loops,

before introducing for loops. Also, looping N times is initially done using 1 to <= N rather than 0 to < N

due to being more intuitive to new programmers and less prone to error, the latter being

commonplace as a consequence of arrays being numbered starting at 0.

Section 4.5 - For loops
Counting in loops is so common that the language supports a loop type for that purpose. A for loop

Challenge
ActivityC 4.4.2: Printing output using a counter.

Re-type the following and run, note incorrect behavior. Then fix errors in the code, which should print numStars asterisks.

while (numPrinted != numStars) {
 System.out.print("*");
}

Run

import java.util.Scanner;

public class StarPrinter {
 public static void main (String [] args) {
 int numStars = 0;
 int numPrinted = 0;

 numStars = 12;
 numPrinted = 1;

 /* Your solution goes here */

 System.out.println("");

 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 31 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

statement collects three parts—the loop variable initialization, loop expression, and loop variable
update —all at the top of the loop, thus enhancing code readability reducing errors like forgetting to
update the loop variable.

A while loop and its equivalent for loop are shown below. Clearly, while loops are sufficient, but a for
loop is a widely-used programming convenience.

Note that the for loop's third part (++i above) does not end with a semicolon.

Construct 4.5.1: For loop.
for (initialExpression; conditionExpression; updateExpression) {
 // Loop body: Sub-statements to execute if the
 // conditionExpression evaluates to true */
}
// Statements to execute after the expression evaluates to false

Participation
ActivityP 4.5.1: While/for loop correspondence.

i = 0;
while (i <= 99) {
 // Loop body statements
 ++i;
}

for (i = 0; i <= 99; ++i) {
 // Loop body statements
}

for () {while () {
i = 0;

i = 0; i <= 99;i <= 99
// Loop body statements // Loop body statements

++i;

++i

}
}

Start

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 32 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

Participation
ActivityP 4.5.2: For loops.

Complete the for loop to achieve the goal. Use prefix increment (++i) or decrement (--i) where
appropriate.

Question Your answer

1
Iterate for i from
0 to 9.

for (i = 0; i <= 9;) {

// Loop body
}

2

Iterate for
numCars from 1
to 500. Note the
variable is
numCars (not i).

for (numCars <= 500; ++numCars) {

 // Loop body
}

3

Iterate for i from
99 down to 0.
Compare with
0.

for (i = 99; --i) {

 // Loop body
}

4

Iterate for i from
0 to 20 by 2s (0,
2, 4, ...). Use i =
??, NOT ++i.

for (i = 0; i <= 20;) {

 // Loop body
}

5

Iterate for i from
-10 to 10.
Compare with
10.

for () {

 // Loop body
}

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 33 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

Good practice is to use a for loop's parts to count the necessary loop iterations, with nothing added
or omitted. The following loop examples should be avoided, if possible.

Table 4.5.1: Choosing between while and for loops: General guidelines (not
strict rules though).

for
Use when the number of iterations is computable before entering the loop, as
when counting down from X to 0, printing a character N times, etc.

while
Use when the number of iterations is not computable before entering the loop, as
when iterating until a user enters a particular character.

Participation
ActivityP 4.5.3: While loops and for loops.

Choose the most appropriate loop type.

Question Your answer

1

Iterate as long as user-entered char c is not 'q'. while

for

2

Iterate until the values of x and y are equal, where x and y are
changed in the loop body.

while

for

3

Iterate 100 times. while

for

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 34 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

A common error is to also have a ++i; statement in the loop body, causing the loop variable to be
updated twice per iteration.

Figure 4.5.1: Avoid these for loop variations.
// initialExpression not related to counting iterations; move r = rand() before loop
for (i = 0, r = rand(); i < 5; ++i) {
 // Loop body
}

// updateExpression not related to counting iterations; move r = r + 2 into loop body
for (i = 0; i < 5; ++i, r = r + 2) {
 // Loop body
}

Participation
ActivityP 4.5.4: For loop variations.

Question Your answer

1

Each of the above for loop variations yields a syntax error. True

False

2

Even though the above for loop variations may execute
correctly, they are generally considered bad style.

True

False

Figure 4.5.2: Common error: loop variable updated twice.
// Loop variable updated twice per iteration
for (i = 0; i < 5; ++i) {
 // Loop body
 ++i; // Oops
}

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 35 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

Participation
ActivityP 4.5.5: For loop double increment.

Question Your answer

1

Putting ++i at the end of a for loop body, in addition to in the
updateExpression part, yields a syntax error.

True

False

Challenge
ActivityC 4.5.1: Enter the output for the for loop.

Start

Enter the output of the following program.

public class forLoopOutput {
 public static void main (String [] args) {
 int i = 0;

 for (i = 0; i <= 4; ++i) {
 System.out.print(i);
 }

 return;
 }
}

01234

1 2 3 4 5

 Check Next

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 36 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

Challenge
ActivityC 4.5.2: For loop: Print 1 to N.

Write a for loop that prints: 1 2 .. userNum. Print a space after each number, including after the last number. Ex: userNum = 4 prints:

1 2 3 4

Run

import java.util.Scanner;

public class CountToNum {
 public static void main (String [] args) {
 int userNum = 0;
 int i = 0;

 userNum = 4;

 /* Your solution goes here */

 System.out.println("");

 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 37 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

Section 4.6 - Nested loops
A nested loop is a loop that appears in the body of another loop. The nested loops are commonly
referred to as the inner loop and outer loop.

Nested loops have various uses. One use is to generate all combinations of some items. For example,

Challenge
ActivityC 4.5.3: For loop: Print N to 0.

Write code that prints: userNum ... 2 1 Blastoff! Your code should contain a for loop. Print a newline after each number and after Blastoff!.
Ex: userNum = 3 outputs:

3
2
1
Blastoff!

Run

import java.util.Scanner;

public class CountdownRocket {
 public static void main (String [] args) {
 int userNum = 0;
 int i = 0;

 userNum = 3;

 /* Your solution goes here */

 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 38 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

the following program generates all two-letter .com Internet domain names.

Note that the program makes use of ascending characters being encoded as ascending numbers,
e.g., 'a' is 97, 'b' is 98, etc., so assigning 'a' to letter1 and then incrementing yields 'b'.

(Forget about buying a two-letter domain name: They are all taken, and each sells for several hundred
thousand or millions of dollars. Source: dnjournal.com, 2012).

Figure 4.6.1: Nested loops example: Two-letter domain name printing program.

import java.util.Scanner;

public class DomainNamePrinter {

 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 String usrInput = "?";
 char letter1 = '?';
 char letter2 = '?';

 System.out.print("Enter any key to begin: ");
 usrInput = scnr.next(); // Unused; just to start the printing

 System.out.println("Two-letter domain names:");

 letter1 = 'a';
 while (letter1 <= 'z') {
 letter2 = 'a';
 while (letter2 <= 'z') {
 System.out.println("" + letter1 + "" + letter2 + ".com");
 ++letter2;
 }
 ++letter1;
 }

 return;
 }
}

Enter any key to begin: a

Two-letter domain names:
aa.com
ab.com
ac.com
ad.com
ae.com
af.com
ag.com
ah.com
ai.com
aj.com
ak.com
al.com
am.com
an.com
ao.com
ap.com
aq.com
ar.com
as.com
at.com
au.com
av.com
aw.com
ax.com
ay.com
az.com
ba.com
bb.com
bc.com
bd.com
be.com

...

zw.com
zx.com
zy.com
zz.com

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 39 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

Below is a nested loop example that graphically depicts an integer's magnitude by using asterisks,
creating a "histogram." The inner loop is a for loop that handles the printing of the asterisks. The outer
loop is a while loop that handles executing until a negative number is entered.

Participation
ActivityP 4.6.1: Two character dotcom domain names.

Modify the program to include two-character .com names where the second character can be a
letter or a number, as in a2.com. Hint: Add a second loop, following the
while (letter2 <= 'z') loop, to handle numbers.

import java.util.Scanner;

public class DomainNamePrinter {
 public static void main (String [] args) {
 Scanner scnr = new Scanner(System.in);
 char letter1 = '?';
 char letter2 = '?';

 System.out.println("Two-letter domain names:");

 letter1 = 'a';
 while (letter1 <= 'z') {
 letter2 = 'a';
 while (letter2 <= 'z') {
 System.out.println("" + letter1 +
 "" + letter2 + ".com");
 ++letter2;
 }

Run
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 40 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

Figure 4.6.2: Nested loop example: Histogram.

import java.util.Scanner;

public class IntHistogram {
 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 int numAsterisk = 0; // Number of asterisks to print
 int i = 0; // Loop counter

 numAsterisk = 0;
 while (numAsterisk >= 0) {
 System.out.print("Enter an integer (negative to quit): ");
 numAsterisk = scnr.nextInt();

 if (numAsterisk >= 0) {
 System.out.println("Depicted graphically:");
 for (i = 1; i <= numAsterisk; ++i) {
 System.out.print("*");
 }
 System.out.println("\n");
 }
 }

 System.out.println("Goodbye.");

 return;
 }
}

Enter an integer (negative to quit): 9
Depicted graphically:

Enter an integer (negative to quit): 23
Depicted graphically:

Enter an integer (negative to quit): 35
Depicted graphically:

Enter an integer (negative to quit): -1
Goodbye.

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 41 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

Participation
ActivityP 4.6.2: Nested loops: Inner loop execution.

Question Your answer

1

Given the following code, how many times will the
inner loop body execute?
int row = 0;
int col = 0;
for(row = 0; row < 2; row = row + 1) {
 for(col = 0; col < 3; col = col + 1) {
 // Inner loop body
 }
}

2

Given the following code, how many times will the
inner loop body execute?
char letter1 = '?';
char letter2 = '?';

letter1 = 'a';
while (letter1 <= 'f') {
 letter2 = 'c';
 while (letter2 <= 'f') {
 // Inner loop body
 ++letter2;
 }
 ++letter1;
}

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 42 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

Participation
ActivityP 4.6.3: Nested loops: What is the output.

Question Your answer

1

What is output by the following code?
int row = 0;
int col = 0;
for(row = 2; row <= 3; row = row + 1) {
 for(col = 0; col <= 1; col = col + 1) {
 System.out.print("" + row + col + " ");
 }
}

2

What is output by the following code?
char letter1 = '?';
char letter2 = '?';

letter1 = 'y';
while (letter1 <= 'z') {
 letter2 = 'a';
 while (letter2 <= 'c') {
 System.out.print("" + letter1
 + letter2 + " ");
 ++letter2;
 }
 ++letter1;
}

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 43 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

Challenge
ActivityC 4.6.1: Nested loops: Indent text.

Print numbers 0, 1, 2, ..., userNum as shown, with each number indented by that number of spaces. For each printed line, print the
leading spaces, then the number, and then a newline. Hint: Use i and j as loop variables (initialize i and j explicitly). Note: Avoid any other
spaces like spaces after the printed number. Ex: userNum = 3 prints:

0
 1
 2
 3

Run

public class NestedLoop {
 public static void main (String [] args) {
 int userNum = 0;
 int i = 0;
 int j = 0;

 /* Your solution goes here */

 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 44 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

Section 4.7 - Developing programs incrementally
Creating correct programs can be hard. Following a good programming process helps. What many
new programmers do, but shouldn't, is write the entire program, compile it, and run it—hoping it
works. Debugging such a program can be difficult because there may be many distinct bugs.

Experienced programmers develop programs incrementally, meaning they create a simple program
version, and then growing the program little-by-little into successively more-complete versions.

Challenge
ActivityC 4.6.2: Nested loops: Print seats.

Given numRows and numCols, print a list of all seats in a theater. Rows are numbered, columns lettered, as in 1A or 3E.
after each seat, including after the last. Use separate print statements to print the row and column. Ex: numRows = 2 and numCols = 3
prints:

1A 1B 1C 2A 2B 2C

Run

public class NestedLoops {
 public static void main (String [] args) {
 int numRows = 2;
 int numCols = 3;

 // Note: You'll need to define more variables

 /* Your solution goes here */

 System.out.println("");

 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 45 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

The following program allows the user to enter a phone number that
includes letters. Such letters appear on phone keypads along with
numbers, enabling phone numbers like 1-555-HOLIDAY. The program
converts a phone number having numbers/letters into one having
numbers only.

The first program version simply prints each string element, to ensure
the loop iterates properly.

The second program version outputs any number elements, outputing '?' for non-number elements. A
FIXME comment is commonly used to indicate program parts to be fixed or added, as above. Some
editor tools automatically highlight the FIXME comment to attract the programmer's attention.

Figure 4.7.1: Incremental program development.

import java.util.Scanner;

public class PhoneNumberDecoder {
 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 String phoneStr = ""; // User input: Phone number string
 int i = 0; // Current index in phone number string

 System.out.print("Enter number: ");
 phoneStr = scnr.next();

 for (i = 0; i < phoneStr.length(); ++i) { // For each element
 System.out.println("Element " + i + " is: " + phoneStr.charAt(i));
 }

 return;
 }
}

Enter number: 1-555-HOLIDAY
Element 0 is: 1
Element 1 is: -
Element 2 is: 5
Element 3 is: 5
Element 4 is: 5
Element 5 is: -
Element 6 is: H
Element 7 is: O
Element 8 is: L
Element 9 is: I
Element 10 is: D
Element 11 is: A
Element 12 is: Y

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 46 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

The third version completes the else-if branch for the letters A-C (lowercase and uppercase), per a
standard phone keypad. The program also modifies the if branch to echo a hyphen in addition to
numbers.

Figure 4.7.2: Second version echoes numbers, and has FIXME comment.

import java.util.Scanner;

public class PhoneNumberDecoder {
 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 String phoneStr = ""; // User input: Phone number string
 int i = 0; // Current index in phone number string
 char currChar = '_'; // Current char in phone number string

 System.out.print("Enter phone number: ");
 phoneStr = scnr.next();

 System.out.print("Numbers only: ");

 for (i = 0; i < phoneStr.length(); ++i) { // For each element
 currChar = phoneStr.charAt(i);
 if ((currChar >= '0') && (currChar <= '9')) {
 System.out.print(currChar); // Print character as is
 }
 // FIXME: Add else-if branches for letters and hyphen
 else {
 System.out.print('?');
 }
 }

 System.out.println("");
 return;
 }

Enter phone number: 1-555-HOLIDAY
Numbers only: 1?555????????

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 47 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

The fourth version can be created by filling in the if-else branches similarly for other letters. We added
more instructions too. Code is not shown below, but sample input/output is provided.

Figure 4.7.3: Third version echoes hyphens too, and handles first three letters.

import java.util.Scanner;

public class PhoneNumberDecoder {
 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 String phoneStr = ""; // User input: Phone number string
 int i = 0; // Current index in phone number string
 char currChar = '_'; // Current char in phone number string

 System.out.print("Enter phone number: ");
 phoneStr = scnr.next();

 System.out.print("Numbers only: ");

 for (i = 0; i < phoneStr.length(); ++i) { // For each element
 currChar = phoneStr.charAt(i);
 if (((currChar >= '0') && (currChar <= '9')) || (currChar == '-')) {
 System.out.print(currChar); // Print character as is
 }
 else if (((currChar >= 'a') && (currChar <= 'c'))
 || ((currChar >= 'A') && (currChar <= 'C'))) {
 System.out.print('2');
 }
 // FIXME: Add remaining else-if branches
 else {
 System.out.print('?');
 }
 }

 System.out.println("");
 return;
 }
}

Enter phone number: 1-555-HOLIDAY
Numbers only: 1-555-?????2?

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 48 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

Figure 4.7.4: Fourth and final version sample
input/output.

Enter phone number (letters/- OK, no spaces): 1-555-HOLIDAY
Numbers only: 1-555-4654329

...

Enter phone number (letters/- OK, no spaces): 1-555-holiday
Numbers only: 1-555-4654329

...

Enter phone number (letters/- OK, no spaces): 999-9999
Numbers only: 999-9999

...

Enter phone number (letters/- OK, no spaces): 9876zywx%$#@
Numbers only: 98769999????

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 49 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

Participation
ActivityP 4.7.1: Incremental programming.

Complete the program by providing the additional if-else branches for decoding other letters in a
phone number. Try incrementally writing the program by adding one "else if" branch at a time,
testing that each added branch works as intended.

 1-800-555-HOLIDAY
import java.util.Scanner;

public class PhoneNumberDecoder {
 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 String phoneStr = ""; // User input: Phone number string
 int i = 0; // Current index in phone number string
 char currChar = '_'; // Current char in phone number string

 System.out.println("Enter phone number: ");
 phoneStr = scnr.next();

 System.out.print("Numbers only: ");

 for (i = 0; i < phoneStr.length(); ++i) { // For each element
 currChar = phoneStr.charAt(i);
 if (((currChar >= '0') && (currChar <= '9')) ||
 System.out.print(currChar); // Print character as is

Run

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 50 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

Section 4.8 - Break and continue
A break statement in a loop causes an immediate exit of the loop. A break statement can
sometimes yield a loop that is easier to understand.

Participation
ActivityP 4.7.2: Incremental programming.

Question Your answer

1

A good programming process is to write the entire program,
then incrementally remove bugs one at a time.

True

False

2

Expert programmers need not develop programs
incrementally.

True

False

3

Incremental programming may help reduce the number of
errors in a program.

True

False

4

FIXME comments provide a way for a programmer to
remember what needs to be added.

True

False

5

Once a program is complete, one would expect to see
several FIXME comments.

True

False

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 51 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

Figure 4.8.1: Break statement: Meal finder program.
import java.util.Scanner;

public class MealSolver {
 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 final int EMPANADA_COST = 3;
 final int TACO_COST = 4;

 int userMoney = 0;
 int numTacos = 0;
 int numEmpanadas = 0;
 int mealCost = 0;
 int maxEmpanadas = 0;
 int maxTacos = 0;

 System.out.print("Enter money for meal: ");
 userMoney = scnr.nextInt();

 maxEmpanadas = userMoney / EMPANADA_COST;
 maxTacos = userMoney / TACO_COST;

 for (numTacos = 0; numTacos <= maxTacos; ++numTacos) {
 for (numEmpanadas = 0; numEmpanadas <= maxEmpanadas; ++numEmpanadas) {

 mealCost = (numEmpanadas * EMPANADA_COST) + (numTacos * TACO_COST);

 // Find first meal option that exactly matches user money
 if (mealCost == userMoney) {
 break;
 }
 }

 // Find first meal option that exactly matches user money
 if (mealCost == userMoney) {
 break;
 }
 }

 if (mealCost == userMoney) {
 System.out.println("$" + mealCost + " buys " + numEmpanadas
 + " empanadas and " + numTacos
 + " tacos without change.");
 }
 else {
 System.out.println("You cannot buy a meal without having "
 + "change left over.");
 }

 return;
 }
}

Enter money for meal: 20
$20 buys 4 empanadas and 2 tacos without change.

...

Enter money for meal: 31
$31 buys 9 empanadas and 1 tacos without change.

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 52 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

The nested for loops generate all possible meal options for the number of empanadas and tacos that
can be purchased. The inner loop body calculates the cost of the current meal option. If equal to the
user's money, the search is over, so the break statement immediately exits the inner loop. The outer
loop body also checks if equal, and if so that break statement exits the outer loop.

The program could be written without break statements, but the loops' condition expressions would
be more complex and the program would require additional code, perhaps being harder to
understand.

A continue statement in a loop causes an immediate jump to the loop condition check. A continue
statement can sometimes improve the readability of a loop. The example below extends the previous
meal finder program to find meal options for which the total number of items purchased is evenly
divisible by the number of diners. The program also outputs all possible meal options, instead of just
reporting the first meal option found.

$31 buys 9 empanadas and 1 tacos without change.

Participation
ActivityP 4.8.1: Break statements.

Given the following while loop, what is the value assigned to variable z for the given values of
variables a, b and c?

mult = 0;
while (a < 10) {
 mult = b * a;
 if (mult > c) {
 break;
 }
 a = a + 1;
}
z = a;

Question Your answer

1
a = 1, b = 1, c = 0

2
a = 4, b = 5, c = 20

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 53 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

Figure 4.8.2: Continue statement: Meal finder program that ensures items
purchased is evenly divisible by the number of diners.

import java.util.Scanner;

public class MealSolverMultipleDiners {
 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 final int EMPANADA_COST = 3;
 final int TACO_COST = 4;

 int userMoney = 0;
 int numTacos = 0;
 int numEmpanadas = 0;
 int mealCost = 0;
 int maxEmpanadas = 0;
 int maxTacos = 0;
 int numOptions = 0;
 int numDiners = 0;

 System.out.print("Enter money for meal: ");
 userMoney = scnr.nextInt();

 System.out.print("How many people are eating: ");
 numDiners = scnr.nextInt();

 maxEmpanadas = userMoney / EMPANADA_COST;
 maxTacos = userMoney / TACO_COST;

 for (numTacos = 0; numTacos <= maxTacos; ++numTacos) {
 for (numEmpanadas = 0; numEmpanadas <= maxEmpanadas; ++numEmpanadas) {

 // Total items must be equally divisible by number of diners
 if (((numTacos + numEmpanadas) % numDiners) != 0) {
 continue;
 }

 mealCost = (numEmpanadas * EMPANADA_COST) + (numTacos * TACO_COST);

 if (mealCost == userMoney) {
 System.out.println("$" + mealCost + " buys " + numEmpanadas
 + " empanadas and " + numTacos
 + " tacos without change.");
 numOptions += 1;
 }
 }
 }

 if (numOptions == 0) {
 System.out.println("You cannot buy a meal without having "
 + "change left over.");
 }

 return;
 }
}

Enter money for meal: 60
How many people are eating: 3
$60 buys 12 empanadas and 6 tacos without change.

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 54 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

The nested loops generate all possible combinations of tacos and empanadas. If the total number of
tacos and empanadas is not exactly divisible by the number of diners (e.g.,
((numTacos + numEmpanadas) % numDiners) != 0), the continue statement proceeds
to the next iteration, thus causing incrementing of numEmpanadas and checking of the loop
condition.

Break and continue statements can avoid excessive indenting/nesting within a loop. But they could be
easily overlooked, and should be used sparingly, when their use is clear to the reader.

$60 buys 12 empanadas and 6 tacos without change.
$60 buys 0 empanadas and 15 tacos without change.

...

Enter money for meal: 54
How many people are eating: 2
$54 buys 18 empanadas and 0 tacos without change.
$54 buys 10 empanadas and 6 tacos without change.
$54 buys 2 empanadas and 12 tacos without change.

Participation
ActivityP 4.8.2: Continue.

Given:
for (i = 0; i < 5; ++i) {
 if (i < 10) {
 continue;
 }
 <Print i>
}

Question Your answer

1

The loop will print at least some output. True

False

2

The loop will iterate only once. True

False

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 55 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

Section 4.9 - Enumerations
Some variables only need store a small set of named values. For example, a variable representing a
traffic light need only store values named GREEN, YELLOW, or RED. An enumeration type defines a
name for a new type and possible values for that type.

Challenge
ActivityC 4.8.1: Simon says.

"Simon Says" is a memory game where "Simon" outputs a sequence of 10 characters (R, G, B, Y) and the user must repeat the sequence.
Create a for loop that compares the two strings starting from index 0. For each match, add one point to userScore. Upon a mismatch, exit
the loop using a break statement. Ex: The following patterns yield a userScore of 4:

simonPattern: R, R, G, B, R, Y, Y, B, G, Y
userPattern: R, R, G, B, B, R, Y, B, G, Y

Run

public class SimonSays {
 public static void main (String [] args) {
 String simonPattern = "";
 String userPattern = "";
 int userScore = 0;
 int i = 0;

 userScore = 0;
 simonPattern = "RRGBRYYBGY";
 userPattern = "RRGBBRYBGY";

 /* Your solution goes here */

 System.out.println("userScore: " + userScore);

 return;
 }
}

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 56 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

The items within the braces ("enumerators") are named constants. Those constants are not assigned
a specific numeric value, but instead must be referred to by the defined names. An enumeration
defines a new data type that can be used like the built-in types int, char, etc.

Construct 4.9.1: Enumeration type.
public enum identifier {enumerator1, enumerator2, ...}

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 57 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

The program declares a new enumeration type named LightState. The program then defines a new
variable lightVal of that type. The loop updates lightVal based on the user's input.

Figure 4.9.1: Enumeration example.

import java.util.Scanner;

/* Manual controller for traffic light */
public class TrafficLightControl {
 // enum type definition occurs outside the main method
 public enum LightState {RED, GREEN, YELLOW, DONE}

 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 LightState lightVal = LightState.RED;
 String userCmd = "-";

 System.out.println("User commands: n (next), r (red), q (quit).\n");

 lightVal = LightState.RED;
 while (lightVal != LightState.DONE) {

 if (lightVal == LightState.GREEN) {
 System.out.print("Green light ");
 userCmd = scnr.next();
 if (userCmd.equals("n")) { // Next
 lightVal = LightState.YELLOW;
 }
 }
 else if (lightVal == LightState.YELLOW) {
 System.out.print("Yellow light ");
 userCmd = scnr.next();
 if (userCmd.equals("n")) { // Next
 lightVal = LightState.RED;
 }
 }
 else if (lightVal == LightState.RED) {
 System.out.print("Red light ");
 userCmd = scnr.next();
 if (userCmd.equals("n")) { // Next
 lightVal = LightState.GREEN;
 }
 }

 if (userCmd.equals("r")) { // Force immediate red
 lightVal = LightState.RED;
 }
 else if (userCmd.equals("q")) { // Quit
 lightVal = LightState.DONE;
 }
 }

 System.out.println("Quit program.");
 return;
 }
}

User commands: n (next), r (red), q (quit).

Red light n
Green light n
Yellow light n
Red light n
Green light r
Red light n
Green light n
Yellow light n
Red light q
Quit program.

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 58 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

The example illustrate the idea of a state machine that is sometimes used in programs, especially
programs that interact with physical objects, wherein the program moves among particular situations
("states") depending on input; see Wikipedia: State machine.

A programmer must include both the enumeration type and the enumerator within that type, as in
lightVal = LightState.RED;. A common error is to omit the enumeration type in an
expression. For example, the statement lightVal = RED; results in a compilation error.

Different enumerated types may use some of the same enumerators. For example, the above program
might also declare public enum Warnings {GREEN, ORANGE, RED}. The enumeration values
are then accessed as Warnings.RED and LightState.RED.

One might ask why the light variable wasn't simply defined as a string, and then compared with
strings "GREEN", "RED", and "YELLOW". Enumerations are safer. If using a string, an assignment like
light = "ORANGE" would not yield a compiler error, even though ORANGE is not a valid light color.
Likewise, light == "YELOW" would not yield a compiler error, even though YELLOW is misspelled.

One could instead define final variables for strings like final String LS_GREEN = "GREEN"; or
even integer values like final int LS_GREEN = 0; and then use those constants in the code,
but an enumeration is clearer, requires less code, and is less prone to error.

Participation
ActivityP 4.9.1: Enumerations.

Question Your answer

1

Define a new public enumeration type named
HvacStatus with three named values HvacOff,
AcOn, FurnaceOn, in that order.

2
Define a variable of the enumeration type
HvacStatus named systemStatus.

3
Assign the value AcOn to the variable systemStatus.

http://en.wikipedia.org/wiki/State_machine

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 59 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

Section 4.10 - Java example: Salary calculation with loops

Challenge
ActivityC 4.9.1: Enumerations: Grocery items.

Print either "Fruit", "Drink", or "Unknown" (followed by a newline) depending on the value of userItem. Print "Unknown" (followed by a
newline) if the value of userItem does not match any of the defined options. For example, if userItem is GR_APPLES, output should be:

Fruit

Run

P Participation
Activity

4.10.1: Calculate adjusted salary and tax with deductions: Using
loops.

A program may execute the same computations repeatedly.

The program below repeatedly asks the user to enter an annual salary, stopping when the user

import java.util.Scanner;

public class GrocerySorter {
 public enum GroceryItem {GR_APPLES, GR_BANANAS, GR_JUICE, GR_WATER};
 public static void main (String [] args) {

 GroceryItem userItem = GroceryItem.GR_APPLES;

 /* Your solution goes here */

 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 60 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

The program below repeatedly asks the user to enter an annual salary, stopping when the user
enters 0 or less. For each annual salary, the program determines the tax rate and computes the tax
to pay.

1. Run the program below with annual salaries of 40000, 90000, and then 0.
2. Modify the program to use a while loop inside the given while loop. The new inner

loop should repeatedly ask the user to enter a salary deduction, stopping when
the user enters a 0 or less. The deductions are summed and then subtracted from
the annual income, giving an adjusted gross income. The tax rate is then
calculated from the adjusted gross income.

3. Run the program with the following input: 40000, 7000, 2000, 0, and 0. Note that
the 7000 and 2000 are deductions.

Reset

40000
90000
0

import java.util.Scanner;

public class IncomeTax {
 public static void main (String [] args) {
 Scanner scnr = new Scanner(System.in);
 final String SALARY_PROMPT = "\nEnter annual salary (0 to exit): ";
 int annualSalary = 0;
 int deduction = 0;
 int totalDeductions = 0;
 double taxRate = 0.0;
 int taxToPay = 0;

 System.out.println(SALARY_PROMPT);
 annualSalary = scnr.nextInt();

 while (annualSalary > 0) {

 // FIXME: Add a while loop to gather deductions. Use the variables

Run

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 61 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

A solution to the above problem follows. The input consists of three sets of annual salaries and
deductions.

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 62 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

P Participation
Activity

4.10.2: Calculate adjusted salary and tax with deductions: Using
loops (solution).

Reset

40000 3000 6000 0
90000 5000 0
60000 2000 1000 1450 0
0

Participation
ActivityP 4.10.3: Create an annual income and tax table.

import java.util.Scanner;

public class IncomeTax {
 public static void main (String [] args) {
 Scanner scnr = new Scanner(System.in);
 final String PROMPT_SALARY = "\nEnter annual salary (0 to exit): ";
 final String PROMPT_DEDUCTION = "Enter a deduction (0 to end deductions): ";
 int annualSalary = 0;
 int oneDeduction = 0;
 int totalDeductions = 0;
 int adjustedSalary = 0;
 double taxRate = 0.0;
 int taxToPay = 0;

 System.out.println(PROMPT_SALARY);
 annualSalary = scnr.nextInt();

 while (annualSalary > 0) {

Run

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 63 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

P
A tax table shows three columns: an annual salary, the tax rate, and the tax amount to pay. The
program below shows most of the code needed to calculate a tax table.

1. Run the program below and note the results.
2. Alter the program to use a for loop to print a tax table of annual income, tax rate,

and tax to pay. Use starting and ending annual salaries of 40000 and 60000,
respectively, and a salary increment of 5000.

3. Run the program again and note the results. You should have five rows in the tax
table.

4. Alter the program to add user prompts and read the starting and ending annual
incomes from user input.

5. Run the program again using 40000 and 60000, respectively, and the same salary
increment of 5000. You should have the same results as before.

6. Alter the program to ask the user for the increment to use in addition to the
starting and ending annual salaries.

7. Run the program again using an increment of 2500. Are the entries for 40000,
45000, 50000, 55000 and 60000 the same as before?

Reset

40000 60000 5000

import java.util.Scanner;

public class IncomeTax {
 public static void main (String [] args) {
 final int INCOME_INCREMENT = 5000;

 Scanner scnr = new Scanner(System.in);
 int annualSalary = 0;
 double taxRate = 0.0;
 int taxToPay = 0;
 int startingAnnualSalary = 0; // FIXME: Change the starting salary to 40000
 int endingAnnualSalary = 0; // FIXME: Change the ending salary to 60000

 // FIXME: Use a for loop to calculate the tax for each entry in the table.
 // Hint: the initialization clause is annualSalary = startingAnnualSalary

 // Determine the tax rate from the annual salary
 if (annualSalary <= 0) {
 taxRate = 0.0;

Run

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 64 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

A solution to the above problem follows.

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 65 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

Section 4.11 - Java example: Domain name validation with

Participation
ActivityP 4.10.4: Create an annual income and tax table (solution).

Reset

40000 60000 2500

import java.util.Scanner;

public class IncomeTax {
 public static void main (String [] args) {
 Scanner scnr = new Scanner(System.in);
 int annualSalary = 0;
 double taxRate = 0.0;
 int taxToPay = 0;
 int startingAnnualSalary = 0;
 int endingAnnualSalary = 0;
 int incomeIncrement = 0;

 System.out.println("Enter first annual salary for the table: ");
 startingAnnualSalary = scnr.nextInt();
 System.out.println("Enter last annual salary for the table: ");
 endingAnnualSalary = scnr.nextInt();
 System.out.println("Enter the increment for the table: ");
 incomeIncrement = scnr.nextInt();

Run

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 66 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

loops Participation
ActivityP 4.11.1: Validate domain names.

A top-level domain (TLD) name is the last part of an Internet domain name like .com in
example.com. A core generic top-level domain (core gTLD) is a TLD that is either .com, .net,
.org, or .info. A second-level domain is a single name that precedes a TLD as in apple in
apple.com

The following program uses a loop to repeatedly prompt for a domain name, and indicates whether
that domain name consists of a second-level domain followed by a core gTLD. An example of a
valid domain name for this program is apple.com. An invalid domain name for this program is
support.apple.com because the name contains two periods. The program ends when the user
presses just the Enter key in response to a prompt.

1. Run the program and enter domain names to validate. Note that even valid input is
flagged as invalid.

2. Change the program to validate a domain name. A valid domain name for this
program has a second-level domain followed by a core gTLD. Run the program
again.

Reset

apple.com
APPLE.COM
apple.comm
www.apple.info

import java.util.Scanner;

public class CoreGtldValidation {

 public static void main (String [] args) {
 Scanner scnr = new Scanner(System.in);
 String inputName = "";
 String searchName = "";
 String coreGtld1 = ".com";
 String coreGtld2 = ".net";
 String coreGtld3 = ".org";
 String coreGtld4 = ".info";
 String theTld = "";
 boolean isCoreGtld = false;
 // FIXME: Add variable periodCounter to count periods in a domain name
 int periodPosition = 0; // Position of the period in the domain name

 int i = 0;

Run

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 67 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

A solution for the above problem follows.

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 68 of 68https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/4/print

Participation
ActivityP 4.11.2: Validate domain names (solution).

Reset

apple.com
APPLE.COM
apple.comm
www.apple.info

import java.util.Scanner;

public class CoreGtldValidation_Solution {
 public static void main (String [] args) {
 Scanner scnr = new Scanner(System.in);
 String inputName = "";
 String searchName = "";
 String coreGtld1 = ".com";
 String coreGtld2 = ".net";
 String coreGtld3 = ".org";
 String coreGtld4 = ".info";
 String theTld = "";
 boolean isCoreGtld = false;
 int periodCounter = 0;
 int periodPosition = 0;
 int i = 0;

 System.out.println("\nEnter the next domain name (<Enter> to exit): ");
 inputName = scnr.nextLine();

Run

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

