
1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 1 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Chapter 3 - Branches

Section 3.1 - If-else
Like a river splitting and re-merging, branching directs a program to execute either one statement
group or another, depending on an expression's value. An example is to print "Too young to drive" if
userAge < 16, else print "OK to drive". The language's if-else statement supports branching.

Construct 3.1.1: If-else statement.
// Statements that execute before the branches

if (expression) {
 // Statements to execute when the expression is true (first branch)
}
else {
 // Statements to execute when the expression is false (second branch)
}

// Statements that execute after the branches

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 2 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

If a user inputs an age less than 25, the statement
 insurancePrice = PRICE_LESS_THAN_25 executes. Otherwise,
 insurancePrice = PRICE_25_AND_UP executes. (Prices under 25 are higher because 1 in 6
such drivers are involved in an accident each year, vs. 1 in 15 for older drivers. Source:
www.census.gov, 2009).

Though not required, programmers follow the good practice of indenting a branch's statements, using
a consistent number of spaces. This material indents 3 spaces.

Figure 3.1.1: If-else example: Car insurance prices.

import java.util.Scanner;

public class Insurance {
 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 final int PRICE_LESS_THAN_25 = 4800; // Age less than 25
 final int PRICE_25_AND_UP = 2200; // Age 25 and Up
 int userAge = 0; // Years
 int insurancePrice = 0; // Dollars

 System.out.print("Enter age: ");
 userAge = scnr.nextInt();

 if (userAge < 25) {
 insurancePrice = PRICE_LESS_THAN_25;
 System.out.println("(executed first branch)");
 }
 else {
 insurancePrice = PRICE_25_AND_UP;
 System.out.println("(executed second branch)");
 }

 System.out.println("Annual price: $" + insurancePrice);

 return;
 }
}

Enter age: 19
(executed first branch)
Annual price: $4800

...

Enter age: 28
(executed second branch)
Annual price: $2200

http://www.carsdirect.com/car-insurance/the-average-car-insurance-rates-by-age#b
http://www.census.gov/

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 3 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Participation
ActivityP 3.1.1: An if-else is like a branching road.

Participation
ActivityP 3.1.2: If-else statements.

Question Your answer

1

What is the final value of numItems?

bonusVal = 5;
if (bonusVal < 12) {
 numItems = 100;
}
else {
 numItems = 200;
}

2

What is the final value of numItems?

bonusVal = 12;
if (bonusVal < 12) {
 numItems = 100;

// Read age ... // Print price
...

age:

Enter own
value

if (age < 25) {
 price = PRICE_LESS_THAN_25;

else {
 price = PRICE_25_AND_UP;

Show "if"
example

Show "else"
example

}

}

// Read age ...
if (age < 25) {
 price = PRICE_LESS_THAN_25;
}
else {
 price = PRICE_25_AND_UP;
}
// Print price ...

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 4 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

2
 numItems = 100;
}
else {
 numItems = 200;
}

3

What is the final value of numItems?

bonusVal = 15;
numItems = 44;
if (bonusVal < 12) {
 numItems = numItems + 3;
}
else {
 numItems = numItems + 6;
}
numItems = numItems + 1;

4

What is the final value of bonusVal?

bonusVal = 11;
if (bonusVal < 12) {
 bonusVal = bonusVal + 2;
}
else {
 bonusVal = bonusVal + 10;
}

5

What is the final value of bonusVal?

bonusVal = 11;
if (bonusVal < 12) {
 bonusVal = bonusVal + 2;
 bonusVal = 3 * bonusVal;
}
else {
 bonusVal = bonusVal + 10;
}

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 5 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

An if statement can be written without the else part. Such a statement acts like an if-else with no
statements in the else branch.

Participation
ActivityP 3.1.3: Writing an if-else statement.

Translate each description to an if-else statement as directly as possible. Use { }. (Not checked,
but please indent a branch's statements some consistent number of spaces such as 3 spaces).

Question Your answer

1

If userAge is greater than 62, assign 15 to discount.
Else, assign 0 to discount.

2

If numPeople is greater than 10, execute groupSize
= 2 * groupSize. Otherwise, execute groupSize = 3 *
groupSize and also numPeople = numPeople - 1.

3

If numPlayers is greater than 11, execute teamSize =
11. Otherwise, execute teamSize = numPlayers.
Then, no matter the value of numPlayers, execute
teamSize = 2 * teamSize.

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 6 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

(The example used the number 42. That's a popular number. Just for fun, search for "the answer to
life the universe and everything" on Google to learn why).

Figure 3.1.2: If statement without else: Absolute value example.

import java.util.Scanner;

public class AbsoluteValueCalc {
 public static void main (String [] args) {
 Scanner scnr = new Scanner(System.in);
 int userVal = 0;
 int absVal = 0;

 System.out.print("Enter an integer: ");
 userVal = scnr.nextInt();

 absVal = userVal;
 if (absVal < 0) {
 absVal = absVal * -1;
 }

 System.out.print("The absolute value of " + userVal);
 System.out.println(" is " + absVal);

 return;
 }
}

Enter an integer: -55
The absolute value of -55 is 55

...

Enter an integer: 42
The absolute value of 42 is 42

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 7 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Braces surround a branch's statements. Braces { }, sometimes redundantly called curly braces,
represent a grouping, such as a grouping of statements. Note: { } are braces, [] are brackets.

When a branch has a single statement, the braces are optional, but good practice always uses the
braces. Always using braces even when a branch only has one statement prevents the common error
of mistakenly thinking a statement is part of a branch.

Participation
ActivityP 3.1.4: If without else.

What is the final value of numItems?

Question Your answer

1

bonusVal = 19;
numItems = 1;
if (bonusVal > 10) {
 numItems = numItems + 3;
}

2

bonusVal = 0;
numItems = 1;
if (bonusVal > 10) {
 numItems = numItems + 3;
}

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 8 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

P Participation
Activity

3.1.5: Leaving off braces can lead to a common error; better to
always use braces.

// Braces omitted
// but works

if (userKey == 'a')
 totalVal = 1;
else
 totalVal = 2;

totalVal: 1

// Statement added
// totalVal ALWAYS 2
// Indents irrelevant

if (userKey == 'a')
 totalVal = 1;
else
 i = i + 1;
 totalVal = 2;

// Compiler sees
// it this way

if (userKey == 'a')
 totalVal = 1;
else
 i = i + 1;
totalVal = 2;

// Always using braces
// prevents the error

if (userKey == 'a'){
 totalVal = 1;
}
else {
 i = i + 1;
 totalVal = 2;
}

totalVal: 1totalVal: 2

Start

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 9 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Participation
ActivityP 3.1.6: Omitting braces is a common source of errors.

What is the final value of numItems?

Question Your answer

1

numItems = 0;
bonusVal = 19;
if (bonusVal > 10)
 numItems = bonusVal;
numItems = numItems + 1;

2

numItems = 0;
bonusVal = 5;
if (bonusVal > 10)
 // Need to update bonusVal
 numItems = bonusVal;
numItems = numItems + 1;

3

numItems = 0;
bonusVal = 5;
if (bonusVal > 10)
 // Update bonusVal
 bonusVal = bonusVal - 1;
 numItems = bonusVal;
numItems = numItems + 1;

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 10 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Challenge
ActivityC 3.1.1: Enter the output for the if-else branches.

Start

Enter the output of the following program.

public class ifElseOuput {
 public static void main (String [] args) {
 int numApples = 6;

 if (numApples < 8) {
 System.out.println("a");
 }
 else {
 System.out.println("f");
 }

 System.out.println("k");

 return;
 }
}

a
k

1 2 3 4

 Check Next

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 11 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Challenge
ActivityC 3.1.2: Basic if-else expression.

Write an expression that will cause the following code to print "18 or less" if the value of userAge is 18 or less.

Run

public class AgeChecker {
 public static void main (String [] args) {
 int userAge = 0;

 if (/* Your solution goes here */) {
 System.out.println("18 or less");
 }
 else {
 System.out.println("Over 18");
 }

 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 12 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Section 3.2 - Relational and equality operators
An if-else expression commonly involves a relational operator or equality operator.

Challenge
ActivityC 3.1.3: Basic if-else.

Write an if-else statement for the following:
If userTickets is less than 5, execute numTickets = 1. Else, execute numTickets = userTickets.
Ex: if userTickets is 3, then numTickets = 1.

Run

public class TicketCounter {
 public static void main (String [] args) {
 int numTickets = 0;
 int userTickets = 3;

 /* Your solution goes here */

 System.out.println(numTickets);

 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 13 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Each operator involves two operands, shown above as a and b. The operation evaluates to a
Boolean value meaning either true or false. If userAge is 19, then userAge < 25 evaluates to true.

Some operators like >= involve two characters. Only the shown two-character sequences represent
valid operators. A common error is to use invalid character sequences like =>, !<, or <>, which are not
valid operators.

Note that equality is ==, not =.

Table 3.2.1: Relational (first four) and equality (last two) operators.

Relational and
equality operators Description

a < b a is less-than b

a > b a is greater-than b

a <= b a is less-than-or-equal-to b

a >= b a is greater-than-or-equal-to b

a == b a is equal to b

a != b a is not equal to b

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 14 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Participation
ActivityP 3.2.1: Expressions with relational and equality operators.

Type the operator to complete the desired expression.

if expression {
 ...
}
else {
 ...
}

Question Your answer

1
numDogs is 0 (numDogs 0)

2
numDogs is greater than 10 (numDogs 10)

3
numCars is greater than or equal to 5 (numCars 5)

4
numCars is 5 or greater (numCars 5)

5
numDogs and numCats are the same (numDogs numCats)

6
numDogs and numCats differ (numDogs numCats)

7
numDogs is either less-than or greater-than
numCats

(numDogs numCats)

8
centsLost is a negative number (centsLost 0)

9
userChar is the character 'x'. (userChar 'x')

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 15 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

The relational and equality operators work for integer, character, and floating-point built-in types.
Comparing characters compares their Unicode numerical encoding. However, floating-point types
should not be compared using the equality operators, due to the imprecise representation of floating-
point numbers, as discussed in a later section.

The operators should not be used with strings; unexpected results will occur. See another section
discussing string comparison methods equals() and compareTo().

A common error is to use = rather than == in an if-else expression, as in: if (numDogs = 9) { ... }. The
compiler usually generates an error message, like:
"incompatible types. found : int. required: boolean."

Participation
ActivityP 3.2.2: If-else with expression: Non-negative.

The program prints "Zero" if the user enters 0, else prints "Non-zero". Modify the program to print
"Non-negative" if the user enters 0 or greater, else print "Negative".

99
import java.util.Scanner;

public class Neg {
 public static void main (String [] args) {
 Scanner scnr = new Scanner(System.in);
 int userNum = 0;

 System.out.println("Enter a number: ");
 userNum = scnr.nextInt();
 if (userNum == 0) {
 System.out.println("Zero");
 }
 else {
 System.out.println("Non-zero");
 }

 return;
 }

Run

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 16 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Participation
ActivityP 3.2.3: Comparing various types.

Which comparison will compile AND consistently yield expected results? Variables have types
denoted by their names.

Question Your answer

1

myInt == 42 OK

Not OK

2

myChar == 'q' OK

Not OK

3

myDouble == 3.25 OK

Not OK

Participation
ActivityP 3.2.4: Comparing various types (continued).

Question Your answer

1

myString == "Hello" OK

Not OK

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 17 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

C Challenge
Activity

3.2.1: Enter the output for the branches with relational
operators.

Start

Enter the output of the following program.

public class ifElseOutput {
 public static void main (String [] args) {
 int numEggs = 5;

 if (numEggs <= 6) {
 System.out.println("c");
 }
 else {
 System.out.println("d");
 }

 System.out.println("d");

 return;
 }
}

c
d

1 2 3 4

 Check Next

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 18 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Challenge
ActivityC 3.2.2: If-else expression: Detect greater than 100.

Write an expression that will print "Dollar or more" if the value of numCents is at least a dollar (100 cents is a dollar).
Ex: If numCents is 109, output is "Dollar or more".

Run

import java.util.Scanner;

public class DetectDollar {
 public static void main (String [] args) {
 int numCents = 0;

 numCents = 109;

 if (/* Your solution goes here */) {
 System.out.println("Dollar or more");
 }
 else {
 System.out.println("Not a dollar");
 }

 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 19 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Challenge
ActivityC 3.2.3: Basic If-else expression: Detect even.

Write an expression that will print "Even" if the value of userNum is an even number.

Run

import java.util.Scanner;

public class DetectOdd {
 public static void main (String [] args) {
 int userNum = 0;

 userNum = 6;

 if (/* Your solution goes here */) {
 System.out.println("Even");
 }
 else {
 System.out.println("Odd");
 }

 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 20 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Challenge
ActivityC 3.2.4: If-else statement: Fix errors.

Re type the following code and fix any errors. The code should check if userNum is 2.

if (userNum = 2) {
 System.out.println("Num is two");
}
else {
 System.out.println("Num is not two");
}

Run

import java.util.Scanner;

public class DetectTwo {
 public static void main(String [] args) {
 int userNum = 0;

 userNum = 2;

 /* Your solution goes here */

 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 21 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Section 3.3 - Multiple if-else branches
Commonly, a programmer requires more than two branches, in which case a multi-branch if-else
arrangement can be used.

Challenge
ActivityC 3.2.5: If-else statement: Print senior citizen.

Write an if-else statement that checks patronAge. If 55 or greater, print "Senior citizen", otherwise print "Not senior citizen" (without
quotes). End with newline.

Run

import java.util.Scanner;

public class DetectSenior {
 public static void main (String [] args) {
 int patronAge = 0;

 patronAge = 55;

 /* Your solution goes here */

 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 22 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Construct 3.3.1: Multi-branch if-else arrangement. Only 1 branch will execute.
if (expr1) {

}
else if (expr2) {

}

...

else if (exprN) {

}
else {

}

Figure 3.3.1: Multiple if-else branches example: Anniversaries.

import java.util.Scanner;

public class MultIfElseAnniv {
 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 int numYears = 0;

 System.out.print("Enter number years married: ");
 numYears = scnr.nextInt();

 if (numYears == 1) {
 System.out.println("Your first year -- great!");
 }
 else if (numYears == 10) {
 System.out.println("A whole decade -- impressive.");
 }
 else if (numYears == 25) {
 System.out.println("Your silver anniversary -- enjoy.");
 }
 else if (numYears == 50) {
 System.out.println("Your golden anniversary -- amazing.");
 }
 else {
 System.out.println("Nothing special.");
 }

 return;
 }
}

Enter number years married: 10
A whole decade -- impressive.

...

Enter number years married: 25
Your silver anniversary -- enjoy.

...

Enter number years married: 30
Nothing special.

...

Enter number years married: 1
Your first year -- great!

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 23 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

P Participation
Activity

3.3.1: Only one branch will execute in a multi-branch if-else
arrangement.

// Read age ...
if (age <= 15) {
 // Print "Too..."
 price = 0;
}
else if (age <= 24) {
 price = PRICE_16_TO_24;
}
else if (age <= 39) {
 price = PRICE_25_TO_39;
}
else {
 price = PRICE_40_AND_UP;
}
// Print "Annual..." else {

 price = PRICE_40_AND_UP;
}

if (age <= 15) {
 // Print "Too..."
 price = 0;
}

else if (age <= 24) {
 price = PRICE_16_TO_24;
}

else if (age <=39) {
 price = PRICE_25_TO_39;
}

// Print "An.."// Read...

Enter own valueStart

age: 30

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 24 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Participation
ActivityP 3.3.2: Multi-branch if-else.

What is the final value of employeeBonus for each given value of numSales?

if (numSales == 0) {
 employeeBonus = 0;
}
else if (numSales == 1) {
 employeeBonus = 2;
}
else if (numSales == 2) {
 employeeBonus = 5;
}
else {
 employeeBonus = 10;
}

Question Your answer

1
numSales is 2

2
numSales is 0

3
numSales is 7

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 25 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Programmers commonly use the sequential nature of the multi-branch if-else arrangement to detect
ranges of numbers. In the following example, the second branch expression is only reached if the first
expression is false. So the second branch is taken if userAge is NOT <= 15 (meaning 16 or greater)
AND userAge is <=24, meaning userAge is between 16..24 (inclusive).

Participation
ActivityP 3.3.3: Complete the multi-branch if-else.

if (userChar == 'x') { // User typed x
 numTries = 3;
}
__________________________ // User typed y
 numTries = 7;
}
else {
 numTries = 1;
}

Question Your answer

1
Fill in the missing line of code.

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 26 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Figure 3.3.2: Using sequential nature of multi-branch if-else for ranges:
Insurance prices.

import java.util.Scanner;

public class MultIfElseInsur {
 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 final int PRICE_16_TO_24 = 4800; // Age 16..24 (2010 U.S., carsdirect.com)
 final int PRICE_25_TO_39 = 2350; // Age 25..39
 final int PRICE_40_AND_UP = 2100; // Age 40 and up
 int userAge = 0;
 int insurancePrice = 0;

 System.out.print("Enter your age: ");
 userAge = scnr.nextInt();

 if (userAge <= 15) { // Age 15 and under
 System.out.println("Too young.");
 insurancePrice = 0;
 } else if (userAge <= 24) { // Age 16..24
 insurancePrice = PRICE_16_TO_24;
 } else if (userAge <= 39) { // Age 25..39
 insurancePrice = PRICE_25_TO_39;
 } else { // Age 40 and up
 insurancePrice = PRICE_40_AND_UP;
 }

 System.out.println("Annual price: $" + insurancePrice);

 return;
 }
}

Enter your age: 19
Annual price: $4800

...

Enter your age: 27
Annual price: $2350

...

Enter your age: 15
Too young.
Annual price: $0

...

Enter your age: 129
Annual price: $2100

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 27 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Participation
ActivityP 3.3.4: Ranges and multi-branch if-else.

Type the range for each branch, typing 10..13 to represent range 10, 11, 12, 13, and typing 10+ to
represent all numbers 10 and larger.

if (numSales <= 9) {
 ...
}
else if (numSales <= 19) { // 2nd branch range: _______
 ...
}
else if (numSales <= 29) { // 3rd branch range: _______
 ...
}
else { // 4th branch range: _______
 ...
}

Question Your answer

1
2nd branch range:

2
3rd branch range:

3
4th branch range:

4

What is the range for the last branch below?
if (numItems < 0) {
 ...
}
else if (numItems > 100) {
 ...
}
else { // Range: ______
 ...
}

Participation
ActivityP 3.3.5: Complete the multi-branch code.

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 28 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Question Your answer

1

Second branch: userNum is less than 200 if (userNum < 100) {
 ...
}
else if () {

 ...
}
else { // userNum >= 200
 ...
}

2

Second branch: userNum is positive (non-
zero)

if (userNum < 0) {
 ...
} {

 ...
}
else { // userNum is 0
 ...
}

3

Second branch: userNum is greater than
105

if (userNum < 100) {
 ...
} {

 ...
}
else { // userNum is between
 // 100 and 105
 ...
}

4

If the final else branch executes, what
must userNum have been? Type
"unknown" if appropriate.
if (userNum <= 9) {
 ...
}
else if (userNum >= 11) {
 ...
}
else {
 ... // userNum if this executes?
}

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 29 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

A branch's statements can include any valid statements, including another if-else statement, such
occurrence known as nested if-else statements.

Sometimes the programmer has multiple if statements in sequence, which looks similar to a multi-
branch if-else statement but has a very different meaning. Each if-statement is independent, and thus
more than one branch can execute, in contrast to the multi-branch if-else arrangement.

5

Which branch will execute? Valid answers:
1, 2, 3, or none.
userNum = 555;
if (userNum < 0) {
 ... // Branch 1
}
else if (userNum == 0) {
 ... // Branch 2
}
else if (userNum < 100) {
 ... // Branch 3
}

Figure 3.3.3: Nested if-else.
if (userChar == 'q') { // userChar 'q'
 ...
}
else if (userChar == 'c') {
 if (numItems < 0) { // userChar 'c' and numItems < 0
 ...
 }
 else { // userChar 'c' and numItems >= 0
 ...
 }
}
else { // userChar not 'q' or 'c'
 ...
}

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 30 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Figure 3.3.4: Multiple distinct if statements.

import java.util.Scanner;

public class AgeStats {
 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 int userAge = 0;

 System.out.print("Enter age: ");
 userAge = scnr.nextInt();

 // Note that more than one "if" statement can execute
 if (userAge < 16) {
 System.out.println("Enjoy your early years.");
 }

 if (userAge >= 16) {
 System.out.println("You are old enough to drive.");
 }

 if (userAge >= 18) {
 System.out.println("You are old enough to vote.");
 }

 if (userAge >= 25) {
 System.out.println("Most car rental companies will rent to you.");
 }

 if (userAge >= 35) {
 System.out.println("You can run for president.");
 }

 return;
 }
}

Enter age: 12
Enjoy your early years.

...

Enter age: 27
You are old enough to drive.
You are old enough to vote.
Most car rental companies will rent to you.

...

Enter age: 99
You are old enough to drive.
You are old enough to vote.
Most car rental companies will rent to you.
You can run for president.

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 31 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Participation
ActivityP 3.3.6: Multiple if statements.

if (age < 16) if (age >= 16) if (age >= 18)

(empty) (empty) (empty)

age:17

..drive..

// Get age...
if (age < 16) {
 // Print "..young.."
}

if (age >= 16) {
 // Print "..drive.."
}

if (age >= 18) {
 // Print "..vote.."
}

Start Enter own value

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 32 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Participation
ActivityP 3.3.7: If statements.

Determine the final value of numBoxes.

Question Your answer

1

numBoxes = 0;
numApples = 9;
if (numApples < 10) {
 numBoxes = 2;
}
if (numApples < 20) {
 numBoxes = numBoxes + 1;
}

2

numBoxes = 0;
numApples = 9;
if (numApples < 10) {
 if (numApples < 5) {
 numBoxes = 1;
 }
 else {
 numBoxes = 2;
 }
}
else if (numApples < 20) {
 numBoxes = numBoxes + 1;
}

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 33 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Challenge
ActivityC 3.3.1: Enter the output for the multiple if-else branches.

Start

Enter the output of the following program.

public class ifElseOutput {
 public static void main (String [] args) {
 int numItems = 4;

 if (numItems > 2) {
 System.out.println("b");
 }
 else if (numItems <= 7) {
 System.out.println("f");
 }
 else {
 System.out.println("k");
 }

 System.out.println("p");

 return;
 }
}

b
p

1 2 3 4

 Check Next

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 34 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Challenge
ActivityC 3.3.2: If-else statement: Fix errors.

Re type the code and fix any errors. The code should convert negative numbers to 0.

if (userNum >= 0)
 System.out.println("Non-negative");
else
 System.out.println("Negative; converting to 0");
 userNum = 0;
System.out.format("Final: %d", userNum);
System.out.println("");

Run

import java.util.Scanner;

public class ConvertNegative {
 public static void main (String [] args) {
 int userNum = 0;

 /* Your solution goes here */

 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 35 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Challenge
ActivityC 3.3.3: Multiple branch If-else statement: Print century.

Write an if-else statement with multiple branches. If givenYear is 2100 or greater, print "Distant future" (without quotes). Else, if givenYear is
2000 or greater (2000-2099), print "21st century". Else, if givenYear is 1900 or greater (1900-1999), print "20th century". Else (1899 or
earlier), print "Long ago". Do NOT end with newline.

Run

import java.util.Scanner;

public class YearChecker {
 public static void main (String [] args) {
 int givenYear = 0;

 givenYear = 1776;

 /* Your solution goes here */

 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 36 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Section 3.4 - Logical operators
More operators are available for use in expressions. A logical operator treats operands as being true
or false, and evaluates to true or false.

Challenge
ActivityC 3.3.4: Multiple if statements: Print car info.

Write multiple if statements. If carYear is 1969 or earlier, print "Probably has few safety features." If 1970 or higher, print "Probably has seat
belts." If 1990 or higher, print "Probably has anti-lock brakes." If 2000 or higher, print "Probably has air bags." End each phrase with period
and newline. Ex: carYear = 1995 prints:

Probably has seat belts.
Probably has anti-lock brakes.

Run

import java.util.Scanner;

public class CarFeatures {
 public static void main (String [] args) {
 int carYear = 0;

 carYear = 1940;

 /* Your solution goes here */

 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 37 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

The operands, shown above as a and b, are typically expressions.

Table 3.4.1: Logical operators.

Logical
operator Description

a && b Logical AND: true when both of its operands are true

a || b Logical OR: true when at least one of its two operands are true

!a Logical NOT (opposite): true when its single operand is false (and false
when operand is true)

Table 3.4.2: Logical operators examples.

Given age = 19, days = 7, userChar
= 'q'

(age > 16) && (age < 25) true, because both operands are true.

(age > 16) && (days > 10) false, because both operands are not true (days >
10 is false).

(age > 16) || (days > 10) true, because at least one operand is true (age > 16
is true).

!(days > 10) true, because operand is false.

!(age > 16) false, because operand is true.

!(userChar == 'q') false, because operand is true.

Participation
ActivityP 3.4.1: Evaluating expressions with logical operators.

Given numPeople = 10, numCars = 2, userKey = 'q'.

Question Your
answer

1

 numPeople >= 10 true

false

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 38 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

false

2

 (numPeople >= 10) && (numCars > 2) true

false

3

 (numPeople >= 20) || (numCars > 1) true

false

4

 !(numCars < 5) true

false

5

 !(userKey == 'a') true

false

6

 userKey != 'a' true

false

7

 !((numPeople > 10) && (numCars > 2)) true

false

8

 (userKey == 'x') || ((numPeople > 5) && (numCars > 1)) true

false

P

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 39 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

P Participation
Activity

3.4.2: Logical operators: Complete the expressions for the given
condition.

Question Your answer

1

days is greater
than 30 and
less than 90

if ((days > 30) (days < 90)) {

 ...
}

2

0 < maxCars <
100

if ((maxCars > 0) (maxCars < 100)) {

 ...
}

3

numStores is
between 10
and 20,
inclusive.

if ((numStores >= 10) && ()) {

 ...
}

4

numDogs is 3
or more and
numCats is 3
or more.

if ((numDogs >= 3)) {

 ...
}

5

Either wage is
greater than 10
or age is less
than 18. Use ||.
Use > and <
(not >= and
<=). Use
parentheses
around sub-
expressions.

if () {

 ...
}

num is a 3-digit
positive integer,
such as 100,
989, or 523,

if ((num >= 100)) {

 ...
}

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 40 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

The reader should note that the logical AND is && and not just &, and likewise that logical OR is || and
not just |. The single character versions represent different operators known as bitwise operators,
which perform AND or OR on corresponding individual bits of the operands. Using bitwise operators
won't generate a syntax error, but will yield different behavior than expected. A common error occurs
when bitwise operators are used instead of logical operators by mistake.

6

but not 55,
1000, or -4.

For most direct
readability, your
expression
should
compare
directly with
the smallest
and largest 3-
digit number.

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 41 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

The boolean data type is for variables that should store only values true or false. Thus, a programmer
can define a variable like boolean result;, assign the variable as in result = true;,
result = (age < 25);, or result = x && y;, and use the variable in an if-else statement as
in if (result) or if ((!result) && (b == c)).

A common error often made by new programmers is to write expressions like
if (16 < age < 25), as one might see in mathematics.

The meaning however almost certainly is not what the programmer intended. The expression is
evaluated left-to-right, so evaluation of 16 < age yields true. Next, the expression true < 25 is
evaluated. This expression attempts to compare a Boolean value true to an integer value 25, which is

P Participation
Activity

3.4.3: Indicate which are correct expressions for the desired
conditions.

Question Your answer

1

userNum is less than -5 or greater than 10:
(userNum < -5) && (userNum > 10)

Correct

Incorrect

2

userNum is not greater than 100: (userNum !> 100) Correct

Incorrect

3

userNum is neither 5 nor 10:
!((userNum == 5) || (userNum == 10))

Correct

Incorrect

4

userNum is between 10 and 20, inclusive
 ((userNum >= 10) || (userNum <= 20))

Correct

Incorrect

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 42 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

not allowed in Java. The Java compiler will report a compilation error similar to: "operator < cannot be
applied to boolean,int".

Logical and relational expressions are evaluated using precedence rules:

Table 3.4.3: Precedence rules for logical and relational operators.

Convention Description Explanation

() Items within parentheses
are evaluated first.

In !(age > 16), age > 16 is evaluated first,
then the logical NOT.

! Next to be evaluated is !.

* / % + -

Arithmetic operator are
then evaluated using the
precedence rules for
those operators.

z - 45 < 53 is evaluated as (z - 45) < 53.

< <= > >=
Then, relational
operators < <= > >= are
evaluated.

x < 2 || x >= 10 is evaluated as
(x < 2) || (x >= 10) because < and >=
have precedence over ||.

== !=
Then, the equality and
inequality operators ==
!= are evaluated.

x == 0 && x >= 10 is evaluated as
(x == 0) && (x >= 10) because < and >=
have precedence over &&.

&& Then, the logical AND
operator is evaluated.

x == 5 || y == 10 && z != 10 is
evaluated as
(x == 5) || ((y == 10) && (z != 10))
because && has precedence over ||.

|| Finally, the logical OR
operator is evaluated.

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 43 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Using parentheses makes the order of evaluation explicit, rather than relying on precedence rules.
Thus, (age > 16) || (age < 25) is preferable over age > 16 || age < 25, even though
both expressions evaluate the same because > and < have higher precedence than ||.

Using parentheses to make order of evaluation explicit becomes even more critical as arithmetic,
relational, equality, and logical operators are combined in a single expression. For example, a
programmer might write:

! x == 2 intending to mean !(x == 2), but in fact the compiler computes
(!x) == 2 because ! has precedence over ==.

w && x == y && z intending (w && x) == (y && z), but the compiler
computes (w && (x == y)) && z because == has precedence over &&.

! x + y < 5 intending !((x + y) < 5), but the compiler computes
((!x) + y) < 5 because ! has precedence over +.

Good practice is to use parentheses in expressions to make the intended order of evaluation explicit.

Participation
ActivityP 3.4.4: Logical expression simulator.

Try typing different expressions involving x, y and observe whether the expression evaluates to
true.

int x = 7 ;

int y = 5 ;

if () {
 ...
}

 Run code

Output is:
Awaiting your input...

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 44 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Participation
ActivityP 3.4.5: Order of evaluation.

Which of the following expressions illustrate the correct order of evaluation with parentheses?

Question Your answer

1

! green == red (!green) == red

!(green == red)

(!green =)= red

2

bats < birds || birds < insects ((bats < birds) || birds)
< insects

bats < (birds || birds) <
insects

(bats < birds) || (birds <
insects)

3

! (bats < birds) || (birds < insects) ! ((bats < birds) || (birds
< insects))

(! (bats < birds)) ||
(birds < insects)

((!bats) < birds) || (birds
< insects)

4

(num1 == 9) || (num2 == 0) && (num3 == 0) (num1 == 9) || ((num2
== 0) && (num3 == 0))

((num1 == 9) || (num2
== 0)) && (num3 == 0)

(num1 == 9) || (num2
== (0 && num3) == 0)

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 45 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Challenge
ActivityC 3.4.1: Detect specific values.

Write an expression that prints "Special number" if specialNum is -99, 0, or 44.

Run

import java.util.Scanner;

public class FindSpecialValue {
 public static void main (String [] args) {
 int specialNum = 0;

 specialNum = 17;

 if (/* Your solution goes here */) {
 System.out.println("Special number");
 }
 else {
 System.out.println("Not special number");
 }

 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 46 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Section 3.5 - Switch statements
A switch statement can more clearly represent multi-branch behavior involving a variable being
compared to constant values. The program executes the first case whose constant expression
matches the value of the switch expression, executes that case's statements, and then jumps to the
end. If no case matches, then the default case statements are executed.

Challenge
ActivityC 3.4.2: Detect number range.

Write an expression that prints "Eligible" if userAge is between 18 and 25 inclusive.
Ex: 17 prints "Ineligible", 18 prints "Eligible".

Run

import java.util.Scanner;

public class AgeChecker {
 public static void main (String [] args) {
 int userAge = 0;

 userAge = 17;
 if(/* Your solution goes here */){
 System.out.println("Eligible");
 }
 else{
 System.out.println("Ineligible");
 }

 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 47 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Figure 3.5.1: Switch example: Estimates a dog's age in human
years.

import java.util.Scanner;

/* Estimates dog's age in equivalent human years.
 Source: www.dogyears.com
*/

public class DogYears {
 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 int dogAgeYears = 0;

 System.out.print("Enter dog's age (in years): ");
 dogAgeYears = scnr.nextInt();

 switch (dogAgeYears) {
 case 0:
 System.out.println("That's 0..14 human years.");
 break;

 case 1:
 System.out.println("That's 15 human years.");
 break;

 case 2:
 System.out.println("That's 24 human years.");
 break;

 case 3:
 System.out.println("That's 28 human years.");
 break;

 case 4:
 System.out.println("That's 32 human years.");
 break;

 case 5:
 System.out.println("That's 37 human years.");
 break;

 default:
 System.out.println("Human years unknown.");
 break;
 }

 return;
 }
}

Enter dog's age (in years): 4
That's 32 human years.

...

Enter dog's age (in years): 17
Human years unknown.

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 48 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

A switch statement can be written using a multi-branch if-else statement, but the switch statement
may make the programmer's intent clearer.

Participation
ActivityP 3.5.1: Switch statement.

Figure 3.5.2: A switch statement may be clearer than an multi-branch if-else.
if (dogYears == 0) { // Like case 0
 // Print 0..14 years
}
else if (dogYears == 1) { // Like case 1
 // Print 15 years
}
...
else if (dogYears == 5) { // Like case 5
 // Print 37 years
}
else { // Like default case
 // Print unknown
}

switch (a) {

// Print "one"
break;

// Print "zero"
break;

// Print "two"
break;

// Print "unknown"
break;

case 0:

case 1:

case 2:

default:

}

// Get input
switch (a) {
 case 0:
 // Print "zero"
 break;
 case 1:
 // Print "one"
 break;
 case 2:
 // Print "two"
 break;
 default:
 // Print "unknown"
 break;
}

two

a:2

Enter own valueStart

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 49 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Participation
ActivityP 3.5.2: Switch statement.

numItems and userVal are int types. What is the final value of numItems for each userVal?

switch (userVal) {
 case 1:
 numItems = 5;
 break;

 case 3:
 numItems = 12;
 break;

 case 4:
 numItems = 99;
 break;

 default:
 numItems = 55;
 break;
}

Question Your answer

1
userVal = 3;

2
userVal = 0;

3
userVal = 2;

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 50 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

The switch statement's expression should be an integer, char, or string (discussed elsewhere). The
expression should not be a Boolean or a floating-point type. Each case must have a constant
expression like 2 or 'q'; a case expression cannot be a variable.

Good practice is to always have a default case for a switch statement. A programmer may be sure all
cases are covered only to be surprised that some case was missing.

Construct 3.5.1: Switch statement general form.
switch (expression) {
 case constantExpr1:
 // Statements
 break;

 case constantExpr2:
 // Statements
 break;

 ...

 default: // If no other case matches
 // Statements
 break;
}

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 51 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Omitting the break statement for a case will cause the statements within the next case to be
executed. Such "falling through" to the next case can be useful when multiple cases, such as cases 0,
1, and 2, should execute the same statements.

The following extends the previous program for dog ages less than 1 year old. If the dog's age is 0,
the program asks for the dog's age in months. Within the switch (dogAgeMonths) statement,
"falling through" is used to execute the same display statement for several values of dogAgeMonths.
For example, if dogAgeMonths is 0, 1 or 2, the same the statement executes.

Participation
ActivityP 3.5.3: Switch statement: Numbers to words.

Extend the program for dogYears to support age of 6 to 10 years. Conversions are 6:42, 7:47,
8:52, 9:57, 10:62.

7
import java.util.Scanner;

/* Estimates dog's age in equivalent human years.
 Source: www.dogyears.com
*/

public class DogYears {
 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 int dogAgeYears = 0;

 System.out.println("Enter dog's age (in years): ");
 dogAgeYears = scnr.nextInt();

 switch (dogAgeYears) {
 case 0:
 System.out.println("That's 0..14 human years."
 break;

Run

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 52 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Figure 3.5.3: Switch example: Dog years with months.

import java.util.Scanner;

public class DogYearsMonths {
 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 int dogAgeYears = 0;
 int dogAgeMonths = 0;

 System.out.print("Enter dog's age (in years): ");
 dogAgeYears = scnr.nextInt();

 if (dogAgeYears == 0) {
 System.out.print("Enter dog's age in months: ");
 dogAgeMonths = scnr.nextInt();

 switch (dogAgeMonths) {
 case 0:
 case 1:
 case 2:
 System.out.println("That's 0..14 human months.");
 break;

 case 3:
 case 4:
 case 5:
 case 6:
 System.out.println("That's 14 months to 5 human years.");
 break;

 case 7:
 case 8:
 System.out.println("That's 5..9 human years.");
 break;

 case 9:
 case 10:
 case 11:
 case 12:
 System.out.println("That's 9..15 human years.");
 break;

 default:
 System.out.println("Invalid input.");
 break;
 }
 }
 else {
 System.out.println("FIXME: Do earlier dog years cases");
 switch (dogAgeYears) {
 }
 }

 return;
 }
}

Enter dog's age (in years): 0
Enter dog's age in months: 7
That's 5..9 human years.

...

Enter dog's age (in years): 4
FIXME: Do earlier dog years cases

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 53 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

The order of cases doesn't matter assuming break statements exist at the end of each case. The
earlier program could have been written with case 3 first, then case 2, then case 0, then case 1, for
example (though that would be bad style).

A common error occurs when the programmer forgets to include a break statement at the end of a
case's statements.

P

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 54 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Participation
ActivityP 3.5.4: Switch statement.

userChar is a char and encodedVal is an int. What will encodedVal be for each userChar value?

switch (userChar) {
 case 'A':
 encodedVal = 1;
 break;

 case 'B':
 encodedVal = 2;
 break;

 case 'C':

 case 'D':
 encodedVal = 4;
 break;

 case 'E':
 encodedVal = 5;

 case 'F':
 encodedVal = 6;
 break;

 default:
 encodedVal = -1;
 break;
}

Question Your answer

1
userChar = 'A'

2
userChar = 'B'

3
userChar = 'C'

4
userChar = 'E'

5
userChar = 'G'

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 55 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Challenge
ActivityC 3.5.1: Rock-paper-scissors.

Write a switch statement that checks nextChoice. If 0, print "Rock". If 1, print "Paper". If 2, print "Scissors". For any other value, print
"Unknown". End with newline. Do not get input from the user; nextChoice is assigned in main().

Run

import java.util.Scanner;

public class Roshambo {
 public static void main (String [] args) {
 int nextChoice = 0;

 nextChoice = 2;

 /* Your solution goes here */

 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 56 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Section 3.6 - Boolean data types
Boolean refers to a quantity that has only two possible values, true or false.

Java has the built-in data type boolean for representing Boolean quantities.

Challenge
ActivityC 3.5.2: Switch statement to convert letters to Greek letters.

Write a switch statement that checks origLetter. If 'a' or 'A', print "Alpha". If 'b' or 'B', print "Beta". For any other character, print
"Unknown". Use fall-through as appropriate. End with newline.

Run

import java.util.Scanner;

public class ConvertToGreek {
 public static void main (String [] args) {
 char origLetter = '?';

 origLetter = 'a';

 /* Your solution goes here */

 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 57 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

A Boolean variable may be set using true or false keywords, as for isLarge above. Alternatively, a
Boolean variable may be set to the result of a logical expression, which evaluates to true or false, as
for isNeg above.

Figure 3.6.1: Example using variables of bool data type.

import java.util.Scanner;

public class PosOrNeg {
 public static void main (String [] args) {
 Scanner scnr = new Scanner(System.in);
 boolean isLarge = false;
 boolean isNeg = false;
 int userNum = 0;

 System.out.print("Enter any integer: ");
 userNum = scnr.nextInt();

 if ((userNum < -100) || (userNum > 100)) {
 isLarge = true;
 }
 else {
 isLarge = false;
 }

 // Alternative way to set a Boolean variable
 isNeg = (userNum < 0);

 System.out.print("(isLarge: " + isLarge);
 System.out.println(" isNeg: " + isNeg + ")");

 System.out.print("You entered a ");
 if (isLarge && isNeg) {
 System.out.println("large negative number.");
 }
 else if (isLarge && !isNeg) {
 System.out.println("large positive number.");
 }
 else {
 System.out.println("small number.");
 }

 return;
 }
}

Enter any integer: 55
(isLarge: false isNeg: false)
You entered a small number.

...

Enter any integer: -999
(isLarge: true isNeg: true)
You entered a large negative number.

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 58 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Participation
ActivityP 3.6.1: Boolean variables.

Question Your answer

1
Write a statement to declare and initialize a Boolean
variable named night to false.

2

What is stored in variable isFamous after executing
the following statements?
boolean isTall = false;
boolean isRich = true;
boolean isFamous = false;
if (isTall && isRich)
{
 isFamous = true;
}

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 59 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Challenge
ActivityC 3.6.1: Using bool.

Write code to assign true to isTeenager if kidAge is 13 to 19 inclusive.

Run

public class TeenagerDetector {
 public static void main (String [] args) {
 boolean isTeenager = false;
 int kidAge = 0;

 kidAge = 13;

 /* Your solution goes here */

 if (isTeenager) {
 System.out.println("Teen");
 }
 else {
 System.out.println("Not teen");
 }

 return;
 }
}

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 60 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Section 3.7 - String comparisons
Two strings are commonly compared for equality. Equal strings have the same number of characters,
and each corresponding character is identical.

Challenge
ActivityC 3.6.2: Bool in branching statements.

Write an if-else statement to describe an object. Print "Balloon" if isBalloon is true and isRed is false. Print "Red balloon" if isBalloon and
isRed are both true. Print "Not a balloon" otherwise. End with newline.

Run

import java.util.Scanner;

public class RedBalloon {
 public static void main (String [] args) {
 boolean isRed = false;
 boolean isBalloon = false;

 /* Your solution goes here */

 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 61 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

A programmer can compare two strings using the notation str1.equals(str2). The equals
method returns true if the two strings are equal. A common error is to use == to compare two strings,
which behaves differently than expected.

Participation
ActivityP 3.7.1: Equal strings.

Which strings are equal?

Question Your answer

1

"Apple", "Apple" Equal

Unequal

2

"Apple", "Apples" Equal

Unequal

3

"Apple pie!!", "Apple pie!!" Equal

Unequal

4

"Apple", "apple" Equal

Unequal

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 62 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Participation
ActivityP 3.7.2: Comparing strings for equality.

To what does each expression evaluate? Assume str1 is "Apples" and str2 is "apples".

Question Your answer

1

str1.equals("Apples") True

False

2

str1.equals(str2) True

False

3

!str1.equals("oranges") True

False

4

A good way to compare strings is: str1 == str2. True

False

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 63 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Strings are sometimes compared relationally (less-than, greater-than), as when sorting words
alphabetically. For example, banana comes before orange alphabetically, so banana is less-than
orange. Also, banana is less-than bananas.

A programmer compares strings relationally using the notation str1.compareTo(str2). compareTo()
returns values as follows.

Figure 3.7.1: String equality example: Censoring.

import java.util.Scanner;

public class StringCensoring {
 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 String userWord = "";

 System.out.print("Enter a word: ");
 userWord = scnr.next();

 if (userWord.equals("Voldemort")) {
 System.out.println("He who must not be named");
 }
 else {
 System.out.println(userWord);
 }

 return;
 }
}

Enter a word: Sally
Sally

...

Enter a word: Voldemort
He who must not be named

...

Enter a word: voldemort
voldemort

Table 3.7.1: str1.compareTo(str2) return values.

Relation Returns Expression to detect

str1 less-than str2 Negative number str1.compareTo(str2) < 0

str1 equal-to str2 0 str1.compareTo(str2) == 0

str1 greater-than str2 Positive number str1.compareTo(str2) > 0

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 64 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

String comparisons treat uppercase and lowercase differently than most people expect. When
comparing each character, the Unicode values are actually compared. 'A' is 65, B' is 66, etc., while 'a'
is 97, 'b' is 98, etc. So "Apples" is less than "apples" or "abyss" because 'A' is less than 'a'. "Zoology"
is less than "apples". A common error is to forget that case matters in a string comparison.

Participation
ActivityP 3.7.3: Relational string comparison.

Question Your answer

1

Complete the code by
comparing string variables
myName and yourName.
Start with myName.

if () {

 System.out.print(myName + " is greater.");
}

Participation
ActivityP 3.7.4: String comparison.

K

K

0

studentName

teacherName

a

a

1

y

y

2

_

_

4

J

A

5

,

,

3

o

m

6

y

7

Each comparison uses
ASCII values

75
75

97
97

121
121

44
44

32
32

74
65

= = = = = >

studentName > teacherName studentName > teacherName
evaluates to true

Start

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 65 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

A programmer can compare strings while ignoring case using str1.equalsIgnoreCase(str2) and
str1.compareToIgnoreCase(str2).

Participation
ActivityP 3.7.5: Case matters in string comparisons.

Indicate the result of comparing the first string with the second string.

Question Your answer

1

"Apples", "Oranges" less-than

equal

greater-than

2

"merry", "Merry" less-than

equal

greater-than

3

"banana", "bananarama" less-than

equal

greater-than

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 66 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Challenge
ActivityC 3.7.1: String comparison: Detect word.

Write an if-else statement that prints "Goodbye" if userString is "Quit", else prints "Hello". End with newline.

Run

import java.util.Scanner;

public class DetectWord {
 public static void main (String [] args) {
 String userString;

 userString = "Quit";

 /* Your solution goes here */

 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 67 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Section 3.8 - String access operations
A string is a sequence of characters in memory. Each string character has a position number called an
index. The numbering starts with 0, not 1.

charAt(): The notation someString.charAt(0) determines the character at a particular index of a string,
in this case index 0.

Challenge
ActivityC 3.7.2: Print two strings in alphabetical order.

Print the two strings in alphabetical order. Assume the strings are lowercase. End with newline. Sample output:

capes rabbits

Run

import java.util.Scanner;

public class OrderStrings {
 public static void main (String [] args) {
 String firstString;
 String secondString;

 firstString = "rabbits";
 secondString = "capes";

 /* Your solution goes here */

 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 68 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Figure 3.8.1: String character access.

import java.util.Scanner;

public class WordScramble {
 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 String usrWord = "";

 System.out.print("Enter a word with 5 letters: ");
 usrWord = scnr.next();

 System.out.println("Size: " + usrWord.length());
 // Note: Error if usrWord has < 5 letters

 System.out.println("Original: " + usrWord);
 System.out.print("Scrambled: ");
 System.out.print(usrWord.charAt(3));
 System.out.print(usrWord.charAt(4));
 System.out.print(usrWord.charAt(1));
 System.out.print(usrWord.charAt(0));
 System.out.println(usrWord.charAt(2));

 return;
 }
}

Enter a word with 5 letters: Stars
Size: 5
Original: Stars
Scrambled: rstSa

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 69 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

The String data type comes with several useful features. The features are made possible due to
String's implementation as a class, which for purposes here can be thought of as several useful
methods. The String class provides useful methods for accessing information about a string.

Participation
ActivityP 3.8.1: String access.

Given userText is "Think".
Do not type quotes in your answers.

Question Your answer

1
How many numbers do you see:
0 1 2 3

2
What character is at index 1 of userText?

3
What is the index of the last character, 'k', in
userText?

4
To what character does this evaluate:
userText.charAt(3)

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 70 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Table 3.8.1: String info methods, invoked as someString.length().

length() Number of
characters

// userText is "Help me!"
userText.length() // Returns 8
// userText is ""
userText.length() // Returns 0

isEmpty() true if length is 0
// userText is "Help me!"
userText.isEmpty() // Returns false
// userText is ""
userText.isEmpty() // Returns true

indexOf(item)

Index of first item
occurrence, else
-1.
Item may be char,
String variable, or
string literal.
indexOf(item,
indx) starts at
index indx.
lastIndexOf(item)
finds the last
occurrence .

// userText is "Help me!"
userText.indexOf('p') // Returns 3
userText.indexOf('e') // Returns 1 (first occurrence)
userText.indexOf('z') // Returns -1
userText.indexOf("me") // Returns 5
userText.indexOf('e', 2) // Returns 6 (starts at index 2)
userText.lastIndexOf('e') // Returns 6 (last occurrence)

substring(startIndex,
endIndex)

Returns substring
starting at
startIndex and
ending at
endIndex - 1. The
length of the
substring is given
by endIndex -
startIndex.

// userText is "http://google.com"
userText.substring(0, 7) // Returns "http://"
userText.substring(13, 17) // Returns ".com"
userText.substring(userText.length() - 4, userText

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 71 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

A common error is to access an invalid array index, especially exactly one larger than the largest
index. Given userText with size 8, the range of valid indices are 0..7; accessing with index 8 is an error.

Participation
ActivityP 3.8.2: String access operations.

Given userText is "March 17, 2034".
Do not type quotes in answers.

Question Your answer

1
What does userText.length() return?

2
What does userText.isEmpty() return?

3
What does userText.indexOf(',') return?

4
What is the index of the last character in userText?

5
What character does
userText.charAt(userText.length() - 1) return?

6
What does userText.substring(0, 3) return?

7
What does userText.substring(userText.length() - 4,
userText.length()) return?

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 72 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

The charAt(index) method generates an exception if the index is out of range for the string's size. An
exception is a detected runtime error that commonly prints an error message and terminates the
program.

Participation
ActivityP 3.8.3: String access.

Participation
ActivityP 3.8.4: Out-of-range string access.

Given userText = "Monday".

Question Your answer

1

userText.charAt(userText.length()) yields 'y'. True

False

System.out.print(name.charAt(0));
System.out.print(name.charAt(1));
System.out.print(name.charAt(2));
System.out.println(name.charAt(3));

75

76

77

78

...
A
m
y

name

k79

0
1
2
otherVar

Am y

out of range

EXCEPTION

Start

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 73 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Challenge
ActivityC 3.8.1: Looking for characters.

Write an expression to detect that the first character of userInput matches firstLetter.

Run

public class CharMatching {
 public static void main (String [] args) {
 String userInput = "";
 char firstLetter = '-';

 userInput = "banana";
 firstLetter = 'b';

 if (/* Your solution goes here */) {
 System.out.println("Found match: " + firstLetter);
 }
 else {
 System.out.println("No match: " + firstLetter);
 }

 return;
 }
}

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 74 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Section 3.9 - String modify operations
The String class has several methods for modifying strings.

Challenge
ActivityC 3.8.2: Using indexOf().

Print "Censored" if userInput contains the word "darn", else print userInput. End with newline.

Run

Table 3.9.1: String modify methods, invoked as someString.concat(moreString).
Each returns a new String of the appropriate length.

concat(moreString)

Creates a
new String
that appends
the String
moreString
at the end.

// userText is "Hi"
userText = userText.concat(" friend"); // Now "Hi friend"
newText = userText.concat(" there");
// newText is "Hi there"

import java.util.Scanner;

public class CensoredWords {
 public static void main (String [] args) {
 String userInput = "";

 userInput = "That darn cat.";

 /* Your solution goes here */

 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 75 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Strings are considered immutable. Thus, a programmer cannot directly modify a String's characters.
Instead, a programmer must assign a new value to a String variable if a different value is needed.
When a programmer uses a String modification method, such as one of the methods described

replace(findStr,
replaceStr)

replace(findChar,
replaceChar)

Returns a
new String in
which all
occurrences
of findStr (or
findChar)
have been
replaced
with
replaceStr
(or
replaceChar).

// userText is "Hello"
userText = userText.replace('H', 'j'); // Now "jello"
// userText is "You have many gifts"
userText = userText.replace("many", "a plethora of"
// Now "You have a plethora of gifts"
// userText is "Goodbye"
newText = userText.replace("bye"," evening");
// newText is "Good evening"

str1 + str2

Returns a
new String
having str1
with str2
appended.
str1 may be
a String
variable or
string literal.
Likewise for
str2. One of
str1 or str2
(not both)
may be a
character.

// userText is "A B"
myString = userText + " C D";
// myString is "A B C D"
myString = myString + '!';
// myString now "A B C D!"

str1 += str2

Shorthand
for str1 =
str1 + str2.
str1 must be
a String
variable, and
str2 may be
a String
variable, a
string literal,
or a
character.

// userText is "My name is "
userText += "Tom"; // Now "My name is Tom"

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 76 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

above, a new String with those modifications will be created. For example, assume the String userText
is initialized to "climb". The method call userText.concat("ing") will create an entirely new
String with the contents "climbing". Note that the original userText String is not modified by the call to
the concat() method. If the programmer wants to update userText, then the statement
userText = userText.concat("ing") can be used, in which the new String created by the
call to concat is assigned back to userText.

Figure 3.9.1: String modify example: Greeting.

import java.util.Scanner;

public class GreetingMaker {
 public static void main (String [] args) {
 Scanner scnr = new Scanner(System.in);
 String userName = "";
 String greetingText = "";

 System.out.print("Enter name: ");
 userName = scnr.nextLine();

 // Combine strings using +
 greetingText = "Hello " + userName;

 // Append a period (could have used +)
 greetingText = greetingText.concat(".");
 System.out.println(greetingText);

 // Insert Mr/Ms before user's name
 greetingText = "Hello Mr/Ms ";
 greetingText = greetingText.concat(userName);
 greetingText = greetingText.concat(".");
 System.out.println(greetingText);

 // Replace occurrence of "Darn" by "@$#"
 greetingText = greetingText.replace("Darn", "@$#");
 System.out.println(greetingText);

 return;
 }
}

Enter name: Julia
Hello Julia.
Hello Mr/Ms Julia.
Hello Mr/Ms Julia.

...

Enter name: Darn Rabbit
Hello Darn Rabbit.
Hello Mr/Ms Darn Rabbit.
Hello Mr/Ms @$# Rabbit.

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 77 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Participation
ActivityP 3.9.1: String modification methods.

str1 is "Main", str2 is " Street" and str3 is "Western"

Question Your answer

1

Use + to combine str1 and
str2, so newStr should be
"Main Street".

newStr = str1 ;

2

Use concat to append a
period to str2, so str2 should
be " Street."

str2 = str2.concat();

3
Replace "ai" by "our" in str1,
so str1 should be "Mourn".

str1 = str1.replace();

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 78 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Challenge
ActivityC 3.9.1: Combining strings.

Retype and correct the code provided to combine two strings separated by a space.

 secretID.concat(spaceChar);
 secretID.concat(lastName);

Run

import java.util.Scanner;

public class CombiningStrings {
 public static void main (String [] args) {
 String secretID = "Barry";
 String lastName = "Allen";
 char spaceChar = ' ';

 /* Your solution goes here */

 System.out.println(secretID);
 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 79 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Section 3.10 - Character operations
The Character class provides several methods for working with characters.

Challenge
ActivityC 3.9.2: Name song.

Modify secondVerse to play "The Name Game" (a.k.a. "The Banana Song", see Wikipedia.org), by replacing "(Name)" with userName but
without the first letter. Ex: if userName = "Katie", the program prints:

Banana-fana fo-fatie!

Run

import java.util.Scanner;

public class NameSong {
 public static void main (String [] args) {
 String secondVerse = "Banana-fana fo-f(Name)!";
 String userName = "Katie";

 userName = userName.substring(1); // Removes first char from userName

 /* Your solution goes here */

 System.out.println(secondVerse);

 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

http://en.wikipedia.org/wiki/The_Name_Game

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 80 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Table 3.10.1: Character methods return values. Each method must prepend
Character., as in Character.isLetter.

isLetter(c)
true if
alphabetic:
a-z or A-Z

isLetter('x') // true
isLetter('6') // false
isLetter('!') // false

 toUpperCase(c) Uppercase
version

isDigit(c) true if digit:
0-9.

isDigit('x') // false
isDigit('6') // true toLowerCase(c) Lowercase

version

isWhitespace(c) true if
whitespace.

isWhitespace(' ') // true
isWhitespace('\n') // true
isWhitespace('x') // false

Participation
ActivityP 3.10.1: Character methods.

To what value does each evaluate? userStr is "Hey #1?".

Question Your answer

1

Character.isLetter('7') True

False

2

Character.isLetter(userStr.charAt(0)) True

False

3

Character.isWhitespace(userStr.charAt(3)) True

False

4

Character.isDigit(userStr.charAt(6)) True

False

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 81 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

5

Character.toUpperCase(userStr.charAt(1)) returns 'E'. True

False

6

Character.toLowerCase(userStr.charAt(2)) yields an error
because 'y' is already lower case .

True

False

7

Character.toLowerCase(userStr.charAt(6)) yields an error
because '?' is not alphabetic.

True

False

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 82 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Challenge
ActivityC 3.10.1: String with digit.

Set hasDigit to true if the 3-character passCode contains a digit.

Run

 public static void main (String [] args) {
 boolean hasDigit = false;
 String passCode = "";
 int valid = 0;

 passCode = "abc";

 /* Your solution goes here */

 if (hasDigit) {
 System.out.println("Has a digit.");
 }
 else {
 System.out.println("Has no digit.");
 }

 return;
 }
}

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 83 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Section 3.11 - Conditional expressions
If-else statements with the form shown below are so common that the language supports the
shorthand notation shown.

Challenge
ActivityC 3.10.2: Whitespace replace.

Write code to print the location of any space in the 2-character string passCode. Each space detected should print a separate statement
followed by a newline. If no space exists, the program should not print anything. Sample output for the given program:

Space at 1

Run

import java.util.Scanner;

public class FindSpaces {
 public static void main (String [] args) {
 String passCode = "";

 passCode = "A ";

 /* Your solution goes here */

 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 84 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

A conditional expression has the following form:

All three operands are expressions. If the condition evaluates to true, then exprWhenTrue is
evaluated. If the condition evaluates to false, then exprWhenFalse is evaluated. The conditional
expression evaluates to whichever of those two expressions was evaluated. For example, if x is 2,
then the conditional expression (x == 2) ? 5 : 9 * x evaluates to 5.

A conditional expression has three operands and thus the "?" and ":" together are sometimes referred
to as a ternary operator.

Good practice is to restrict usage of conditional expressions to an assignment statement, as in: y = (x
== 2) ? 5 : 9 * x;. Common practice is to put parentheses around the first expression of the conditional
expression, to enhance readability.

Participation
ActivityP 3.11.1: Conditional expression.

Construct 3.11.1: Conditional expression.
condition ? exprWhenTrue : exprWhenFalse

Participation
ActivityP 3.11.2: Conditional expressions.

Convert each if-else statement to a single assignment statement using a conditional expression,
using parentheses around the condition. Enter "Not possible" if appropriate. ..

Start

if (condition) {
 myVar = expr1;
}
else {
 myVar = expr2;
}

myVar = (condition) ?expr1 : expr2;

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 85 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Question Your answer

1

if (x > 50) {
 y = 50;
}
else {
 y = x;
}

y = () ? 50 : x;

2

if (x < 20) {
 y = x;
}
else {
 y = 20;
}

y = (x < 20)

3

if (x < 100) {
 y = 0;
}
else {
 y = x;
}

4

if (x < 0) {
 x = -x;
}
else {
 x = x;
}

5

if (x < 0) {
 y = -x;
}
else {
 z = x;
}

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 86 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Challenge
ActivityC 3.11.1: Conditional expression: Print negative or positive.

Create a conditional expression that evaluates to string "negative" if userVal is less than 0, and "positive" otherwise.
userVal = -9 for the below sample program:

-9 is negative.

Run

import java.util.Scanner;

public class NegativeOrPositive {
 public static void main (String [] args) {
 String condStr = "";
 int userVal = 0;

 userVal = -9;

 condStr = /* Your solution goes here */;

 System.out.println(userVal + " is " + condStr);

 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 87 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Section 3.12 - Floating-point comparison
Floating-point numbers should not be compared using ==. Ex: Avoid float1 == float2. Reason: Some
floating-point numbers cannot be exactly represented in the limited available memory bits like 64 bits.
Floating-point numbers expected to be equal may be close but not exactly equal.

Challenge
ActivityC 3.11.2: Conditional assignment.

Using a conditional expression, write a statement that increments numUsers if updateDirection is 1, otherwise decrements numUsers. Ex:
if numUsers is 8 and updateDirection is 1, numUsers becomes 9; if updateDirection is 0, numUsers becomes 7. Hint: Start with
"numUsers = ...".

Run

import java.util.Scanner;

public class UpdateNumberOfUsers {
 public static void main (String [] args) {
 int numUsers = 0;
 int updateDirection = 0;

 numUsers = 8;
 updateDirection = 1;

 /* Your solution goes here */

 System.out.println("New value is: " + numUsers);

 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 88 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Floating-point numbers should be compared for "close enough" rather than exact equality. Ex: If (x - y)
< 0.0001, x and y are deemed equal. Because the difference may be negative, the absolute value is
used: Math.abs(x - y) < 0.0001. Math.abs() is a method in the Math class. The difference threshold
indicating that floating-point numbers are equal is often called the epsilon. Epsilon's value depends
on the program's expected values, but 0.0001 is common.

Participation
ActivityP 3.12.1: Floating-point comparisons.

numMeters = 0.7;
numMeters = numMeters - 0.4;
numMeters = numMeters - 0.3;

// numMeters expected to be 0,
// but is actually 0.0000000000000000555112

if (numMeters == 0.0) {
 // Equals 0.
}
else {
 // Does not equal 0.
}

if (Math.abs(numMeters - 0.0) < 0.001) {
 // Equals 0.
}
else {
 // Does not equal 0.
}

numMeters

Expected Actual

0 -0.0000000000000000555111512

0.7
0.4
0.3

0.6999999999999999555910790
0.4000000000000000222044605
0.2999999999999999888977697

Start

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 89 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Participation
ActivityP 3.12.2: Using == with floating-point numbers.

Question Your answer

1

Given: float x, y
x == y is OK.

True

False

2

Given: double x, y
x == y is OK.

True

False

3

Given: double x
x == 32.0 is OK.

True

False

4

Given: int x, y
x == y is OK.

True

False

5

Given: double x
x == 32 is OK.

True

False

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 90 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Participation
ActivityP 3.12.3: Floating-point comparisons.

Each comparison has a problem. Click on the problem.

Question

1 Math.abs (x - y) == 0.0001

2 Math.abs (x - y) < 1.0

Participation
ActivityP 3.12.4: Floating point statements.

Complete the comparison for floating-point numbers.

Question Your answer

1
Determine if double variable x is 98.6. (x - 98.6) < 0.0001

2
Determine if double variables x and y are
equal. Threshold is 0.0001.

Math.abs(x - y)

3
Determine if double variable x is 1.0 Math.abs() < 0.0001

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 91 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Figure 3.12.1: Example of comparing floating-point numbers for equality: Body
temperature.

import java.util.Scanner;
import java.lang.Math;

public class BodyTemperatureEx {
 public static void main(String[] args) {
 Scanner scnr = new Scanner(System.in);
 double bodyTemp = 0.0;

 System.out.print("Enter body temperature in Fahrenheit: ");
 bodyTemp = scnr.nextDouble();

 if (Math.abs(bodyTemp - 98.6) < 0.0001) {
 System.out.println("Temperature is exactly normal.");
 }
 else if (bodyTemp > 98.6) {
 System.out.println("Temperature is above normal.");
 }
 else {
 System.out.println("Temperature is below normal.");
 }

 return;
 }
}

Enter body temperature in Fahrenheit: 98.6
Temperature is exactly normal.

Enter body temperature in Fahrenheit: 90
Temperature is below normal.

Enter body temperature in Fahrenheit: 99
Temperature is above normal.

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 92 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

To see the inexact value stored in a floating-point variable, the BigDecimal class can be used in an
output statement.

Participation
ActivityP 3.12.5: Body temperature in Fahrenheit.

Refer to the body temperature code provided in the previous figure.

Question Your answer

1

What is output if the user enters 98.6? Exactly normal

Above normal

Below normal

2

What is output if the user enters 97.0? Exactly normal

Above normal

Below normal

3

What is output if the user enters 98.6000001? Exactly normal

Above normal

Below normal

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 93 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Figure 3.12.2: Observing the inexact values stored in floating-point variables.
import java.math.BigDecimal;

public class DoublePrecisionEx {
 public static void main(String[] args) {
 double sampleValue1 = 0.2;
 double sampleValue2 = 0.3;
 double sampleValue3 = 0.7;
 double sampleValue4 = 0.0;
 double sampleValue5 = 0.25;

 System.out.println("sampleValue1 with System.out.println " + sampleValue1);

 // Uses BigDecimal to print floating-point values without rounding
 System.out.println("sampleValue1 is " + new BigDecimal(sampleValue1));
 System.out.println("sampleValue2 is " + new BigDecimal(sampleValue2));
 System.out.println("sampleValue3 is " + new BigDecimal(sampleValue3));
 System.out.println("sampleValue4 is " + new BigDecimal(sampleValue4));
 System.out.println("sampleValue5 is " + new BigDecimal(sampleValue5));

 return;
 }
}

sampleValue1 with System.out.println 0.2
sampleValue1 is 0.200000000000000011102230246251565404236316680908203125
sampleValue2 is 0.299999999999999988897769753748434595763683319091796875
sampleValue3 is 0.6999999999999999555910790149937383830547332763671875
sampleValue4 is 0
sampleValue5 is 0.25

Participation
ActivityP 3.12.6: Inexact representation of floating-point values.

Enter a decimal value:

Sign Exponent Mantissa

0 0 0 0 0 0 0 0 0 1. 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 94 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Participation
ActivityP 3.12.7: Representing floating-point numbers.

Question Your answer

1

Floating-point values are always stored with some inaccuracy. True

False

2

If a floating-point variable is assigned with 0.2, and prints as
0.2, the value must have been represented exactly.

True

False

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 95 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Section 3.13 - Java example: Salary calculation with branches

Challenge
ActivityC 3.12.1: Floating-point comparison: Print Equal or Not equal.

Write an expression that will cause the following code to print "Equal" if the value of sensorReading is "close enough" to
Otherwise, print "Not equal".

Run

Participation
ActivityP 3.13.1: Calculate salary: Calculate overtime using branches.

The following program calculates yearly and monthly salary given an hourly wage. The program
assumes work-hours-per-week limit of 40 and work-weeks-per-year of 50.

Overtime refers to hours worked per week in excess of some weekly limit, such as 40 hours. Some
companies pay time-and-a-half for overtime hours, meaning overtime hours are paid at 1.5 times
the hourly wage.

Overtime pay can be calculated with pseudocode as follows (assuming a weekly limit of 40 hours):

import java.lang.Math;

public class SensorThreshold {
 public static void main(String[] args) {
 double targetValue = 0.3333;
 double sensorReading = 0.0;

 sensorReading = 1.0 / 3.0;

 if (/* Your solution goes here */) {
 System.out.println("Equal");
 }
 else {
 System.out.println("Not equal");
 }

 return;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 96 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

weeklyLimit = 40
if weeklyHours <= weeklyLimit
 weeklySalary = hourlyWage * weeklyHours
else
 overtimeHours = weeklyHours - weeklyLimit
 weeklySalary = hourlyWage * weeklyLimit + (overtimeHours * hourlyWage * 1.5)

1. Run the program and observe the salary earned.
2. Modify the program to read user input for weeklyHours. Run the program again.

Reset

10 42

import java.util.Scanner;

public class Salary {
 public static void main(String [] args) {
 Scanner scnr = new Scanner(System.in);
 int hourlyWage = 0;
 int weeklyHours = 0;
 int weeklySalary = 0;
 int overtimeHours = 0;
 final int WEEKLY_LIMIT = 40;

 System.out.println("Enter hourly wage: ");
 hourlyWage = scnr.nextInt();

 // FIXME: Get user input value for weeklyHours
 weeklyHours = 40;

 if (weeklyHours <= WEEKLY_LIMIT) {
 weeklySalary = weeklyHours * hourlyWage;

Run

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 97 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Participation
ActivityP 3.13.2: Determine tax rate.

Income tax is calculated based on annual income. The tax rate is determined with a tiered
approach: Income above a particular tier level is taxed at that level's rate.

1. Run the program with an annual income of 120000. Note the tax rate and tax to
pay.

2. Modify the program to add a new tier: Annual income above 50000 but less than
or equal to 100000 is taxed at the rate of 30%, and annual income above 100000
is taxed at 40%.

3. Run the program again with an annual income of 120000. What is the tax rate and
tax to pay now?

4. Run the program again with an annual income of 60000. (Change the input area
below the program.)

5. Challenge: What happens if a negative annual salary is entered? Modify the
program to print an error message in that case.

Reset

120000

import java.util.Scanner;

public class IncomeTax {
 public static void main (String [] args) {
 Scanner scnr = new Scanner(System.in);
 int annualSalary = 0;
 double taxRate = 0.0;
 int taxToPay = 0;

 System.out.println("Enter annual salary: ");
 annualSalary = scnr.nextInt();

 // Determine the tax rate from the annual salary
 // FIXME: Write code to address the challenge question above
 if (annualSalary <= 20000) {
 taxRate = 0.10;
 }
 else if (annualSalary <= 50000) {

Run

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 98 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Section 3.14 - Java example: Search for name using branches

Participation
ActivityP 3.14.1: Search for name using branches.

A core generic top-level domain (core gTLD) name is one of the following Internet domains:
.com, .net, .org, and .info (Wikipedia: gTLDs). The following program asks the user to input a name
and prints whether that name is a gTLD. The program uses the String method compareTo(), which
returns a zero if the two compared strings are identical.

1. Run the program, noting that the .info input name is not currently recognized as a
gTLD.

2. Extend the if-else statement to detect the .info domain name as a gTLD. Run the
program again.

3. Extend the program to allow the user to enter the name with or without the leading
dot, so .com or just com.

Reset
import java.util.Scanner;

public class SearchForDomainName {

 public static void main(String [] args) {
 Scanner scnr = new Scanner(System.in);
 String inputName = "";
 String searchName = "";
 String coreGtld1 = ".com";

1
2
3
4
5
6
7
8
9

http://en.wikipedia.org/wiki/Generic_top-level_domain

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 99 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Below is a solution to the above problem.

.info

 String coreGtld2 = ".net";
 String coreGtld3 = ".org";
 // FIXME: Add a fourth core gTLD: .info
 boolean isCoreGtld = false;

 System.out.println("\nEnter a top-level domain name: ");
 inputName = scnr.nextLine();
 // Case is irrelevant, so make all comparisons with lower case
 searchName = inputName.toLowerCase();

Run

10
11
12
13
14
15
16
17
18
19

1/30/16, 10:59 AMLehman College City University of New York CMP 167 Spring 2016: Programming in Java

Page 100 of 100https://zybooks.zyante.com/#/zybook/LehmanCMP167Spring2016/chapter/3/print

Participation
ActivityP 3.14.2: Search for name using branches (solution).

Reset

.INFO

import java.util.Scanner;

public class SearchForDomainName {

 public static void main(String [] args) {
 Scanner scnr = new Scanner(System.in);
 String inputName = "";
 String searchName = "";
 String coreGtld1 = ".com";
 String coreGtld2 = ".net";
 String coreGtld3 = ".org";
 String coreGtld4 = ".info";
 boolean isCoreGtld = false;

 System.out.println("\nEnter a top-level domain name: ");
 inputName = scnr.nextLine();
 searchName = inputName.toLowerCase();

 // If the user entered a name without a leading period, add one

Run

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

